Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study
- Corresponding author: Hui Xing, huixing@nwpu.edu.cn Geng Zhang, geng.zhang@kaust.edu.sa Siqi Shi, sqshi@shu.edu.cn
Citation:
Yajie Li, Bin Chen, Yiping Wang, Hui Xing, Wei Zhao, Geng Zhang, Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230505.
doi:
10.3866/PKU.WHXB202305053
Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2 (11), 2434. doi: 10.1016/j.joule.2018.08.018
doi: 10.1016/j.joule.2018.08.018
Armand, M.; Tarascon, J.-M. Nature 2008, 451 (7179), 652. doi: 10.1038/451652a
doi: 10.1038/451652a
Tarascon, J.-M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644
doi: 10.1038/35104644
Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2008065.
doi: 10.3866/PKU.WHXB202008065
Chen, X.; Yao, Y.; Yan, C.; Zhang, R.; Cheng, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59 (20), 7743. doi: 10.1002/anie.202000375
doi: 10.1002/anie.202000375
Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q. Angew. Chem. 2017, 129 (27), 7872. doi: 10.1002/ange.201702099
doi: 10.1002/ange.201702099
Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. J. Electroanal. Chem. 2011, 661 (1), 84. doi: 10.1016/j.jelechem.2011.06.035
doi: 10.1016/j.jelechem.2011.06.035
Tan, J.; Tartakovsky, A. M.; Ferris, K.; Ryan, E. M. J. Electrochem. Soc. 2016, 163 (2), A318. doi: 10.1149/2.0951602jes
doi: 10.1149/2.0951602jes
Gopalakrishnan, D.; Alkatie, S.; Cannon, A.; Rajendran, S.; Thangavel, N. K.; Bhagirath, N.; Ryan, E. M.; Arava, L. M. R. Sustain. Energy Fuels 2021, 5 (5), 1488. doi: 10.1039/D0SE01547D
doi: 10.1039/D0SE01547D
Li, Y.; Sha, L.; Zhang, G.; Chen, B.; Zhao, W.; Wang, Y.; Shi, S. Chin. Chem. Lett. 2023, 34 (2), 107993. doi: 10.1016/j.cclet.2022.107993
doi: 10.1016/j.cclet.2022.107993
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4 (5), 1012. doi: 10.1021/acsenergylett.9b00433
doi: 10.1021/acsenergylett.9b00433
Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359 (6383), 1513. doi: 10.1126/science.aap8787
doi: 10.1126/science.aap8787
Martin, W.; Tian, Y.; Xiao, J. J. Electrochem. Soc. 2021, 168 (6), 060513. doi: 10.1149/1945-7111/ac0647
doi: 10.1149/1945-7111/ac0647
Cogswell, D. A. Phys. Rev. E 2015, 92 (1), 011301. doi: 10.1103/PhysRevE.92.011301
doi: 10.1103/PhysRevE.92.011301
Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. J. Electrochem. Soc. 2019, 166 (10), D389. doi: 10.1149/2.0541910jes
doi: 10.1149/2.0541910jes
Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4 (1), 1481. doi: 10.1038/ncomms2513
doi: 10.1038/ncomms2513
Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi: 10.1021/jacs.8b13297
doi: 10.1021/jacs.8b13297
Dong, J.; Dai, H.; Wang, C.; Lai, C. Solid State Ion. 2019, 341, 115033. doi: 10.1016/j.ssi.2019.115033
doi: 10.1016/j.ssi.2019.115033
Chen, Y.; Dou, X.; Wang, K.; Han, Y. Green Energy Environ. 2022, 7 (5), 965. doi: 10.1016/j.gee.2020.12.014
doi: 10.1016/j.gee.2020.12.014
Huang, Y.; Wu, X.; Nie, L.; Chen, S.; Sun, Z.; He, Y.; Liu, W. Solid State Ion. 2020, 345, 115171. doi: 10.1016/j.ssi.2019.115171
doi: 10.1016/j.ssi.2019.115171
Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9 (20), 1900260. doi: 10.1002/aenm.201900260
doi: 10.1002/aenm.201900260
Liang, P.; Li, Q.; Chen, L.; Tang, Z.; Li, Z.; Wang, Y.; Tang, Y.; Han, C.; Lan, Z.; Zhi, C.; et al. J. Mater. Chem. A 2022, 10 (22), 11971. doi: 10.1039/D2TA02077G
doi: 10.1039/D2TA02077G
Huang, A.; Liu, H.; Manor, O.; Liu, P.; Friend, J. Adv. Mater. 2020, 32 (14), 1907516. doi: 10.1002/adma.201907516
doi: 10.1002/adma.201907516
Zhang, J.; Zhou, Z.; Wang, Y.; Chen, Q.; Hou, G.; Tang, Y. Nano Energy 2022, 102, 107655. doi: 10.1016/j.nanoen.2022.107655
doi: 10.1016/j.nanoen.2022.107655
Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3 (7), e1701246. doi: 10.1126/sciadv.1701246
doi: 10.1126/sciadv.1701246
Mo, Y.; Xiao, K. K.; Wu, J. F.; Liu, H.; Hu, A. P.; Gao, P.; Liu, J. L. Acta Phys. -Chim. Sin. 2022, 38, 2107030.
