Citation: Meiran Li, Yingjie Song, Xin Wan, Yang Li, Yiqi Luo, Yeheng He, Bowen Xia, Hua Zhou, Mingfei Shao. Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230600. doi: 10.3866/PKU.WHXB202306007 shu

Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation

  • Corresponding author: Hua Zhou, hzhou@buct.edu.cn Mingfei Shao, shaomf@mail.buct.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 2 June 2023
    Revised Date: 7 July 2023
    Accepted Date: 20 July 2023
    Available Online: 7 August 2023

    Fund Project: the National Natural Science Foundation of China 22090030the National Natural Science Foundation of China 22090031the National Natural Science Foundation of China 22288102the Fundamental Research Funds for the Central Universities buctrc202211

  • Electrocatalytic water splitting driven by renewable energy is a potential approach to obtain green hydrogen. However, the relatively high overpotential of anodic oxygen evolution reaction (OER) is one of the main obstacles hindering the widespread popularity of water electrocatalysis technology. To this end, electrochemical hydrogen-evolution coupled with the oxidation of biomass derived platforms, such as replacing OER with thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR), provides an efficient strategy to lower energy utilization and co-producing valuable organic oxygenates. For instance, 2, 5-furandicarboxylic acid (FDCA) is emerging as an important and value-added industrial chemical obtained from HMFOR, which can be used as the monomer of various sustainable bioplastics (e.g., polyesters, polyamides). Great efforts have been devoted to this arena on electrocatalyst engineering for better activity and product selectivity. However, less work has focused on the process scalability of HMFOR to FDCA. Here, we report a simple hydrothermal method to fabricate an array-structured nickel-vanadium layered double hydroxides (NiV-LDH) growth on nickel foam matrix, demonstrating large-sized (6 cm × 10 cm) synthesis of self-supported electrode. The as-prepared material is active and efficient for HMFOR, achieving 100 mA∙cm−2 of current density at 1.52 V vs. RHE (reversible hydrogen electrode) with 94.6% of Faradaic efficiency and 89.1% of yield to FDCA. Compared to traditional water splitting, replacing OER with HMFOR improves the counterpart hydrogen production rate by two-times. As proof-of-concept, we demonstrate the continuous and scalable HMFOR using a low-cost and membrane-free flow reactor system with electrode area of 49.5 cm2. Under a constant current of 10 A, this system achieves high HMF single-pass conversion (94.8%), high FDCA concentration (~186.8 mmol∙L−1), and high FDCA selectivity (98.5%) using 200 mmol∙L−1 of HMF feedstock at a flow rate of 3.62 mL∙min−1. Finally, gram-scale FDCA (119.5 g) can be obtained with hydrogen production using water electrolysis technology. This work highlights that catalyst design and system engineering should be coupled in the future rather than continuing in parallel directions.
  • 加载中
    1. [1]

      Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3  doi: 10.1038/s41563-020-0788-3

    2. [2]

      Lu, Y.; Liu, T.; Dong, C.-L.; Huang, Y.-C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Adv. Mater. 2021, 33, 2007056. doi: 10.1002/adma.202007056  doi: 10.1002/adma.202007056

    3. [3]

      Wang, A.; Chen, J.; Zhang, P.; Tang, S.; Feng, Z.; Yao, T.; Li, C. Acta Phys. -Chim. Sin. 2023, 39 (4), 2301023.  doi: 10.3866/PKU.WHXB202301023

    4. [4]

      Xu, S.; Wu, Q.; Lu, B.; Tang, T.; Zhang, J.; Hu. J. Acta Phys.-Chim. Sin. 2023, 39 (2), 2209001.  doi: 10.3866/PKU.WHXB202209001

    5. [5]

      Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6  doi: 10.1038/s41560-019-0374-6

    6. [6]

      Wei, X.; Li, Y.; Chen, L. Shi; J. Angew. Chem. Int. Ed. 2021, 60, 3148. doi: 10.1002/anie.202012066  doi: 10.1002/anie.202012066

    7. [7]

      Sherbo, R. S.; Delima; R. S; Chiykowski, V. A.; MacLeod, B. P.; Berlinguette, C. P. Nat. Catal. 2018, 1, 501. doi: 10.1038/s41929-018-0083-8  doi: 10.1038/s41929-018-0083-8

    8. [8]

      You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639. doi: 10.1021/jacs.6b07127  doi: 10.1021/jacs.6b07127

    9. [9]

      Song, Y.; Ji, K.; Duan, H.; Shao, M. Exploration 2021, 1 (3), 20210050. doi: 10.1002/EXP.20210050  doi: 10.1002/EXP.20210050

    10. [10]

      Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; et al. Nat. Catal. 2022, 5, 66. doi: 10.1038/s41929-021-00721-y  doi: 10.1038/s41929-021-00721-y

    11. [11]

      Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163. doi: 10.1002/anie.201807717  doi: 10.1002/anie.201807717

    12. [12]

      Wu, J.; Xu, L.; Li, Y.; Dong, C.-L.; Lu, Y.; Nga, T. T. T.; Kong, Z.; Li, S.; Zou, Y.; Wang, S. J. Am. Chem. Soc. 2022, 144, 23649. doi: 10.1021/jacs.2c11153  doi: 10.1021/jacs.2c11153

    13. [13]

      Lin, K.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Cai, K.; Wei, Z.; Liao, Q. 2023, 374, 128775. doi: 10.1016/j.biortech.2023.128775

    14. [14]

