Citation: Lu Zhuoran, Li Shengkai, Lu Yuxuan, Wang Shuangyin, Zou Yuqin. Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230600. doi: 10.3866/PKU.WHXB202306003 shu

Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts

  • Corresponding author: Zou Yuqin, yuqin_zou@hnu.edu.cn
  • Received Date: 1 June 2023
    Revised Date: 3 July 2023
    Accepted Date: 3 July 2023
    Available Online: 10 July 2023

    Fund Project: the National Key R&D Program of China 2020YFA0710000the National Natural Science Foundation of China 22122901the Provincial Natural Science Foundation of Hunan, China 2021JJ0008the Provincial Natural Science Foundation of Hunan, China 2021JJ20024the Provincial Natural Science Foundation of Hunan, China 2021RC3054the Shenzhen Science and Technology Program, China JCYJ20210324140610028

  • Transforming the current structure of energy production and consumption, which currently excessively relies on fossil fuels, into a more efficient utilization of renewable energy, is an effective solution for addressing the energy crisis and achieving carbon neutrality. Biomass represents one of the most promising sources of renewable energy, capable of replacing fossil fuels and yielding valuable organic compounds. In recent years, the vigorous utilization of biomass energy sources has become an inevitable trend. The conventional thermochemical catalysis method used for biomass conversion often requires harsh conditions, such as high temperatures and pressures, and even external sources of hydrogen or oxygen. In comparison, the electrocatalytic conversion of organic molecules derived from biomass offers a greener and more efficient strategy for producing high-value chemicals under relatively mild conditions. Particularly, the cleavage of carbon chains through C―C bond cleavage is crucial in transforming biomass-derived molecules into short-chain chemicals of high value. Numerous studies have demonstrated that transition metal (TM) electrocatalysts play a critical role in the C―C bond cleavage of organic compounds, owing to their rich 3d electron structure and unique eg orbitals that enhance the covalence of transition metal-oxygen bonds. Moreover, the coordination environments and electronic structures of TM electrocatalysts can influence the selectivity of the products. Undoubtedly, well-defined active sites and reaction pathways facilitate a comprehensive understanding of the structure-activity relationship between catalyst structure and reaction activity. However, the electrocatalytic cleavage of C―C bonds for biomass upgrading on TM electrocatalysts is still in its initial stages, and the reaction mechanism and catalytic processes remain unclear. Therefore, there is a need to systematically comprehend the role of electrocatalysts at the atomic level during the C―C bond cleavage process. This review begins by providing an overview of the extensively studied TM electrocatalysts that mediate C―C bond cleavage reactions of organic molecules derived from biomass, including glycerol, cyclohexanol, lignin, and furfural. Several representative examples and corresponding reaction pathways are presented. Subsequently, we systematically review the reaction mechanisms underlying the catalytic C―C bond cleavage by transition metal compounds, elucidate interfacial behaviors, and establish a structure-activity relationship between the structure of TM electrocatalysts and cleavage reaction activity. Finally, we provide a brief summary of the content covered and highlight the challenges and prospects in exploring C―C bond cleavage on TM electrocatalysts. It is anticipated that this work will serve as a guide for the controlled conversion of biomass and the rational design of TM electrocatalysts for C―C bond cleavage.
  • 加载中
    1. [1]

      Araji, N.; Madjinza, D. D.; Chatel, G.; Moores, A.; Jérôme, F.; Vigier, K. D. O. Green Chem. 2017, 19, 98. doi: 10.1039/C6GC02620F  doi: 10.1039/C6GC02620F

    2. [2]

      Li, K.; Sun, Y. Chem-Eur. J. 2018, 24, 18258. doi: 10.1002/chem.201803319  doi: 10.1002/chem.201803319

    3. [3]

      Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216. doi: 10.1039/c8cy00533h  doi: 10.1039/c8cy00533h

    4. [4]

      Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B. -S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain. Chem. Eng. 2017, 5, 6626. doi: 10.1021/acssuschemeng.7b00868  doi: 10.1021/acssuschemeng.7b00868

    5. [5]

      Wang, H.; Thia, L.; Li, N.; Ge, X.; Liu, Z.; Wang, X. ACS Catal. 2015, 5, 3174. doi: 10.1021/acscatal.5b00183  doi: 10.1021/acscatal.5b00183