doi: 10.3866/PKU.WHXB202107030
Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8 (3), 1545. doi: 10.1039/C5NR06888F
doi: 10.1039/C5NR06888F
Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L. A.; Greenbaum, S. G.; Balsara, N. P. J. Phys. Chem. B 2018, 122 (4), 1537. doi: 10.1021/acs.jpcb.7b11371
doi: 10.1021/acs.jpcb.7b11371
Li, W.; Tchelepi, H. A.; Ju, Y.; Tartakovsky, D. M. J. Electrochem. Soc. 2022, 169 (6), 060536. doi: 10.1149/1945-7111/ac7978
doi: 10.1149/1945-7111/ac7978
Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L.-Q. J. Power Sources 2015, 300, 376. doi: 10.1016/j.jpowsour.2015.09.055
doi: 10.1016/j.jpowsour.2015.09.055
Liang, L.; Chen, L.-Q. Appl. Phys. Lett. 2014, 105 (26), 263903. doi: 10.1063/1.4905341
doi: 10.1063/1.4905341
Yurkiv, V.; Foroozan, T.; Ramasubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Electrochim. Acta 2018, 265, 609. doi: 10.1016/j.electacta.2018.01.212
doi: 10.1016/j.electacta.2018.01.212
Ahmad, Z.; Hong, Z.; Viswanathan, V. Proc. Natl. Acad. Sci. 2020, 117 (43), 26672. doi: 10.1073/pnas.2008841117
doi: 10.1073/pnas.2008841117
Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11 (10), 2003416. doi: 10.1002/aenm.202003416
doi: 10.1002/aenm.202003416
Gao, L. T.; Huang, P.; Guo, Z.-S. ACS Appl. Mater. Interfaces 2022, 14 (37), 41957. doi: 10.1021/acsami.2c09551
doi: 10.1021/acsami.2c09551
Hua, G. B.; Fan, Y. C.; Zhang, Q. F. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008089.
doi: 10.3866/PKU.WHXB202008089
Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Adv. Mater. 2004, 16 (11), 865. doi: 10.1002/adma.200306196
doi: 10.1002/adma.200306196
Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; De Leeuw, D. M.; Tomović, Ž.; Wu, J.; et al. J. Am. Chem. Soc. 2005, 127 (46), 16233. doi: 10.1021/ja054694t
doi: 10.1021/ja054694t
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2018, 3 (7), 1737. doi: 10.1021/acsenergylett.8b01009
doi: 10.1021/acsenergylett.8b01009
Ren, Y.; Zhou, Y.; Cao, Y. J. Phys. Chem. C 2020, 124 (23), 12195. doi: 10.1021/acs.jpcc.0c01116
doi: 10.1021/acs.jpcc.0c01116
Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Chin. Chem. Lett. 2022, 33 (6), 3287. doi: 10.1016/j.cclet.2022.03.065
doi: 10.1016/j.cclet.2022.03.065
Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 16010. doi: 10.1038/nenergy.2016.10
doi: 10.1038/nenergy.2016.10
Qiu, X. G.; Liu, W.; Liu, J. D.; Li, J. Z.; Zhang, K.; Cheng, F. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2009012.
doi: 10.3866/PKU.WHXB202009012
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi: 10.1021/ja312241y
doi: 10.1021/ja312241y
Ravikumar, B.; Mynam, M.; Rai, B. J. Mol. Liq. 2020, 300, 112252. doi: 10.1016/j.molliq.2019.112252
doi: 10.1016/j.molliq.2019.112252
Liu, M.; Chimtali, P. J.; Huang, X.; Zhang, R. Phys. Chem. Chem. Phys. 2019, 21 (24), 13186. doi: 10.1039/C9CP00561G
doi: 10.1039/C9CP00561G
Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Adv. Funct. Mater. 2015, 25 (8), 1206. doi: 10.1002/adfm.201402509
doi: 10.1002/adfm.201402509
Sasi, R.; Jinesh, K. B.; Devaki, S. J. ChemistrySelect 2017, 2 (1), 315. doi: 10.1002/slct.201601715
doi: 10.1002/slct.201601715
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Meng-Yin Wang , Ruo-Bei Huang , Jian-Feng Xiong , Jing-Hua Tian , Jian-Feng Li , Zhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082
.
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017