Citation: Jingshuo Zhang, Yue Zhai, Ziyun Zhao, Jiaxing He, Wei Wei, Jing Xiao, Shichao Wu, Quan-Hong Yang. Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306006 shu

Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries

  • Corresponding author: Shichao Wu,  Quan-Hong Yang, 
  • Received Date: 2 June 2023
    Revised Date: 5 July 2023
    Accepted Date: 20 July 2023
    Available Online: 9 August 2023

    Fund Project: the National Key Research and Development Program of China 2021YFF0500600the National Natural Science Foundation of China U2001220the National Natural Science Foundation of China 52272231

  • Silicon (Si) has a high theoretical gravimetric capacity (3579 mAh∙g−1 for Li15Si4), which is almost ten times higher than that of graphite (372 mAh∙g−1) anode. Besides, it has low electrochemical potentials (0.4 V vs. Li+/Li), and abundant reserves. Thus, Si becomes a key anode material for the development of high-energy lithium-ion batteries. Nano-Si, typically compounded with graphite, has opened its commercialization. But the specific capacity of commercial Si/graphite composites is generally below 600 mAh∙g−1, which is far below the theoretical specific capacity of Si. In the meanwhile, the high cost, high specific surface area and low tap density of nano-Si limit its volumetric energy density and large-scale production further. Compared to the above materials, micro-Si (1–10 μm) is gaining industry attention for its low cost, as it does not require high-energy ball milling to reduce the particle size. Also, low specific surface area and high tap density conduce to reducing interfacial side reactions and increasing volumetric energy density. Therefore, micro-Si has a particular advantage over application in high volumetric energy density storage devices. However, due to the huge stress caused by significant volume change (300%), there are more severe problems such as particle pulverization, electrode disintegration, conductive network failure and uncontrolled growth of solid electrolyte interphases, which greatly hinder its commercialization. Binders are essential in adapting to Si volume changes to ensure the integrity of the electrode and keeping the tight contact among the active material, conductive additive and current collector to provide a stable conductive network. The development of high-capacity and high-stability micro-Si-based anodes poses greater challenges to the design of binders. In this review, we first clarify the binding mechanism of binders, factors that influence the bonding forces, and design strategies of binders for relieving the volume change of Si electrodes. As a major part, we systematically discuss the strategies and corresponding mechanisms of functional binders for silicon-based anodes from aspects of self-healing binders, conductive binders, ion-conductive binders, and the facilitating effect of functional binders on the stable SEI (Solid Electrolyte Interphase) formation. Finally, the existing problems and challenges are pointed out in terms of long-cycle stability, initial Coulombic efficiency (ICE) and binder ratio under commercial loading. We put forward the promising directions for developing functional binders towards the practical use of micro-Si anode: an ideal binder should be multifunctional and helpful to robust electron/ion conductive networks and stable SEI throughout the long cycling life of micro-Si, where the polymer molecular structure of functional binders can be systematically designed by artificial intelligence and machine learning technologies.
  • 加载中
    1. [1]

      Yin, H. Y.; Yu, Y.; Li, Z. C, ; Zhang, G. H.; Feng, Y. J. Acta Phys. -Chim. Sin. 2019, 35, 1341.  doi: 10.3866/PKU.WHXB201904042

    2. [2]

      Kwon, T. W.; Choi, J. W.; Coskun, A. Chem. Soc. Rev. 2018, 47, 2145. doi: 10.1039/c7cs00858a  doi: 10.1039/c7cs00858a

    3. [3]

      Tan, D. H. S.; Chen, Y. -T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J. -M.; Li, W.; Lu, B.; Ham, S. -Y.; Sayahpour, B.; et al. Science 2021, 373, 1494. doi: 10.1126/science.abg7217  doi: 10.1126/science.abg7217

    4. [4]

      Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75. doi: 10.1126/science.1209150  doi: 10.1126/science.1209150

    5. [5]

      Choi, S.; Kwon, T. -W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279. doi: 10.1126/science.aal4373  doi: 10.1126/science.aal4373