    6. [6]

      Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8, 6301. doi: 10.1021/acscatal.8b01317  doi: 10.1021/acscatal.8b01317

    7. [7]

      Si, D.; Xiong, B.; Chen, L.; Shi, J. Chem Catal. 2021, 1, 941. doi: 10.1016/j.checat.2021.08.001  doi: 10.1016/j.checat.2021.08.001

    8. [8]

      Li, Y.; Peng, Y.-K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K.-Y.; Taylor, R. A. Nat. Commun. 2019, 10, 4421. doi: 10.1038/s41467-019-12385-1  doi: 10.1038/s41467-019-12385-1

    9. [9]

      Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. J. Power Sources 2009, 190, 241. doi: 10.1016/j.jpowsour.2009.01.044  doi: 10.1016/j.jpowsour.2009.01.044

    10. [10]

      Caliman, C. C.; Palma, L.; Ribeiro, J. J. Electrochem. Soc. 2013, 160, F853. doi: 10.1149/2.073308jes  doi: 10.1149/2.073308jes

    11. [11]

      Habibi, B.; Ghaderi, S. Int. J. Hydrog. Energy 2015, 40, 5115. doi: 10.1016/j.ijhydene.2015.02.103  doi: 10.1016/j.ijhydene.2015.02.103

    12. [12]

      Fernández, P. S.; Martins, C. A.; Martins, M. E.; Camara, G. A. Electrochim. Acta 2013, 112, 686. doi: 10.1016/j.electacta.2013.09.032  doi: 10.1016/j.electacta.2013.09.032

    13. [13]

      Lopes, F. S.; Nogueira, T.; Do Lago, C. L.; Gutz, I. G. Electroanalysis 2011, 23, 2516. doi: 10.1002/elan.201100321  doi: 10.1002/elan.201100321

    14. [14]

      Jeffery, D. Z.; Camara, G. A. Electrochem. Commun. 2010, 12, 1129. doi: 10.1016/j.elecom.2010.06.001  doi: 10.1016/j.elecom.2010.06.001

    15. [15]

      Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. ACS Catal. 2012, 2, 759. doi: 10.1021/cs200599g  doi: 10.1021/cs200599g

    16. [16]

      Kwon, Y.; Lai, S. C.; Rodriguez, P.; Koper, M. T. J. Am. Chem. Soc. 2011, 133, 6914. doi: 10.1021/ja200976j  doi: 10.1021/ja200976j

    17. [17]

      Simões, M.; Baranton, S.; Coutanceau. Appl. Catal. B. Environ. 2010, 93, 354. doi: 10.1016/j.apcatb.2009.10.008  doi: 10.1016/j.apcatb.2009.10.008

    18. [18]

      Yongprapat, S.; Therdthianwong, A.; Therdthianwong, S. J. Appl. Electrochem. 2012, 42, 483. doi: 10.1007/s10800-012-0423-3  doi: 10.1007/s10800-012-0423-3

    19. [19]

      Yongprapat, S.; Therdthianwong, S.; Therdthianwong, A. Electrochim. Acta 2012, 83, 87. doi: 10.1016/j.electacta.2012.08.031  doi: 10.1016/j.electacta.2012.08.031

    20. [20]

      Zhang, Z.; Xin, L.; Li, W. Int. J. Hydrog. Energy 2012, 37, 9393. doi: 10.1016/j.ijhydene.2012.03.019  doi: 10.1016/j.ijhydene.2012.03.019

    21. [21]

      Zhou, H.; Li, Z.; Xu, S. M.; Lu, L.; Xu, M.; Ji, K.; Ge, R.; Yan, Y.; Ma, L.; Kong, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 8976. doi: 10.1002/anie.202015431  doi: 10.1002/anie.202015431

    22. [22]

      Dash, S.; Munichandraiah, N. J. Electrochem. Soc. 2013, 160, H197. doi: 10.1149/2.007304jes  doi: 10.1149/2.007304jes

    23. [23]

      Renard, D.; Mccain, C.; Baidoun, B.; Bondy, A.; Bandyopadhyay, K. Colloids Surf. A 2014, 463, 44. doi: 10.1016/j.colsurfa.2014.09.027  doi: 10.1016/j.colsurfa.2014.09.027

