Citation: Hao Chen, Dongyue Yang, Gang Huang, Xinbo Zhang. Progress on Liquid Organic Electrolytes of Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230505. doi: 10.3866/PKU.WHXB202305059 shu

Progress on Liquid Organic Electrolytes of Li-O2 Batteries

  • Corresponding author: Gang Huang, ghuang@ciac.ac.cn Xinbo Zhang, xbzhang@ciac.ac.cn
  • Received Date: 31 May 2023
    Revised Date: 17 August 2023
    Accepted Date: 26 August 2023
    Available Online: 1 September 2023

    Fund Project: the National Key R&D Program of China 2020YFE0204500the National Key R&D Program of China 2021YFF0500600the National Natural Science Foundation of China 52171194the National Natural Science Foundation of China 52271140the CAS Project for Young Scientists in Basic Research YSBR-058the Youth Innovation Promotion Association of Chinese Academy of Sciences 2020230the Youth Innovation Promotion Association of Chinese Academy of Sciences 2021223the Changchun Science and Technology Development Plan Funding Project 21ZY06

  • Li-O2 batteries have garnered significant attention due to their ultrahigh theoretical energy density, comparable to that of gasoline. However, despite this promise, several challenges have hindered the commercial application of Li-O2 batteries. These challenges include poor reversibility, unsatisfactory cycling duration, and high overpotential during battery operation. The key factor behind the poor reversibility of current Li-O2 batteries is the occurrence of side reactions between various battery components and discharge products or intermediates. The electrolyte, an essential component in Li-O2 batteries, plays a crucial role in charge transport and mass transfer within the battery. Among the available electrolytes used in Li-O2 batteries, liquid organic electrolytes have been predominantly investigated as potential options. However, they suffer from insufficient chemical and electrochemical stability, which contributes to the overall poor reversibility. Substantial progress has been made in understanding the factors that lead to the degradation of liquid organic electrolytes and in enhancing their stability. However, there is still a need for more significant improvements to achieve practical performance. This review comprehensively introduces the development of liquid organic electrolytes for Li-O2 batteries, focusing on solvents, lithium salts, and additives. It outlines the specific requirements of electrolytes for Li-O2 batteries and highlights the importance of reducing charge overpotentials as a critical strategy to mitigate both electrochemical and chemical degradation. The review proceeds to detail the composition of liquid organic electrolytes, beginning with solvents. Carbonates, ethers, amides, and ionic liquids are discussed, along with their respective advantages, disadvantages, and strategies to overcome limitations. The role of lithium salts is then examined, with an emphasis on the relationship between the properties of lithium salts, such as donor number and anion polarity, and electrolyte performance. Some lithium salts are highlighted for their additional functions, such as forming stable solid electrolyte interfaces (SEI) on the anode side and reducing overpotential during charging. Additives in liquid organic electrolytes are also discussed. Redox mediators and singlet oxygen quenchers are discussed as representative additives, showcasing their significance in Li-O2 batteries. Redox mediators can influence the reaction mechanism, leading to lower overpotentials in both discharge and charge processes and increased capacity. Notably, classical redox mediators like LiI are introduced, and criteria for selecting appropriate redox mediators are outlined. On the other hand, singlet oxygen quenchers convert aggressive singlet oxygen into harmless triplet oxygen, thereby suppressing unwanted side reactions in Li-O2 batteries. The mechanism behind singlet oxygen generation is also addressed. In summary, this review aims to provide a comprehensive overview of the progress in liquid organic electrolytes for Li-O2 batteries. It highlights the need for better electrolyte design by addressing various aspects such as solvents, lithium salts, and additives. This comprehensive understanding will guide future research efforts towards developing more stable and efficient electrolytes for Li-O2 batteries, thereby advancing their practical applicability.
  • 加载中
    1. [1]

      Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi: 10.1039/c7cs00863e  doi: 10.1039/c7cs00863e

    2. [2]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    3. [3]

      Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Chem. Rev. 2014, 114, 5611. doi: 10.1021/cr400573b  doi: 10.1021/cr400573b

    4. [4]

      Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Acc. Chem. Res. 2021, 54, 632. doi: 10.1021/acs.accounts.0c00772  doi: 10.1021/acs.accounts.0c00772

    5. [5]

      Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; et al. Chem. Rev. 2020, 120, 6626. doi: 10.1021/acs.chemrev.9b00609  doi: 10.1021/acs.chemrev.9b00609

    6. [6]

      Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 8609. doi: 10.1002/anie.201102357  doi: 10.1002/anie.201102357

    7. [7]

      Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi: 10.1126/science.aac7730  doi: 10.1126/science.aac7730

    8. [8]

      Lu, J.; Lee, Y. J.; Luo, X.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J.; Zhai, D.; Chen, Z.; et al. Nature 2016, 529, 377. doi: 10.1038/nature16484  doi: 10.1038/nature16484

    9. [9]

      Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi: 10.1126/science.aas9343  doi: 10.1126/science.aas9343

    10. [10]

      Chen, Y.; Xu, J.; He, P.; Qiao, Y.; Guo, S.; Yang, H.; Zhou, H. Sci. Bull. 2022, 67, 2449. doi: 10.1016/j.scib.2022.11.027  doi: 10.1016/j.scib.2022.11.027

    11. [11]

      Luntz, A. C.; McCloskey, B. D. Nat. Energy 2017, 2, 17056. doi: 10.1038/nenergy.2017.56  doi: 10.1038/nenergy.2017.56

    12. [12]

      Zhang, P.; Ding, M.; Li, X.; Li, C.; Li, Z.; Yin, L. Adv. Energy Mater. 2020, 10, 2001789. doi: 10.1002/aenm.202001789  doi: 10.1002/aenm.202001789

    13. [13]

      Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Adv. Energy Mater. 2016, 6, 1600751. doi: 10.1002/aenm.201600751  doi: 10.1002/aenm.201600751

    14. [14]

      Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi: 10.1038/s41586-021-03410-9  doi: 10.1038/s41586-021-03410-9

    15. [15]

      Wu, X.; Li, Z.; Song, C.; Chen, L.; Dai, P.; Zhang, P.; Qiao, Y.; Huang, L.; Sun, S.-G. ACS Mater. Lett. 2022, 4, 682. doi: 10.1021/acsmaterialslett.1c00756  doi: 10.1021/acsmaterialslett.1c00756

    16. [16]

      Liang, Z. J.; Wang, W. W.; Lu, Y.-C. Joule 2022, 6, 2458. doi: 10.1016/j.joule.2022.10.008  doi: 10.1016/j.joule.2022.10.008

    17. [17]

      Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 11344. doi: 10.1002/anie.201601783  doi: 10.1002/anie.201601783

    18. [18]

      Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi: 10.1038/nchem.1646  doi: 10.1038/nchem.1646

    19. [19]

      Sun, Z.; Lin, X.; Wang, C.; Hu, A.; Hou, Q.; Tan, Y.; Dou, W.; Yuan, R.; Zheng, M.; Dong, Q. Angew. Chem. Int. Ed. 2022, 61, e202207570. doi: 10.1002/anie.202207570  doi: 10.1002/anie.202207570

    20. [20]

      Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Adv. Sustain. Syst. 2018, 2, 1700183 doi: 10.1002/adsu.201700183  doi: 10.1002/adsu.201700183

    21. [21]

      McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 3043. doi: 10.1021/jz301359t  doi: 10.1021/jz301359t

    22. [22]

      Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. Int. Ed. 2016, 55, 6892. doi: 10.1002/anie.201602142  doi: 10.1002/anie.201602142

    23. [23]