    6. [6]

      Xiao, J.; Han, J.; Kong, D.; Shi, H.; Du, X.; Zhao, Z.; Chen, F.; Lan, P.; Wu, S.; Zhang, Y.; et al. Energy Storage Mater. 2022, 50, 554. doi: 10.1016/j.ensm.2022.05.034  doi: 10.1016/j.ensm.2022.05.034

    7. [7]

      Ren, Y.; Xiang, L.; Yin, X.; Xiao, R.; Zuo, P.; Gao, Y.; Yin, G.; Du, C. Adv. Funct. Mater. 2022, 32, 2110046. doi: 10.1002/adfm.202110046  doi: 10.1002/adfm.202110046

    8. [8]

      Pan, S.; Han, J.; Wang, Y.; Li, Z.; Chen, F.; Guo, Y.; Han, Z.; Xiao, K.; Yu, Z.; Yu, M.; et al. Adv. Mater. 2022, 34, 2203617. doi: 10.1002/adma.202203617  doi: 10.1002/adma.202203617

    9. [9]

      Mu, T.; Sun, Y.; Wang, C.; Zhao, Y.; Doyle-Davis, K.; Liang, J.; Sui, X.; Li, R.; Du, C.; Zuo, P.; et al. Nano Energy 2022, 103, 107829. doi: 10.1016/j.nanoen.2022.107829  doi: 10.1016/j.nanoen.2022.107829

    10. [10]

      Han, J.; Tang, D. M.; Kong, D.; Chen, F.; Xiao, J.; Zhao, Z.; Pan, S.; Wu, S.; Yang, Q. H. Sci. Bull. 2020, 65, 1563. doi: 10.1016/j.scib.2020.05.018  doi: 10.1016/j.scib.2020.05.018

    11. [11]

      Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Nat. Nanotechnol. 2012, 7, 310. doi: 10.1038/nnano.2012.35  doi: 10.1038/nnano.2012.35

    12. [12]

      Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Adv. Mater. 2010, 22, 2247. doi: 10.1002/adma.200903755  doi: 10.1002/adma.200903755

    13. [13]

      Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. doi: 10.1002/anie.200704287  doi: 10.1002/anie.200704287

    14. [14]

      Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 353. doi: 10.1038/nmat2725  doi: 10.1038/nmat2725

    15. [15]

      Zhao, Z.; Han, J.; Chen, F.; Xiao, J.; Zhao, Y.; Zhang, Y.; Kong, D.; Weng, Z.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2022, 12, 2103565. doi: 10.1002/aenm.202103565  doi: 10.1002/aenm.202103565

    16. [16]

      Chen, F.; Han, J.; Kong, D.; Yuan, Y.; Xiao, J.; Wu, S.; Tang, D. M.; Deng, Y.; Lv, W.; Lu, J.; et al. Natl. Sci. Rev. 2021, 8, 12. doi: 10.1093/nsr/nwab012  doi: 10.1093/nsr/nwab012

    17. [17]

      Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M. R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C.; et al. Nat. Energy 2020, 5, 386. doi: 10.1038/s41560-020-0601-1  doi: 10.1038/s41560-020-0601-1

    18. [18]

      Zhu, T.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D.; Savitzky, B. H.; Zhao, X.; Lu, Y.; Fu, Y.; Ophus, C.; et al. Nat. Energy 2023, 8, 129. doi: 10.1038/s41560-022-01176-6  doi: 10.1038/s41560-022-01176-6

    19. [19]

      McBrayer, J. D.; Rodrigues, M. -T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L.; et al. Nat. Energy 2021, 6, 866. doi: 10.1038/s41560-021-00883-w  doi: 10.1038/s41560-021-00883-w

    20. [20]

      Wang, Q.; Zhu, M.; Chen, G.; Dudko, N.; Li, Y.; Liu, H.; Shi, L.; Wu, G.; Zhang, D. Adv. Mater. 2022, 34, 2109658. doi: 10.1002/adma.202109658  doi: 10.1002/adma.202109658

