Citation: Zilin Hu, Yaoshen Niu, Xiaohui Rong, Yongsheng Hu. Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306005 shu

Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries

  • Corresponding author: Xiaohui Rong, rong@iphy.ac.cn Yongsheng Hu, yshu@iphy.ac.cn
  • Received Date: 1 June 2023
    Revised Date: 29 June 2023
    Accepted Date: 17 July 2023
    Available Online: 17 August 2023

    Fund Project: the National Key R&D Program of China 2022YFB2402500the National Natural Science Foundation of China 51725206the National Natural Science Foundation of China 52122214the National Natural Science Foundation of China 52072403the National Natural Science Foundation of China 52002394the Youth Innovation Promotion Association of the Chinese Academy of Sciences 2020006the Beijing Municipal Natural Science Foundation 2212022the Young Elite Scientists Sponsorship Program by CAST 2022QNRC001

  • The storage of intermittent wind and solar electricity requires grid-level energy storage devices, and due to the abundance and wide distribution of Na resources, Na-ion batteries (NIBs) are much more cost-effective and have shown greater potential for large-scale energy storage than Li-ion batteries (LIBs). However, the lack of suitable cathode hinders the practical use of NIBs, so exploring suitable cathode materials that can maintain a balance between high energy density and cost-effectiveness is essential for NIBs. Ni-Mn based layered oxides are important cathode materials for NIBs, offering relatively high potential through the multi-electron redox reaction of Ni4+/Ni3+/Ni2+ as well as the low-cost and non-toxic nature of Mn4+. P2-Na0.67[Ni0.33Mn0.67]O2 was the first reported Ni-Mn based Na-ion battery cathode with a high capacity of ~160 mAh∙g−1 in the voltage range of 2.0–4.5 V, while irreversible P2-O2 phase transition above 4.1 V makes poor capacity retention and limits their applications. Moreover, a dilemma has emerged in that a costly element (Ni) is used for sodium-ion batteries, which is supposed to be low-cost. With the intensive research in recent years, introducing an appropriate amount of anionic redox can effectively improve energy density while simultaneously reducing the amount of high-cost transition metals, such as V, Co, and Ni. However, because of irreversible oxygen loss and Mn4+/Mn3+ redox activation, voltage decay is difficult to avoid for most of these anion-redox materials. In this research, we report a Li-substituted Nax[Ni, Mn]O2 cathode, the designed formula being Na0.85[Li0.2Ni0.15Mn0.65]O2. This material shows a unique combination of both cationic redox (Ni4+/Ni3+/Ni2+) and anionic redox (O2−/O2n) during charge and discharge, showing a high capacity of ~150 mAh∙g−1 (10 mA∙g−1, 1.5–4.5 V) with only 0.15 Ni. With an optimized voltage range, the material shows a capacity of ~100 mAh∙g−1 and stable cycling performance (80% of initial capacity after 100 cycles at 10 mA∙g−1 within 2.5–4.25 V) and high-rate capability (the capacity of 500 mA∙g−1 is 80% of 10 mA∙g−1, 2.5–4.25 V). Moreover, we demonstrate an effective way to suppress the voltage decay and Mn reduction through Ni3+ as a redox barrier. Specifically, during the discharge process, the Mn4+/Mn3+ reduction process was replaced by the Ni3+/Ni2+ reduction process with higher redox potential in the layered oxides. In addition, the full Ni2+/Ni4+ redox can compensate for the partial oxygen redox loss in the subsequent cycles. We believe that introducing the anion redox through Li substitution and the use of Ni3+ as a redox barrier to suppress the voltage decay will provide a new way in the design of NIBs’ cathode materials, with potential benefits such as higher energy density, lower cost, and longer cycle life.
  • 加载中
    1. [1]

      Li, Y.; Lu, Y.; Zhao, C.; Hu, Y.-S.; Titirici, M.-M.; Li, H.; Huang, X.; Chen, L. Energy Stor. Mater. 2017, 7, 130. doi: 10.1016/j.ensm.2017.01.002  doi: 10.1016/j.ensm.2017.01.002