      Petit, Y. K.; Mourad, E.; Prehal, C.; Leypold, C.; Windischbacher, A.; Mijailovic, D.; Slugovc, C.; Borisov, S. M.; Zojer, E.; Brutti, S.; et al. Nat. Chem. 2021, 13, 465. doi: 10.1038/s41557-021-00643-z  doi: 10.1038/s41557-021-00643-z

    24. [24]

      Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; et al. Nat. Energy 2017, 2, 17036. doi: 10.1038/nenergy.2017.36  doi: 10.1038/nenergy.2017.36

    25. [25]

      McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi: 10.1021/jz200352v  doi: 10.1021/jz200352v

    26. [26]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g  doi: 10.1021/cr030203g

    27. [27]

      Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi: 10.1021/ja056811q  doi: 10.1021/ja056811q

    28. [28]

      Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Electrochemistry 2010, 78, 403. doi: 10.5796/electrochemistry.78.403  doi: 10.5796/electrochemistry.78.403

    29. [29]

      Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Barde, F.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi: 10.1021/ja2021747  doi: 10.1021/ja2021747

    30. [30]

      Veith, G. M.; Dudney, N. J.; Howe, J.; Nanda, J. J. Phys. Chem. C 2011, 115, 14325. doi: 10.1021/jp2043015  doi: 10.1021/jp2043015

    31. [31]

      Chen, K.; Du, J. Y.; Wang, J.; Yang, D. Y.; Chu, J. W.; Chen, H.; Zhang, H. R.; Huang, G.; Zhang, X. B. Chin. J. Chem. 2022, 41, 314. doi: 10.1002/cjoc.202200498  doi: 10.1002/cjoc.202200498

    32. [32]

      Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science 2012, 337, 563. doi: 10.1126/science.1223985  doi: 10.1126/science.1223985

    33. [33]

      Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Chem. Commun. 2012, 48, 6948. doi: 10.1039/c2cc32844e  doi: 10.1039/c2cc32844e

    34. [34]

      Mozhzhukhina, N.; Méndez De Leo, L. P.; Calvo, E. J. J. Phys. Chem. C 2013, 117, 18375. doi: 10.1021/jp407221c  doi: 10.1021/jp407221c

    35. [35]

      Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem 2019, 5, 2630. doi: 10.1016/j.chempr.2019.07.003  doi: 10.1016/j.chempr.2019.07.003

    36. [36]

      Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater. 2022, 5, 4404. doi: 10.1021/acsaem.1c03999  doi: 10.1021/acsaem.1c03999

    37. [37]

      Lee, H.; Lee, D. J.; Lee, J.-N.; Song, J.; Lee, Y.; Ryou, M.-H.; Park, J.-K.; Lee, Y. M. Electrochim. Acta 2014, 123, 419. doi: 10.1016/j.electacta.2014.01.042  doi: 10.1016/j.electacta.2014.01.042

    38. [38]

      Lai, J.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Angew. Chem. Int. Ed. 2020, 59, 2974. doi: 10.1002/anie.201903459  doi: 10.1002/anie.201903459

    39. [39]

      Wu, Z.; Tian, Y.; Chen, H.; Wang, L.; Qian, S.; Wu, T.; Zhang, S.; Lu, J. Chem. Soc. Rev. 2022, 51, 8045. doi: 10.1039/d2cs00003b  doi: 10.1039/d2cs00003b

    40. [40]

      Read, J. J. Electrochem. Soc. 2006, 153, A96. doi: 10.1149/1.2131827  doi: 10.1149/1.2131827

    41. [41]

      Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Nat. Chem. 2012, 4, 579. doi: 10.1038/nchem.1376  doi: 10.1038/nchem.1376

    42. [42]

      Qiao, L.; Judez, X.; Rojo, T.; Armand, M.; Zhang, H. J. Electrochem. Soc. 2020, 167, 070534. doi: 10.1149/1945-7111/ab7aa0  doi: 10.1149/1945-7111/ab7aa0

    43. [43]