    24. [24]

      Zhiani, M.; Rostami, H.; Majidi, S.; Karami, K. Int. J. Hydrog. Energy 2013, 38, 5435. doi: 10.1016/j.ijhydene.2012.09.001  doi: 10.1016/j.ijhydene.2012.09.001

    25. [25]

      Zalineeva, A.; Baranton, S.; Coutanceau, C. Electrochim. Acta 2015, 176, 705. doi: 10.1016/j.electacta.2015.07.073  doi: 10.1016/j.electacta.2015.07.073

    26. [26]

      Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. J. Catal. 2017, 356, 14. doi: 10.1016/j.jcat.2017.10.010  doi: 10.1016/j.jcat.2017.10.010

    27. [27]

      Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K.-S. J. Am. Chem. Soc. 2020, 142, 21538. doi: 10.1021/jacs.0c10924  doi: 10.1021/jacs.0c10924

    28. [28]

      Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K.-S. ACS Catal. 2021, 11, 15110. doi: 10.1021/acscatal.1c04163  doi: 10.1021/acscatal.1c04163

    29. [29]

      Franceschini, F.; Taurino, I. J. P. I. M. Phys. Med. 2022, 100054. doi: 10.1016/j.phmed.2022.100054  doi: 10.1016/j.phmed.2022.100054

    30. [30]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335. doi: 10.1038/s41467-019-13375-z  doi: 10.1038/s41467-019-13375-z

    31. [31]

      Wu, J.; Liu, X.; Hao, Y.; Wang, S.; Wang, R.; Du, W.; Cha, S.; Ma, X. Y.; Yang, X.; Gong, M. Angew. Chem. Int. Ed. 2023, 62, e202216083. doi: 10.1002/anie.202216083  doi: 10.1002/anie.202216083

    32. [32]

      Sun, S.; Sun, L.; Xi, S.; Du, Y.; Prathap, M. A.; Wang, Z.; Zhang, Q.; Fisher, A.; Xu, Z. J. Electrochim. Acta 2017, 228, 183. doi: 10.1016/j.electacta.2017.01.086  doi: 10.1016/j.electacta.2017.01.086

    33. [33]

      Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10, 6741. doi: 10.1021/acscatal.0c01498  doi: 10.1021/acscatal.0c01498

    34. [34]

      Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464. doi: 10.1002/anie.202107510  doi: 10.1002/anie.202107510

    35. [35]

      Kruyer, N. S.; Peralta-Yahya, P. Curr. Opin. Biotechnol. 2017, 45, 136. doi: 10.1016/j.copbio.2017.03.006  doi: 10.1016/j.copbio.2017.03.006

    36. [36]

      Yan, W.; Zhang, G.; Wang, J.; Liu, M.; Sun, Y.; Zhou, Z.; Zhang, W.; Zhang, S.; Xu, X.; Shen, J.; et al. Front. Chem. 2020, 8, 185. doi: 10.3389/fchem.2020.00185  doi: 10.3389/fchem.2020.00185

    37. [37]

      Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. doi: 10.1126/science.aaz1293  doi: 10.1126/science.aaz1293

    38. [38]

      Rios, J.; Lebeau, J.; Yang, T.; Li, S.; Lynch, M. D. Green. Chem. 2021, 23, 3172. doi: 10.1039/d1gc00638j  doi: 10.1039/d1gc00638j

    39. [39]

      Schaub, T. Science 2019, 366, 1447. doi: 10.1126/science.aaz6459  doi: 10.1126/science.aaz6459

    40. [40]

      Van De Vyver, S.; Román-Leshkov, Y. Catal. Sci. Technol. 2013, 3, 1465. doi: 10.1039/c3cy20728e  doi: 10.1039/c3cy20728e

    41. [41]

      Skoog, E.; Shin, J. H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biotechnol. Adv. 2018, 36, 2248. doi: 10.1016/j.biotechadv.2018.10.012  doi: 10.1016/j.biotechadv.2018.10.012

    42. [42]

      Wang, R.; Kang, Y.; Wu, J.; Jiang, T.; Wang, Y.; Gu, L.; Li, Y.; Yang, X.; Liu, Z.; Gong, M. Angew. Chem. Int. Ed. 2022, 61, e202214977. doi: 10.1002/anie.202214977  doi: 10.1002/anie.202214977