      Xia, A.; Lin, K.; Cai, K.; Wei, Z.; Liao, Q. Green Chem. 2022, 24 (24), 9519. doi: 10.1039/D2GC02965K  doi: 10.1039/D2GC02965K

    15. [15]

      Teng, J.; Xu, G.; Fu, Y. Acta Phys. -Chim. Sin. 2022, 38 (10), 2204031  doi: 10.3866/PKU.WHXB202204031

    16. [16]

      Zheng, S.; Wu, J.; Wang, K.; Hu, M.; Wen, H.; Yin, S. Acta Phys. -Chim. Sin. 2023, 39, 2301032.  doi: 10.3866/PKU.WHXB202301032

    17. [17]

      He, Z.; Hwang, J.; Gong, Z.; Zhou, M.; Zhang, N.; Kang, X.; Han, J. W.; Chen, Y. Nat. Commun. 2022, 13, 3777. doi: 10.1038/s41467-022-31484-0  doi: 10.1038/s41467-022-31484-0

    18. [18]

      Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B-Environ 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400  doi: 10.1016/j.apcatb.2022.121400

    19. [19]

      Yang, Y.; He, B. W.; Ma, H. L; Yang, S.; Ren, Z. H; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38 (12), 2201050.  doi: 10.3866/PKU.WHXB202201050

    20. [20]

      Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017  doi: 10.1021/acscatal.8b01017

    21. [21]

      Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Chem 2020, 6, 2974. doi: 10.1016/j.chempr.2020.07.022  doi: 10.1016/j.chempr.2020.07.022

    22. [22]

      Song, Y.; Li, Z.; Fan, K.; Ren, Z.; Xie, W.; Yang, Y.; Shao, M.; Wei, M. Appl. Catal. B-Environ. 2021, 299, 120669. doi: 10.1016/j.apcatb.2021.120669  doi: 10.1016/j.apcatb.2021.120669

    23. [23]

      Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K.; et al. Green Chem. , 2021, 23 (11), 4034. doi: 10.1039/d1gc00901j  doi: 10.1039/d1gc00901j

    24. [24]

      Huang, X.; Song, J.; Hua, M.; Xie, Z.; Liu, S.; Wu, T.; Yang, G.; Han, B. Green Chem. 2020, 22, 843. doi: 10.1039/c9gc03698a  doi: 10.1039/c9gc03698a

    25. [25]

      Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Adv. Mater. 2020, 32, 2000455. doi: 10.1002/adma.202000455  doi: 10.1002/adma.202000455

    26. [26]

      Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2013, 23 (28), 3513. doi: 10.1002/adfm.201202825  doi: 10.1002/adfm.201202825

    27. [27]

      Li, Z.; Duan, H.; Shao, M.; Li, J.; O'Hare, D.; Wei, M.; Wang, Z. L. Chem 2018, 4 (9), 2168. doi: 10.1016/j.chempr.2018.06.007  doi: 10.1016/j.chempr.2018.06.007

    28. [28]

      Liu, Y. Y.; Wang, Y. C., Yan, K. Acta Phys. -Chim. Sin. 2023, 39 (2), 2205028.  doi: 10.3866/PKU.WHXB202205028

    29. [29]

      Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. ACS Catal. 2020, 10, 5179. doi: 10.1021/acscatal.0c00007  doi: 10.1021/acscatal.0c00007

    30. [30]

      Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi: 10.1002/anie.201915803  doi: 10.1002/anie.201915803

    31. [31]

      Chavan, H. S.; Lee, C. H.; Inamdar, A. I.; Han, J.; Park, S.; Cho, S.; Shreshta, N. K.; Lee, S. U.; Hou, B.; Im, H.; et al. ACS Catal. 2022, 12, 3821. doi: 10.1021/acscatal.1c05813  doi: 10.1021/acscatal.1c05813

    32. [32]

      Lu, Y.; Dong, C.-L.; Huang, Y.-C.; Zou, Y.; Liu, Z.; Liu, Y.; Li, Y.; He, N.; Shi, J.; Wang, S. Angew. Chem. Int. Ed. 2020, 59, 19215. doi: 10.1002/anie.202007767  doi: 10.1002/anie.202007767

    33. [33]

      Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895. doi: 10.1002/anie.201908722  doi: 10.1002/anie.201908722

    34. [34]

      Zhu, Y.-Q.; Zhou, H.; Dong, J.; Xu, S.-M.; Xu, M.; Zheng, L.; Xu, Q.; Ma, L.; Li, Z.; Shao, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202219048. doi: 10.1002/anie.202219048  doi: 10.1002/anie.202219048

    35. [35]

      Wang, C.; Wu, Y.; Bodach, A.; Krebs, M. L.; Schuhmann, W.; Schüth, F. Angew. Chem. Int. Ed. 2023, 62, e202215804. doi: 10.1002/anie.202215804  doi: 10.1002/anie.202215804

    36. [36]

      Wöllner, S.; Nowak, T.; Zhang, G.-R.; Rockstroh, N.; Ghanem, H.; Rosiwal, S.; Brückner, A.; Etzold, B. J. M. ChemistryOpen 2021, 10, 600. doi: 10.1002/open.202100072  doi: 10.1002/open.202100072

    37. [37]

      Krebs, M. L.; Bodach, A.; Wang, C. L.; Schueth, F. Green Chem. 2023, 25, 1797. doi: 10.1039/d2gc04732b  doi: 10.1039/d2gc04732b

  • 加载中
    1. [1]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    13. [13]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    14. [14]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    19. [19]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(0)
  • Abstract views(1006)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return