Citation: Yajie Li, Bin Chen, Yiping Wang, Hui Xing, Wei Zhao, Geng Zhang, Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230505. doi: 10.3866/PKU.WHXB202305053 shu

Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study

  • Corresponding author: Hui Xing, huixing@nwpu.edu.cn Geng Zhang, geng.zhang@kaust.edu.sa Siqi Shi, sqshi@shu.edu.cn
  • Received Date: 29 May 2023
    Revised Date: 14 July 2023
    Accepted Date: 14 July 2023
    Available Online: 31 July 2023

    Fund Project: the National Natural Science Foundation of China 52102280the National Natural Science Foundation of China U2030206the National Key Research and Development Program of China 2021YFB3802104the Shanghai Municipal Science and Technology Commission 19DZ2252600the Shanghai Pujiang Program 2019PJD016the Scientific Research Project of Zhejiang Laboratory 2021PE0AC02

  • Lithium metal is a promising anode candidate for high-energy-density secondary batteries due to its high theoretical capacity and low electrochemical potential, while the uncontrolled dendrite growth causing poor cycling performance and safety concerns poses serious challenges for the practical application of lithium metal batteries. During the electrodeposition process, the lithium-ion (Li+) diffusion process is directly related to the electrode/electrolyte interfacial Li+ concentration gradient as well as the dendritic morphology. Regulating the anisotropic Li+ diffusion property is a convenient way to reshape its transfer behavior without introducing any external fields (e.g., temperature field, magnetic field, acoustic field, etc.) or increasing the weight of batteries. Despite the large amount of experimental and theoretical work on the effect of the anisotropic Li+ diffusion behavior on the dendritic morphology, some open questions remain to be deliberated, e.g., correlating the dynamic evolution of dendrite growth with the anisotropic Li+ diffusion induced by the electrolyte property, electric potential, and separator structure. In this paper, an electrochemical phase-field model is applied to explore the influences of electrolyte inherent anisotropic Li+ diffusion, electric potential-induced anisotropic Li+ diffusion, and separator-structure-induced anisotropic Li+ migration on dendrite growth via a homemade MATLAB code. Instead of a fixed numerical value, the modified Li+ diffusivity in the electrolyte (DL) is expressed as a second-order tensor by decomposing into two components along the x (Dxx) and y (Dyy) directions, which is not only able to explore the electrolyte inherent anisotropic Li+ diffusion but also easy to describe the electric potential-induced fluctuations of DL and the corresponding Li+ concentration distribution. Predicted results indicate that with the increase of Dyy : Dxx, the interfacial Li+ concentration gradient is alleviated due to the accelerated longitudinal Li+ replenishment and decelerated transversal "entrainment" phenomenon, thus decreasing the driving force of dendrite growth. Besides, the electric potential-induced interfacial Li+ fast diffusion layer can also reduce the electric potential gradients surrounding the dendrite tips and then uniform the dendrite morphologies. Surprisingly, separators with higher matrix tilt angles are demonstrated to achieve effective anisotropic Li+ diffusion in electrolyte, which can not only reduce the dendrite-growth velocity, but also extend the dendrite-growth pathway and prolong the battery short circuit time. Following this, electrolyte with the Dyy : Dxx = 10 : 1 and separator with the matrix tilt angle of arctan(0.5) are evaluated as promising materials for lithium metal batteries. This study provides a rational guidance for designing electrolytes or separators with dendrite-inhibiting capability.
  • 加载中
    1. [1]

      Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2 (11), 2434. doi: 10.1016/j.joule.2018.08.018  doi: 10.1016/j.joule.2018.08.018

    2. [2]

      Armand, M.; Tarascon, J.-M. Nature 2008, 451 (7179), 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    3. [3]

      Tarascon, J.-M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    4. [4]

      Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2008065.  doi: 10.3866/PKU.WHXB202008065

    5. [5]

      Chen, X.; Yao, Y.; Yan, C.; Zhang, R.; Cheng, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59 (20), 7743. doi: 10.1002/anie.202000375  doi: 10.1002/anie.202000375

    6. [6]

      Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q. Angew. Chem. 2017, 129 (27), 7872. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    7. [7]

      Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. J. Electroanal. Chem. 2011, 661 (1), 84. doi: 10.1016/j.jelechem.2011.06.035  doi: 10.1016/j.jelechem.2011.06.035

    8. [8]