    21. [21]

      Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. Nat. Rev. Mater. 2019, 4, 312. doi: 10.1038/s41578-019-0103-6  doi: 10.1038/s41578-019-0103-6

    22. [22]

      Li, P.; Kim, H.; Myung, S. -T.; Sun, Y. -K. Energy Storage Mater. 2021, 35, 550. doi: 10.1016/j.ensm.2020.11.028  doi: 10.1016/j.ensm.2020.11.028

    23. [23]

      Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. InfoMat 2021, 3, 460. doi: 10.1002/inf2.12185  doi: 10.1002/inf2.12185

    24. [24]

      Kwon, T. -W.; Choi, J. W.; Coskun, A. Joule 2019, 3, 662. doi: 10.1016/j.joule.2019.01.006  doi: 10.1016/j.joule.2019.01.006

    25. [25]

      An, H.; Jiang, L.; Li, F.; Wu, P.; Zhu, X.; Wei, S.; Zhou, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905034.  doi: 10.3866/PKU.WHXB201905034

    26. [26]

      Zhao, Z.; Chen, F.; Han, J.; Kong, D.; Pan, S.; Xiao, J.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2023, 13, 2300367. doi: 10.1002/aenm.202300367  doi: 10.1002/aenm.202300367

    27. [27]

      Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Chem. Rev. 2018, 118, 8936. doi: 10.1021/acs.chemrev.8b00241  doi: 10.1021/acs.chemrev.8b00241

    28. [28]

      Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S. J. Electrochem. Soc. 2012, 159, A214. doi: 10.1149/2.024203jes  doi: 10.1149/2.024203jes

    29. [29]

      Hernandez, C. R.; Etiemble, A.; Douillard, T.; Mazouzi, D.; Karkar, Z.; Maire, E.; Guyomard, D.; Lestriez, B.; Roué, L. Adv. Energy Mater. 2018, 8, 1701787. doi: 10.1002/aenm.201701787  doi: 10.1002/aenm.201701787

    30. [30]

      Zhu, S.; Li, H.; Hu, Z.; Zhang, Q.; Zhao, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2103052.  doi: 10.3866/PKU.WHXB202103052

    31. [31]

      Wu, S.; Yang, Y.; Liu, C.; Liu, T.; Zhang, Y.; Zhang, B.; Luo, D.; Pan, F.; Lin, Z. ACS Energy Lett. 2020, 6, 290. doi: 10.1021/acsenergylett.0c02342  doi: 10.1021/acsenergylett.0c02342

    32. [32]

      Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Adv. Mater. 2021, 33, 2007460. doi: 10.1002/adma.202007460  doi: 10.1002/adma.202007460

    33. [33]

      Han, D. Y.; Han, I. K.; Son, H. B.; Kim, Y. S.; Ryu, J.; Park, S. Adv. Funct. Mater. 2023, 33, 2213458. doi: 10.1002/adfm.202213458  doi: 10.1002/adfm.202213458

    34. [34]

      Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S. -I. Joule 2018, 2, 950. doi: 10.1016/j.joule.2018.02.012  doi: 10.1016/j.joule.2018.02.012

    35. [35]

      Li, Z.; Wu, G.; Yang, Y.; Wan, Z.; Zeng, X.; Yan, L.; Wu, S.; Ling, M.; Liang, C.; Hui, K. N.; et al. Adv. Energy Mater. 2022, 12, 2201197. doi: 10.1002/aenm.202201197  doi: 10.1002/aenm.202201197

    36. [36]

      Li, B.; Cao, P. F.; Saito, T.; Sokolov, A. P. Chem. Rev. 2023, 123, 701. doi: 10.1021/acs.chemrev.2c00575  doi: 10.1021/acs.chemrev.2c00575

    37. [37]

      Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Nat. Chem. 2013, 5, 1042. doi: 10.1038/nchem.1802  doi: 10.1038/nchem.1802