    43. [43]

      Chaenko, N.; Kornienko, G.; Sokolenko, V.; Kornienko, B. Russ. J. Appl. Chem. 2014, 87, 444. doi: 10.1134/s1070427214040089  doi: 10.1134/s1070427214040089

    44. [44]

      Rauen, A. L.; Weinelt, F.; Waldvogel, S. R. Green Chem. 2020, 22, 5956. doi: 10.1039/d0gc02210a  doi: 10.1039/d0gc02210a

    45. [45]

      Zhao, H.; Qu, X.; Qin, M.; Yang, W. J. Solid State Electrochem. 2016, 20, 2773. doi: 10.1007/s10008-016-3286-4  doi: 10.1007/s10008-016-3286-4

    46. [46]

      Li, Z.; Li, X.; Zhou, H.; Xu, Y.; Xu, S. M.; Ren, Y.; Yan, Y.; Yang, J.; Ji, K.; Li, L.; et al. Nat. Commun. 2022, 13, 5009. doi: 10.1038/s41467-022-32769-0  doi: 10.1038/s41467-022-32769-0

    47. [47]

      Lyalin, B.; Petrosyan, V. Russ. Chem. Bull. 2009, 58, 2426. doi: 10.1007/s11172-009-0339-1  doi: 10.1007/s11172-009-0339-1

    48. [48]

      Hasanzadeh, M.; Karim-Nezhad, G.; Mahjani, M. G.; Jafarian, M.; Shadjou, N.; Khalilzadeh, B.; Saghatforoush, L. A. Catal. Commun. 2008, 10, 295. doi: 10.1016/j.catcom.2008.09.010  doi: 10.1016/j.catcom.2008.09.010

    49. [49]

      Collinson, S.; Thielemans, W. Coord. Chem. Rev. 2010, 254, 1854. doi: 10.1016/j.ccr.2010.04.007  doi: 10.1016/j.ccr.2010.04.007

    50. [50]

      Vennestrøm, P.; Osmundsen, C. M.; Christensen, C.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502. doi: 10.1002/anie.201102117  doi: 10.1002/anie.201102117

    51. [51]

      Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. S. Science 2016, 354, 329. doi: 10.1126/science.aaf7810  doi: 10.1126/science.aaf7810

    52. [52]

      Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2014, 515, 249. doi: 10.1038/nature13867  doi: 10.1038/nature13867

    53. [53]

      Jiang, L.; Sheng, L.; Fan, Z. Sci. China Mater. 2018, 61, 133. doi: 10.1007/s40843-017-9169-4  doi: 10.1007/s40843-017-9169-4

    54. [54]

      Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49, 5510. doi: 10.1039/d0cs00134a  doi: 10.1039/d0cs00134a

    55. [55]

      Tian, H.; Fu, X.; Zheng, M.; Wang, Y.; Li, Y.; Xiang, A.; Zhong, W. -H. Nano Res. 2018, 11, 4265. doi: 10.1007/s12274-018-2013-0  doi: 10.1007/s12274-018-2013-0

    56. [56]

      Constant, S.; Wienk, H. L.; Frissen, A. E.; De Peinder, P.; Boelens, R.; Van Es, D. S.; Grisel, R. J.; Weckhuysen, B. M.; Huijgen, W. J.; Gosselink, R. J. Green Chem. 2016, 18, 2651. doi: 10.1039/C5GC03043A  doi: 10.1039/C5GC03043A

    57. [57]

      Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, B. Chem. Rev. 2018, 118, 614. doi: 10.1021/acs.chemrev.7b00588  doi: 10.1021/acs.chemrev.7b00588

    58. [58]

      Bosque, I.; Magallanes, G.; Rigoulet, M.; KäRkäS, M. D.; Stephenson, C. R. ACS Cent. Sci. 2017, 3, 621. doi: 10.1021/acscentsci.7b00140  doi: 10.1021/acscentsci.7b00140

    59. [59]

      Han, S.; Wang, C.; Wang, Y.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2021, 133, 4524. doi: 10.1002/anie.202014017  doi: 10.1002/anie.202014017

    60. [60]

      Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 6018. doi: 10.1002/anie.201712732  doi: 10.1002/anie.201712732

    61. [61]

      Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. doi: 10.1021/acs.accounts.9b00512  doi: 10.1021/acs.accounts.9b00512

    62. [62]

      Xu, C.; Arancon, R. a. D.; Labidi, J.; Luque, R. Chem. Soc. Rev. 2014, 43, 7485. doi: 10.1039/c4cs00235k  doi: 10.1039/c4cs00235k

    63. [63]

      Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2010, 132, 12554. doi: 10.1021/ja109016b  doi: 10.1021/ja109016b

    64. [64]

      Wu, A.; Patrick, B. O.; Chung, E.; James, B. R. Dalton Trans. 2012, 41, 11093. doi: 10.1039/C2DT31065A  doi: 10.1039/C2DT31065A

    65. [65]

      Norman, C. Science 2011, 332, 1263. doi: 10.1126/science.332.6035.1263-c  doi: 10.1126/science.332.6035.1263-c

    66. [66]

      Lahive, C. W.; Deuss, P. J.; Lancefield, C. S.; Sun, Z.; Cordes, D. B.; Young, C. M.; Tran, F.; Slawin, A. M.; De Vries, J. G.; Kamer, P. C.; et al. J. Am. Chem. Soc. 2016, 138, 8900. doi: 10.1021/jacs.6b04144  doi: 10.1021/jacs.6b04144

    67. [67]

      Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. ACS Catal. 2017, 7, 4571. doi: 10.1021/acscatal.7b01043  doi: 10.1021/acscatal.7b01043

    68. [68]

      Luo, N.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. ACS Catal. 2016, 6, 7716. doi: 10.1021/acscatal.6b02212  doi: 10.1021/acscatal.6b02212

    69. [69]

      Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. Angew. Chem. Int. Ed. 2015, 127, 260. doi: 10.1002/anie.201409408  doi: 10.1002/anie.201409408

    70. [70]

      Sedai, B.; Baker, R. T. Adv. Synth. Catal. 2014, 356, 3563. doi: 10.1002/adsc.201400463  doi: 10.1002/adsc.201400463

    71. [71]

      Tran, F.; Lancefield, C.; Kamer, P.; Lebl, T.; Westwood, N. Green Chem. 2015, 17, 244. doi: 10.1039/c4gc01012d  doi: 10.1039/c4gc01012d

    72. [72]

      Hanson, S. K.; Wu, R.; Silks, L. A. P. Angew. Chem. Int. Ed. 2012, 124, 3466. doi: 10.1002/anie.201107020  doi: 10.1002/anie.201107020

    73. [73]

      Cho, D. W.; Parthasarathi, R.; Pimentel, A. S.; Maestas, G. D.; Park, H. J.; Yoon, U. C.; Dunaway-Mariano, D.; Gnanakaran, S.; Langan, P.; Mariano, P. S. J. Org. Chem. 2010, 75, 6549. doi: 10.1021/jo1012509  doi: 10.1021/jo1012509

    74. [74]

      Lim, S. H.; Nahm, K.; Ra, C. S.; Cho, D. W.; Yoon, U. C.; Latham, J. A.; Dunaway-Mariano, D.; Mariano, P. S. J. Org. Chem. 2013, 78, 9431. doi: 10.1021/jo401680z  doi: 10.1021/jo401680z

    75. [75]

      Hanson, S. K.; Baker, R. T. Acc. Chem. Res. 2015, 48, 2037. doi: 10.1021/acs.accounts.5b00104  doi: 10.1021/acs.accounts.5b00104

    76. [76]

      Parthasarathi, R.; Romero, R. A.; Redondo, A.; Gnanakaran, S. J. Phys. Chem. Lett. 2011, 2, 2660. doi: 10.1021/jz201201q  doi: 10.1021/jz201201q

    77. [77]

      Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.; Paton, R. S.; Beckham, G. T. J. Phys. Chem. Lett. 2011, 2, 2846. doi: 10.1021/jz201182w  doi: 10.1021/jz201182w

    78. [78]

      Kleine, T.; Buendia, J.; Bolm, C. Green Chem. 2013, 15, 160. doi: 10.1039/c2gc36456e  doi: 10.1039/c2gc36456e

    79. [79]