    2. [2]

      Zhao, E.; Nie, K.; Yu, X.; Hu, Y. S.; Wang, F.; Xiao, J.; Li, H.; Huang, X. Adv. Funct. Mater. 2018, 28, 1707543. doi: 10.1002/adfm.201707543  doi: 10.1002/adfm.201707543

    3. [3]

      Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Adv. Energy Mater. 2018, 8, 1703012. doi: 10.1002/aenm.201703012  doi: 10.1002/aenm.201703012

    4. [4]

      Zhao, C.; Lu, Y.; Yue, J.; Pan, D.; Qi, Y.; Hu, Y.-S.; Chen, L. J. Energy Chem. 2018, 27, 1584. doi: 10.1016/j.jechem.2018.03.004  doi: 10.1016/j.jechem.2018.03.004

    5. [5]

      Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, 1225. doi: 10.1149/1.1407247  doi: 10.1149/1.1407247

    6. [6]

      Lee, D. H.; Xu, J.; Meng, Y. S. Phys. Chem. Chem. Phys. 2013, 15, 3304. doi: 10.1039/c2cp44467d  doi: 10.1039/c2cp44467d

    7. [7]

      Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Adv. Energy Mater. 2011, 1, 333. doi: 10.1002/aenm.201000061  doi: 10.1002/aenm.201000061

    8. [8]

      Clément, R. J.; Xu, J.; Middlemiss, D. S.; Alvarado, J.; Ma, C.; Meng, Y. S.; Grey, C. P. J. Mater. Chem. A 2017, 5, 4129. doi: 10.1039/c6ta09601h  doi: 10.1039/c6ta09601h

    9. [9]

      Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi: 10.1002/anie.201602202  doi: 10.1002/anie.201602202

    10. [10]

      Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X.-Q.; Grey, C. P.; Meng, Y. S. Chem. Mater. 2014, 26, 1260. doi: 10.1021/cm403855t  doi: 10.1021/cm403855t

    11. [11]

      Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. Chem. Commun. 2014, 50, 3677. doi: 10.1039/c3cc49856e  doi: 10.1039/c3cc49856e

    12. [12]

      Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M. J.; Yang, Y. J. Power Sources 2015, 281, 18. doi: 10.1016/j.jpowsour.2014.12.083  doi: 10.1016/j.jpowsour.2014.12.083

    13. [13]

      Kubota, K.; Yoda, Y.; Komaba, S. J. Electrochem. Soc. 2017, 164, A2368. doi: 10.1149/2.0311712jes  doi: 10.1149/2.0311712jes

    14. [14]

      Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415. doi: 10.1002/aenm.201703415  doi: 10.1002/aenm.201703415

    15. [15]

      Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Inorg. Chem. 2012, 51, 6211. doi: 10.1021/ic300357d  doi: 10.1021/ic300357d

    16. [16]

      Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. doi: 10.1002/ppsc.201500129  doi: 10.1002/ppsc.201500129

    17. [17]

      Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Adv. Mater. 2017, 29, 1700210. doi: 10.1002/adma.201700210  doi: 10.1002/adma.201700210

    18. [18]

      Zheng, L.; Obrovac, M. N. Electrochim. Acta 2017, 233, 284. doi: 10.1016/j.electacta.2017.03.033  doi: 10.1016/j.electacta.2017.03.033

    19. [19]

      Zheng, S.; Zhong, G.; McDonald, M. J.; Gong, Z.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. J. Mater. Chem. A 2016, 4, 9054. doi: 10.1039/c6ta02230h  doi: 10.1039/c6ta02230h

    20. [20]

      Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi: 10.1002/aenm.201301453  doi: 10.1002/aenm.201301453

    21. [21]

      Du, K.; Zhu, J.; Hu, G.; Gao, H.; Li, Y.; Goodenough, J. B. Energy Environ. Sci. 2016, 9, 2575. doi: 10.1039/c6ee01367h  doi: 10.1039/c6ee01367h

    22. [22]