      Sharon, D.; Hirshberg, D.; Afri, M.; Frimer, A. A.; Aurbach, D. Chem. Commun. 2017, 53, 3269. doi: 10.1039/c6cc09086a  doi: 10.1039/c6cc09086a

    44. [44]

      Bryantsev, V. S.; Faglioni, F. J. Phys. Chem. A 2012, 116, 7128. doi: 10.1021/jp301537w  doi: 10.1021/jp301537w

    45. [45]

      Adams, B. D.; Black, R.; Williams, Z.; Fernandes, R.; Cuisinier, M.; Berg, E. J.; Novak, P.; Murphy, G. K.; Nazar, L. F. Adv. Energy Mater. 2015, 5, 1400867. doi: 10.1002/aenm.201400867  doi: 10.1002/aenm.201400867

    46. [46]

      Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. doi: 10.1038/nmat4629  doi: 10.1038/nmat4629

    47. [47]

      Lai, J.; Liu, H.; Xing, Y.; Zhao, L.; Shang, Y.; Huang, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Adv. Funct. Mater. 2021, 31, 2101831. doi: 10.1002/adfm.202101831  doi: 10.1002/adfm.202101831

    48. [48]

      Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. J. Phys. Chem. A 2011, 115, 12399. doi: 10.1021/jp2073914  doi: 10.1021/jp2073914

    49. [49]

      Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013, 135, 2076. doi: 10.1021/ja311518s  doi: 10.1021/ja311518s

    50. [50]

      Yu, Y.; Huang, G.; Du, J.-Y.; Wang, J.-Z.; Wang, Y.; Wu, Z.-J.; Zhang, X.-B. Energy Environ. Sci. 2020, 13, 3075. doi: 10.1039/d0ee01897j  doi: 10.1039/d0ee01897j

    51. [51]

      Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. doi: 10.1016/j.jpowsour.2005.03.082  doi: 10.1016/j.jpowsour.2005.03.082

    52. [52]

      Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; et al. Nano Lett. 2014, 14, 6572. doi: 10.1021/nl5031985  doi: 10.1021/nl5031985

    53. [53]

      Xie, J.; Dong, Q.; Madden, I.; Yao, X.; Cheng, Q.; Dornath, P.; Fan, W.; Wang, D. Nano Lett. 2015, 15, 8371. doi: 10.1021/acs.nanolett.5b04097  doi: 10.1021/acs.nanolett.5b04097

    54. [54]

      Cai, Y.; Hou, Y.; Lu, Y.; Zhang, Q.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2023, e202218014. doi: 10.1002/anie.202218014  doi: 10.1002/anie.202218014

    55. [55]

      Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Chem. Rev. 2021, 121, 1232. doi: 10.1021/acs.chemrev.0c00385  doi: 10.1021/acs.chemrev.0c00385

    56. [56]

      Geng, L.; Wang, X.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y.; Luo, W.; Mai, L. ACS Energy Lett. 2021, 7, 247. doi: 10.1021/acsenergylett.1c02088  doi: 10.1021/acsenergylett.1c02088

    57. [57]

      Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. J. Am. Chem. Soc. 2022, 144, 5827. doi: 10.1021/jacs.1c11711  doi: 10.1021/jacs.1c11711

    58. [58]

      Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi: 10.1021/jp102019y  doi: 10.1021/jp102019y

    59. [59]

      Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Wang, L. M.; Zhang, X. B. Chem. Commun. 2012, 48, 11674. doi: 10.1039/c2cc36815c  doi: 10.1039/c2cc36815c

    60. [60]

      Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Phys. Chem. Chem. Phys. 2013, 15, 20054. doi: 10.1039/c3cp53406e  doi: 10.1039/c3cp53406e

    61. [61]

      Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2016, 8, 5300. doi: 10.1021/acsami.5b11483  doi: 10.1021/acsami.5b11483

    62. [62]

      Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9293. doi: 10.1073/pnas.1505728112  doi: 10.1073/pnas.1505728112

    63. [63]

      Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. Anal. Bioanal. Chem. 2011, 400, 691. doi: 10.1007/s00216-010-4646-z  doi: 10.1007/s00216-010-4646-z

    64. [64]

      Sharon, D.; Hirsberg, D.; Afri, M.; Chesneau, F.; Lavi, R.; Frimer, A. A.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2015, 7, 16590. doi: 10.1021/acsami.5b04145  doi: 10.1021/acsami.5b04145

    65. [65]

      Rosy; Akabayov, S.; Leskes, M.; Noked, M. ACS Appl. Mater. Interfaces 2018, 10, 29622. doi: 10.1021/acsami.8b10054  doi: 10.1021/acsami.8b10054

    66. [66]

      Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841. doi: 10.1002/adma.201704841  doi: 10.1002/adma.201704841

    67. [67]

      Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Angew. Chem. Int. Ed. 2022, 61, e202116635. doi: 10.1002/anie.202116635  doi: 10.1002/anie.202116635

    68. [68]

      Dou, Y.; Xie, Z.; Wei, Y.; Peng, Z.; Zhou, Z. Natl. Sci. Rev. 2022, 9, nwac040. doi: 10.1093/nsr/nwac040  doi: 10.1093/nsr/nwac040

    69. [69]

      Bergner, B. J.; Schurmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. doi: 10.1021/ja508400m  doi: 10.1021/ja508400m

    70. [70]

      Gao, X.; Chen, Y.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. Nat. Energy 2017, 2, 17118. doi: 10.1038/nenergy.2017.118  doi: 10.1038/nenergy.2017.118

    71. [71]

      Zhang, C.; Dandu, N.; Rastegar, S.; Misal, S. N.; Hemmat, Z.; Ngo, A. T.; Curtiss, L. A.; Salehi-Khojin, A. Adv. Energy Mater. 2020, 10, 2000201. doi: 10.1002/aenm.202000201  doi: 10.1002/aenm.202000201

    72. [72]

      Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; et al. Angew. Chem. Int. Ed. 2014, 53, 3926. doi: 10.1002/anie.201400711  doi: 10.1002/anie.201400711

    73. [73]

      Kwak, W. J.; Hirshberg, D.; Sharon, D.; Shin, H. J.; Afri, M.; Park, J. B.; Garsuch, A.; Chesneau, F. F.; Frimer, A. A.; Aurbach, D.; et al. J. Mater. Chem. A 2015, 3, 8855. doi: 10.1039/c5ta01399b  doi: 10.1039/c5ta01399b

    74. [74]

      Burke, C. M.; Black, R.; Kochetkov, I. R.; Giordani, V.; Addison, D.; Nazar, L. F.; McCloskey, B. D. ACS Energy Lett. 2016, 1, 747. doi: 10.1021/acsenergylett.6b00328  doi: 10.1021/acsenergylett.6b00328

    75. [75]

      Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 1828. doi: 10.1039/c7ee00954b  doi: 10.1039/c7ee00954b

    76. [76]

      Liu, T.; Kim, G.; Jónsson, E.; Castillo-Martinez, E.; Temprano, I.; Shao, Y.; Carretero-González, J.; Kerber, R. N.; Grey, C. P. ACS Catal. 2018, 9, 66. doi: 10.1021/acscatal.8b02783  doi: 10.1021/acscatal.8b02783

    77. [77]

      Wang, A.; Wu, X.; Zou, Z.; Qiao, Y.; Wang, D.; Xing, L.; Chen, Y.; Lin, Y.; Avdeev, M.; Shi, S. Angew. Chem. Int. Ed. 2023, e202217354. doi: 10.1002/anie.202217354  doi: 10.1002/anie.202217354

    78. [78]

      Kwak, W. J.; Kim, H.; Petit, Y. K.; Leypold, C.; Nguyen, T. T.; Mahne, N.; Redfern, P.; Curtiss, L. A.; Jung, H. G.; Borisov, S. M.; et al. Nat. Commun. 2019, 10, 1380. doi: 10.1038/s41467-019-09399-0  doi: 10.1038/s41467-019-09399-0