      Cui, T.; Ma, L.; Wang, S.; Ye, C.; Liang, X.; Zhang, Z.; Meng, G.; Zheng, L.; Hu, H. S.; Zhang, J.; et al. J. Am. Chem. Soc. 2021, 143, 9429. doi: 10.1021/jacs.1c02328  doi: 10.1021/jacs.1c02328

    80. [80]

      Yan, K.; Zhang, Y.; Tu, M.; Sun, Y. Energy Fuels 2020, 34, 12703. doi: 10.1021/acs.energyfuels.0c02284  doi: 10.1021/acs.energyfuels.0c02284

    81. [81]

      Lange, J. P.; Van Der Heide, E.; Van Buijtenen, J.; Price, R. ChemSusChem 2012, 5, 150. doi: 10.1002/cssc.201100648  doi: 10.1002/cssc.201100648

    82. [82]

      Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Energy Environ. Sci. 2016, 9, 1144. doi: 10.1039/C5EE02666K  doi: 10.1039/C5EE02666K

    83. [83]

      Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T. ACS Sustain. Chem. Eng. 2015, 3, 2591. doi: 10.1021/acssuschemeng.5b00473  doi: 10.1021/acssuschemeng.5b00473

    84. [84]

      Ye, W.; Yang, Y.; Fang, X.; Arif, M.; Chen, X.; Yan, D. ACS Sustain. Chem Eng. 2019, 7, 18085. doi: 10.1021/acssuschemeng.9b05126  doi: 10.1021/acssuschemeng.9b05126

    85. [85]

      Li, X.; Ho, B.; Lim, D. S.; Zhang, Y. Green Chem. 2017, 19, 914. doi: 10.1039/C6GC03020C  doi: 10.1039/C6GC03020C

    86. [86]

      Wu, H.; Song, J.; Liu, H.; Xie, Z.; Xie, C.; Hu, Y.; Huang, X.; Hua, M.; Han, B. Chem. Sci. 2019, 10, 4692. doi: 10.1039/c9sc00322c  doi: 10.1039/c9sc00322c

    87. [87]

      Wojcieszak, R.; Santarelli, F.; Paul, S.; Dumeignil, F.; Cavani, F.; Gonçalves, R. V. Sustain. Chem. Proc. 2015, 3, 1. doi: 10.1186/s40508-015-0034-5/  doi: 10.1186/s40508-015-0034-5/

    88. [88]

      Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Chem. Rev. 1988, 88, 55. doi: 10.1021/cr00083a003  doi: 10.1021/cr00083a003

    89. [89]

      Li, X.; Ko, J.; Zhang, Y. ChemSusChem 2018, 11, 612. doi: 10.1002/cssc.201701866  doi: 10.1002/cssc.201701866

    90. [90]

      Murthy, M.; Rajamani, K. Chem. Eng. Sci. 1974, 29, 601. doi: 10.1016/0009-2509[74]80071-0  doi: 10.1016/0009-2509[74]80071-0

    91. [91]

      Lan, J.; Chen, Z.; Lin, J.; Yin, G. Green Chem. 2014, 16, 4351. doi: 10.1039/C4GC00829D  doi: 10.1039/C4GC00829D

    92. [92]

      Guo, H.; Yin, G. J. Phys. Chem. C 2011, 115, 17516. doi: 10.1021/jp2054712  doi: 10.1021/jp2054712

    93. [93]

      Shi, S.; Guo, H.; Yin, G. Catal. Commun. 2011, 12, 731. doi: 10.1016/j.catcom.2010.12.033  doi: 10.1016/j.catcom.2010.12.033

    94. [94]

      Li, X.; Lan, X.; Wang, T. Catal. Today 2016, 276, 97. doi: 10.1016/j.cattod.2015.11.036  doi: 10.1016/j.cattod.2015.11.036

    95. [95]

      Román, A. M.; Hasse, J. C.; Medlin, J. W.; Holewinski, A. ACS Catal. 2019, 9, 10305. doi: 10.1021/acscatal.9b02656  doi: 10.1021/acscatal.9b02656

    96. [96]

      Kubota, S. R.; Choi, K.-S. ACS Sustain. Chem. Eng. 2018, 6, 9596. doi: 10.1021/acssuschemeng.8b02698  doi: 10.1021/acssuschemeng.8b02698

  • 加载中
    1. [1]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    2. [2]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(15)
  • Abstract views(957)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return