      Rong, X.; Liu, J.; Hu, E.; Liu, Y.; Wang, Y.; Wu, J.; Yu, X.; Page, K.; Hu, Y.-S.; Yang, W.; et al. Joule 2018, 2, 125. doi: 10.1016/j.joule.2017.10.008  doi: 10.1016/j.joule.2017.10.008

    23. [23]

      de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; et al. Chem. Mater. 2016, 28, 9064. doi: 10.1021/acs.chemmater.6b04078  doi: 10.1021/acs.chemmater.6b04078

    24. [24]

      Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; et al. Joule 2019, 3, 503. doi: 10.1016/j.joule.2018.10.022  doi: 10.1016/j.joule.2018.10.022

    25. [25]

      Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. J. Mater. Chem. A 2014, 2, 16851. doi: 10.1039/c4ta04351k  doi: 10.1039/c4ta04351k

    26. [26]

      Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi: 10.1016/j.joule.2018.11.014  doi: 10.1016/j.joule.2018.11.014

    27. [27]

      Mortemard de Boisse, B.; Nishimura, S.-i.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Adv. Energy Mater. 2018, 8, 1800409. doi: 10.1002/aenm.201800409  doi: 10.1002/aenm.201800409

    28. [28]

      Li, Y.; Wang, X.; Gao, Y.; Zhang, Q.; Tan, G.; Kong, Q.; Bak, S.; Lu, G.; Yang, X. Q.; Gu, L.; et al. Adv. Energy Mater. 2018, 9, 1803087. doi: 10.1002/aenm.201803087  doi: 10.1002/aenm.201803087

    29. [29]

      Song, B.; Tang, M.; Hu, E.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y.; Phillip, N. D.; Liu, X.; Shadike, Z.; Li, C.; et al. Chem. Mater. 2019, 31, 3756. doi: 10.1021/acs.chemmater.9b00772  doi: 10.1021/acs.chemmater.9b00772

    30. [30]

      Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. Nat. Chem. 2016, 8, 692. doi: 10.1038/nchem.2524  doi: 10.1038/nchem.2524

    31. [31]

      Zhao, C.; Wang, Q.; Lu, Y.; Hu, Y.-S.; Li, B.; Chen, L. J. Phys. D 2017, 50, 183001. doi: 10.1088/1361-6463/aa646d  doi: 10.1088/1361-6463/aa646d

    32. [32]

      Rong, X.; Gao, F.; Lu, Y.; Yang, K.; Hu, Y. Chin. Chem. Lett. 2018, 29, 1791. doi: 10.1016/j.cclet.2018.11.023  doi: 10.1016/j.cclet.2018.11.023

    33. [33]

      Ku, K.; Hong, J.; Kim, H.; Park, H.; Seong, W. M.; Jung, S.-K.; Yoon, G.; Park, K.-Y.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8, 1800606. doi: 10.1002/aenm.201800606  doi: 10.1002/aenm.201800606

    34. [34]

      Hong, J.; Seo, D.-H.; Kim, S.-W.; Gwon, H.; Oh, S.-T.; Kang, K. J. Mater. Chem. 2010, 20, 10179. doi: 10.1039/c0jm01971b  doi: 10.1039/c0jm01971b

    35. [35]

      Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. Chem. Mater. 2011, 23, 1174. doi: 10.1021/cm102629g  doi: 10.1021/cm102629g

    36. [36]

      Li, Y.; Deng, Z.; Peng, J.; Chen, E.; Yu, Y.; Li, X.; Luo, J.; Huang, Y.; Zhu, J.; Fang, C.; et al. Chem. Eur. J. 2018, 24, 1057. doi: 10.1002/chem.201705466  doi: 10.1002/chem.201705466

    37. [37]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    38. [38]

      Xia, H.; Lu, L.; Ceder, G. J. Power Sources 2006, 159, 1422. doi: 10.1016/j.jpowsour.2005.12.01  doi: 10.1016/j.jpowsour.2005.12.01

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    11. [11]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    19. [19]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    20. [20]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

Metrics
  • PDF Downloads(2)
  • Abstract views(774)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return