      Tan, J.; Tartakovsky, A. M.; Ferris, K.; Ryan, E. M. J. Electrochem. Soc. 2016, 163 (2), A318. doi: 10.1149/2.0951602jes  doi: 10.1149/2.0951602jes

    9. [9]

      Gopalakrishnan, D.; Alkatie, S.; Cannon, A.; Rajendran, S.; Thangavel, N. K.; Bhagirath, N.; Ryan, E. M.; Arava, L. M. R. Sustain. Energy Fuels 2021, 5 (5), 1488. doi: 10.1039/D0SE01547D  doi: 10.1039/D0SE01547D

    10. [10]

      Li, Y.; Sha, L.; Zhang, G.; Chen, B.; Zhao, W.; Wang, Y.; Shi, S. Chin. Chem. Lett. 2023, 34 (2), 107993. doi: 10.1016/j.cclet.2022.107993  doi: 10.1016/j.cclet.2022.107993

    11. [11]

      Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4 (5), 1012. doi: 10.1021/acsenergylett.9b00433  doi: 10.1021/acsenergylett.9b00433

    12. [12]

      Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359 (6383), 1513. doi: 10.1126/science.aap8787  doi: 10.1126/science.aap8787

    13. [13]

      Martin, W.; Tian, Y.; Xiao, J. J. Electrochem. Soc. 2021, 168 (6), 060513. doi: 10.1149/1945-7111/ac0647  doi: 10.1149/1945-7111/ac0647

    14. [14]

      Cogswell, D. A. Phys. Rev. E 2015, 92 (1), 011301. doi: 10.1103/PhysRevE.92.011301  doi: 10.1103/PhysRevE.92.011301

    15. [15]

      Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. J. Electrochem. Soc. 2019, 166 (10), D389. doi: 10.1149/2.0541910jes  doi: 10.1149/2.0541910jes

    16. [16]

      Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4 (1), 1481. doi: 10.1038/ncomms2513  doi: 10.1038/ncomms2513

    17. [17]

      Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi: 10.1021/jacs.8b13297  doi: 10.1021/jacs.8b13297

    18. [18]

      Dong, J.; Dai, H.; Wang, C.; Lai, C. Solid State Ion. 2019, 341, 115033. doi: 10.1016/j.ssi.2019.115033  doi: 10.1016/j.ssi.2019.115033

    19. [19]

      Chen, Y.; Dou, X.; Wang, K.; Han, Y. Green Energy Environ. 2022, 7 (5), 965. doi: 10.1016/j.gee.2020.12.014  doi: 10.1016/j.gee.2020.12.014

    20. [20]

      Huang, Y.; Wu, X.; Nie, L.; Chen, S.; Sun, Z.; He, Y.; Liu, W. Solid State Ion. 2020, 345, 115171. doi: 10.1016/j.ssi.2019.115171  doi: 10.1016/j.ssi.2019.115171

    21. [21]

      Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9 (20), 1900260. doi: 10.1002/aenm.201900260  doi: 10.1002/aenm.201900260

    22. [22]

      Liang, P.; Li, Q.; Chen, L.; Tang, Z.; Li, Z.; Wang, Y.; Tang, Y.; Han, C.; Lan, Z.; Zhi, C.; et al. J. Mater. Chem. A 2022, 10 (22), 11971. doi: 10.1039/D2TA02077G  doi: 10.1039/D2TA02077G

    23. [23]

      Huang, A.; Liu, H.; Manor, O.; Liu, P.; Friend, J. Adv. Mater. 2020, 32 (14), 1907516. doi: 10.1002/adma.201907516  doi: 10.1002/adma.201907516

    24. [24]

      Zhang, J.; Zhou, Z.; Wang, Y.; Chen, Q.; Hou, G.; Tang, Y. Nano Energy 2022, 102, 107655. doi: 10.1016/j.nanoen.2022.107655  doi: 10.1016/j.nanoen.2022.107655

    25. [25]

      Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3 (7), e1701246. doi: 10.1126/sciadv.1701246  doi: 10.1126/sciadv.1701246

    26. [26]

      Mo, Y.; Xiao, K. K.; Wu, J. F.; Liu, H.; Hu, A. P.; Gao, P.; Liu, J. L. Acta Phys. -Chim. Sin. 2022, 38, 2107030.  doi: 10.3866/PKU.WHXB202107030

    27. [27]

      Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8 (3), 1545. doi: 10.1039/C5NR06888F  doi: 10.1039/C5NR06888F

    28. [28]

      Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L. A.; Greenbaum, S. G.; Balsara, N. P. J. Phys. Chem. B 2018, 122 (4), 1537. doi: 10.1021/acs.jpcb.7b11371  doi: 10.1021/acs.jpcb.7b11371

    29. [29]

      Li, W.; Tchelepi, H. A.; Ju, Y.; Tartakovsky, D. M. J. Electrochem. Soc. 2022, 169 (6), 060536. doi: 10.1149/1945-7111/ac7978  doi: 10.1149/1945-7111/ac7978

    30. [30]

      Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L.-Q. J. Power Sources 2015, 300, 376. doi: 10.1016/j.jpowsour.2015.09.055  doi: 10.1016/j.jpowsour.2015.09.055

    31. [31]

      Liang, L.; Chen, L.-Q. Appl. Phys. Lett. 2014, 105 (26), 263903. doi: 10.1063/1.4905341  doi: 10.1063/1.4905341

    32. [32]

      Yurkiv, V.; Foroozan, T.; Ramasubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Electrochim. Acta 2018, 265, 609. doi: 10.1016/j.electacta.2018.01.212  doi: 10.1016/j.electacta.2018.01.212

    33. [33]

      Ahmad, Z.; Hong, Z.; Viswanathan, V. Proc. Natl. Acad. Sci. 2020, 117 (43), 26672. doi: 10.1073/pnas.2008841117  doi: 10.1073/pnas.2008841117

    34. [34]

      Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11 (10), 2003416. doi: 10.1002/aenm.202003416  doi: 10.1002/aenm.202003416

    35. [35]

      Gao, L. T.; Huang, P.; Guo, Z.-S. ACS Appl. Mater. Interfaces 2022, 14 (37), 41957. doi: 10.1021/acsami.2c09551  doi: 10.1021/acsami.2c09551

    36. [36]

      Hua, G. B.; Fan, Y. C.; Zhang, Q. F. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008089.  doi: 10.3866/PKU.WHXB202008089

    37. [37]

      Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Adv. Mater. 2004, 16 (11), 865. doi: 10.1002/adma.200306196  doi: 10.1002/adma.200306196

    38. [38]

      Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; De Leeuw, D. M.; Tomović, Ž.; Wu, J.; et al. J. Am. Chem. Soc. 2005, 127 (46), 16233. doi: 10.1021/ja054694t  doi: 10.1021/ja054694t

    39. [39]

      Hong, Z.; Viswanathan, V. ACS Energy Lett. 2018, 3 (7), 1737. doi: 10.1021/acsenergylett.8b01009  doi: 10.1021/acsenergylett.8b01009

    40. [40]

      Ren, Y.; Zhou, Y.; Cao, Y. J. Phys. Chem. C 2020, 124 (23), 12195. doi: 10.1021/acs.jpcc.0c01116  doi: 10.1021/acs.jpcc.0c01116

    41. [41]

      Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Chin. Chem. Lett. 2022, 33 (6), 3287. doi: 10.1016/j.cclet.2022.03.065  doi: 10.1016/j.cclet.2022.03.065

    42. [42]

      Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    43. [43]

      Qiu, X. G.; Liu, W.; Liu, J. D.; Li, J. Z.; Zhang, K.; Cheng, F. Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2009012.  doi: 10.3866/PKU.WHXB202009012

    44. [44]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    45. [45]

      Ravikumar, B.; Mynam, M.; Rai, B. J. Mol. Liq. 2020, 300, 112252. doi: 10.1016/j.molliq.2019.112252  doi: 10.1016/j.molliq.2019.112252

    46. [46]

      Liu, M.; Chimtali, P. J.; Huang, X.; Zhang, R. Phys. Chem. Chem. Phys. 2019, 21 (24), 13186. doi: 10.1039/C9CP00561G  doi: 10.1039/C9CP00561G

    47. [47]

      Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Adv. Funct. Mater. 2015, 25 (8), 1206. doi: 10.1002/adfm.201402509  doi: 10.1002/adfm.201402509

    48. [48]

      Sasi, R.; Jinesh, K. B.; Devaki, S. J. ChemistrySelect 2017, 2 (1), 315. doi: 10.1002/slct.201601715  doi: 10.1002/slct.201601715

  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    5. [5]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    6. [6]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(3)
  • Abstract views(621)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return