    38. [38]

      Li, C. H.; Zuo, J. L. Adv. Mater. 2020, 32, 1903762. doi: 10.1002/adma.201903762  doi: 10.1002/adma.201903762

    39. [39]

      Kim, J.; Park, K.; Cho, Y.; Shin, H.; Kim, S.; Char, K.; Choi, J. W. Adv. Sci. 2021, 8, 2004290. doi: 10.1002/advs.202004290  doi: 10.1002/advs.202004290

    40. [40]

      Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036. doi: 10.1039/c4ta04320k  doi: 10.1039/c4ta04320k

    41. [41]

      Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun. 2014, 5, 3218. doi: 10.1038/ncomms4218  doi: 10.1038/ncomms4218

    42. [42]

      Chen, Z.; Wang, C.; Lopez, J.; Lu, Z.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2015, 5, 1401826. doi: 10.1002/aenm.201401826  doi: 10.1002/aenm.201401826

    43. [43]

      Jiao, X.; Yin, J.; Xu, X.; Wang, J.; Liu, Y.; Xiong, S.; Zhang, Q.; Song, J. Adv. Funct. Mater. 2020, 31, 2005699. doi: 10.1002/adfm.202005699  doi: 10.1002/adfm.202005699

    44. [44]

      Kim, S. -M.; Kim, M. H.; Choi, S. Y.; Lee, J. G.; Jang, J.; Lee, J. B.; Ryu, J. H.; Hwang, S. S.; Park, J. -H.; Shin, K.; et al. Energy Environ. Sci. 2015, 8, 1538. doi: 10.1039/c5ee00472a  doi: 10.1039/c5ee00472a

    45. [45]

      Zhao, H.; Wei, Y.; Qiao, R.; Zhu, C.; Zheng, Z.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y.; Lei, J.; et al. Nano Lett. 2015, 15, 7927. doi: 10.1021/acs.nanolett.5b03003  doi: 10.1021/acs.nanolett.5b03003

    46. [46]

      Liu, X.; Xu, Z.; Iqbal, A.; Chen, M.; Ali, N.; Low, C.; Qi, R.; Zai, J.; Qian, X. Nano-Micro Lett. 2021, 13, 54. doi: 10.1007/s40820-020-00564-5  doi: 10.1007/s40820-020-00564-5

    47. [47]

      Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098. doi: 10.1103/PhysRevLett.39.1098  doi: 10.1103/PhysRevLett.39.1098

    48. [48]

      Chen, S.; Song, Z.; Wang, L.; Chen, H.; Zhang, S.; Pan, F.; Yang, L. Accounts Chem. Res. 2022, 55, 2088. doi: 10.1021/acs.accounts.2c00259  doi: 10.1021/acs.accounts.2c00259

    49. [49]

      Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679. doi: 10.1002/adma.201102421  doi: 10.1002/adma.201102421

    50. [50]

      Zhao, H.; Wang, Z.; Lu, P.; Jiang, M.; Shi, F.; Song, X.; Zheng, Z.; Zhou, X.; Fu, Y.; Abdelbast, G.; et al. Nano Lett. 2014, 14, 6704. doi: 10.1021/nl503490h  doi: 10.1021/nl503490h

    51. [51]

      Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; et al. J. Am. Chem. Soc. 2013, 135, 12048. doi: 10.1021/ja4054465  doi: 10.1021/ja4054465

    52. [52]

      Zhu, T.; Liu, G. J. Electrochem. Soc. 2021, 168, 050533. doi: 10.1149/1945-7111/abff01  doi: 10.1149/1945-7111/abff01

    53. [53]

      Liu, D.; Zhao, Y.; Tan, R.; Tian, L. -L.; Liu, Y.; Chen, H.; Pan, F. Nano Energy 2017, 36, 206. doi: 10.1016/j.nanoen.2017.04.043  doi: 10.1016/j.nanoen.2017.04.043

    54. [54]

      Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; et al. ACS Nano 2016, 10, 3702. doi: 10.1021/acsnano.6b00218  doi: 10.1021/acsnano.6b00218

    55. [55]

      Tsai, C. -Y.; Liu, Y. -L. Electrochim. Acta 2021, 379, 138180. doi: 10.1016/j.electacta.2021.138180  doi: 10.1016/j.electacta.2021.138180

    56. [56]

      Munaoka, T.; Yan, X.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2018, 8, 1703138. doi: 10.1002/aenm.201703138  doi: 10.1002/aenm.201703138

    57. [57]

      Hu, Y.; Shao, D.; Chen, Y.; Peng, J.; Dai, S.; Huang, M.; Guo, Z. -H.; Luo, X.; Yue, K. ACS Appl. Energy Mater. 2021, 4, 10886. doi: 10.1021/acsaem.1c01849  doi: 10.1021/acsaem.1c01849

    58. [58]

      Cai, Y.; Liu, C.; Yu, Z.; Ma, W.; Jin, Q.; Du, R.; Qian, B.; Jin, X.; Wu, H.; Zhang, Q.; et al. Adv. Sci. 2023, 10, 2205590. doi: 10.1002/advs.202205590  doi: 10.1002/advs.202205590

    59. [59]

      Liu, H.; Wu, Q.; Guan, X.; Liu, M.; Wang, F.; Li, R.; Xu, J. ACS Appl. Energy Mater. 2022, 5, 4934. doi: 10.1021/acsaem.2c00329  doi: 10.1021/acsaem.2c00329

    60. [60]

      Garsuch, R. R.; Le, D. -B.; Garsuch, A.; Li, J.; Wang, S.; Farooq, A.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A721. doi: 10.1149/1.2956964  doi: 10.1149/1.2956964

    61. [61]

      Li, Z.; Zhang, Y.; Liu, T.; Gao, X.; Li, S.; Ling, M.; Liang, C.; Zheng, J.; Lin, Z. Adv. Energy Mater. 2020, 10, 1903110. doi: 10.1002/aenm.201903110  doi: 10.1002/aenm.201903110

    62. [62]

      Liu, J.; Zhang, Q.; Zhang, T.; Li, J. -T.; Huang, L.; Sun, S. -G. Adv. Funct. Mater. 2015, 25, 3599. doi: 10.1002/adfm.201500589  doi: 10.1002/adfm.201500589

    63. [63]

      Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314. doi: 10.1002/aenm.201702314  doi: 10.1002/aenm.201702314

    64. [64]

      Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Kim, K. T.; Ha, A. R.; Jung, Y. S. Adv. Energy Mater. 2019, 9, 1802927. doi: 10.1002/aenm.201802927  doi: 10.1002/aenm.201802927

    65. [65]

      Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Adv. Energy Mater. 2021, 11, 2003836. doi: 10.1002/aenm.202003836  doi: 10.1002/aenm.202003836

    66. [66]

      Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Inter. 2016, 8, 12211. doi: 10.1021/acsami.6b03357  doi: 10.1021/acsami.6b03357

    67. [67]

      Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D'Souza, M. S.; Doux, J. -M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q.; et al. Chem. Mater. 2019, 31, 2535. doi: 10.1021/acs.chemmater.8b05020  doi: 10.1021/acs.chemmater.8b05020

    68. [68]

      Browning, K. L.; Browning, J. F.; Doucet, M.; Yamada, N. L.; Liu, G.; Veith, G. M. Phys. Chem. Chem. Phys. 2019, 21, 17356. doi: 10.1039/c9cp02610j  doi: 10.1039/c9cp02610j

    69. [69]

      Browning, K. L.; Sacci, R. L.; Doucet, M.; Browning, J. F.; Kim, J. R.; Veith, G. M. ACS Appl. Mater. Inter. 2020, 12, 10018. doi: 10.1021/acsami.9b22382  doi: 10.1021/acsami.9b22382

  • 加载中
    1. [1]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    2. [2]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    4. [4]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(8)
  • Abstract views(745)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return