    79. [79]

      Kwak, W.-J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H.-G.; Byon, H. R.; Sun, Y.-K. ACS Catal. 2019, 9, 9914. doi: 10.1021/acscatal.9b01337  doi: 10.1021/acscatal.9b01337

    80. [80]

      Chen, Y.; Gao, X.; Johnson, L. R.; Bruce, P. G. Nat. Commun. 2018, 9, 767. doi: 10.1038/s41467-018-03204-0  doi: 10.1038/s41467-018-03204-0

    81. [81]

      Cao, D.; Shen, X.; Wang, A.; Yu, F.; Wu, Y.; Shi, S.; Freunberger, S. A.; Chen, Y. Nat. Catal. 2022, 5, 193. doi: 10.1038/s41929-022-00752-z  doi: 10.1038/s41929-022-00752-z

    82. [82]

      Ahn, S.; Zor, C.; Yang, S.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A. J.; Pateman, A.; et al. Nat. Chem. 2023, 15, 1022. doi: 10.1038/s41557-023-01203-3  doi: 10.1038/s41557-023-01203-3

    83. [83]

      Schurmann, A.; Luerssen, B.; Mollenhauer, D.; Janek, J.; Schroder, D. Chem. Rev. 2021, 121, 12445. doi: 10.1021/acs.chemrev.1c00139  doi: 10.1021/acs.chemrev.1c00139

    84. [84]

      Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Angew. Chem. 2011, 123, 3055. doi: 10.1002/ange.201006264  doi: 10.1002/ange.201006264

    85. [85]

      Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi: 10.1002/anie.201802277  doi: 10.1002/anie.201802277

    86. [86]

      Mourad, E.; Petit, Y. K.; Spezia, R.; Samojlov, A.; Summa, F. F.; Prehal, C.; Leypold, C.; Mahne, N.; Slugovc, C.; Fontaine, O.; et al. Energy Environ. Sci. 2019, 12, 2559. doi: 10.1039/c9ee01453e  doi: 10.1039/c9ee01453e

    87. [87]

      Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L. R.; Gao, X.; Bruce, P. G. Joule 2022, 6, 185. doi: 10.1016/j.joule.2021.12.012  doi: 10.1016/j.joule.2021.12.012

    88. [88]

      Petit, Y. K.; Leypold, C.; Mahne, N.; Mourad, E.; Schafzahl, L.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Angew. Chem. Int. Ed. 2019, 58, 6535. doi: 10.1002/anie.201901869  doi: 10.1002/anie.201901869

    89. [89]

      Liang, Z.; Zou, Q.; Xie, J.; Lu, Y.-C. Energy Environ. Sci. 2020, 13, 2870. doi: 10.1039/d0ee01114b  doi: 10.1039/d0ee01114b

    90. [90]

      Jiang, Z.; Huang, Y.; Zhu, Z.; Gao, S.; Lv, Q.; Li, F. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2202835119. doi: 10.1073/pnas.2202835119  doi: 10.1073/pnas.2202835119

    91. [91]

      Wu, C.; Zhou, Y.; Zhu, X.; Zhan, M.; Yang, H.; Qian, J. Acta Phys. -Chim. Sin. 2021, 37, 2008044.  doi: 10.3866/PKU.WHXB202008044

    92. [92]

      Kwak, W.-J.; Chae, S.; Feng, R.; Gao, P.; Read, J.; Engelhard, M. H.; Zhong, L.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2020, 5, 2182. doi: 10.1021/acsenergylett.0c00809  doi: 10.1021/acsenergylett.0c00809

  • 加载中
    1. [1]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    5. [5]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    6. [6]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    8. [8]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    9. [9]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    10. [10]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    11. [11]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    12. [12]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    13. [13]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    16. [16]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(4)
  • Abstract views(201)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return