Citation: Jiawei Hu, Kai Xia, Ao Yang, Zhihao Zhang, Wen Xiao, Chao Liu, Qinfang Zhang. Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230504. doi: 10.3866/PKU.WHXB202305043 shu

Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution

  • Corresponding author: Chao Liu, cliu@ycit.edu.cn Qinfang Zhang, qfangzhang@gmail.com
  • Received Date: 22 May 2023
    Revised Date: 12 July 2023
    Accepted Date: 12 July 2023
    Available Online: 19 July 2023

    Fund Project: the National Natural Science Foundation of China 51902282the National Natural Science Foundation of China 12274361Natural Science Foundation of Jiangsu Province, China BK20211361College Natural Science Research Project of Jiangsu Province, China 20KJA430004

  • This study focuses on exploring efficient photocatalysts for water splitting, which holds great potential for harnessing hydrogen (H2) as a renewable energy source. Modulating the heterojunction interface is known to enhance charge carrier separation and solar energy utilization, thereby boosting photocatalytic activity. In this work, a mechanical mixing-assisted self-assembly approach was developed to construct a heterojunction between NiPS3 (NPS) nanosheets (NSs) and C3N5 (CN) NSs. Specifically, two-dimensional (2D) NPS NSs were tightly deposited on 2D CN NSs surface to gain a 2D/2D heterostructure. The photocatalytic performance of the synthesized photocatalysts was determined by their ability to generate H2 through water splitting, both in deionized (DI) water and seawater, under visible light. The resulting NPS NSs/CN NSs (NPS/CN) composites possessed boosted photocatalytic hydrogen evolution (PHE) activity related to CN NSs and NPS NSs. This improvement was assigned to the synergistic effect of increased light-harvesting capacity and heterojunction formation. Nevertheless, an excessive amount of deposited NPS NSs on the surface of CN NSs was found to reduce the light absorption of the CN NSs component in the NPS/CN composites, resulting in decreased PHE activity. Therefore, it was determined that an appropriate mass ratio between the two components is necessary to achieve excellent photocatalytic activity for the NPS/CN composites. The optimized photocatalyst, referred to as 3-NPS/CN, demonstrated the highest visible-light-driven PHE efficiency of 47.71 μmol∙h−1, which was 2385.50 times higher than that of CN NSs. Moreover, 3-NPS/CN also exhibited excellent PHE activity in seawater, with a rate of 8.99 μmol∙h−1. The photoelectrochemical, steady-state photoluminescence (PL), time-resolved PL (TR-PL), steady-state surface photovoltage (SPV) and time-resolved surface photovoltage (TPV) techniques were performed to investigate the charge separation and migration behaviors of various photocatalysts. Based on the characterization results, our group proposed a reasonable PHE mechanism. In the NPS/CN photocatalysts, photo-induced electrons rapidly migrated from the conduction band (CB) of CN NSs to the CB of NPS NSs due to the potential difference and strong interfacial electronic coupling between the two materials. The photogenerated electrons accumulated on the CB of the NPS NSs component efficiently reduced protons to generate H2 molecules. Concurrently, photogenerated holes on the valence band (VB) of CN NSs and NPS NSs were consumed with the assistance of triethanolamine (TEOA) molecules. This study presents a facile method for fabricating 2D/2D heterostructured photocatalysts, which hold promise for efficient and robust implementation in energy applications.
  • 加载中
    1. [1]

      Gao, Y.; Xu, B.; Cherif, M.; Yu, H.; Zhang, Q.; Vidal, F.; Wang, X.; Ding, F.; Sun, Y.; Ma, D.; et al. Appl. Catal. B: Environ. 2020, 279, 119403. doi: 10.1016/j.apcatb.2020.119403  doi: 10.1016/j.apcatb.2020.119403

    2. [2]

      Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030  doi: 10.1016/j.jmst.2022.08.030

    3. [3]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    4. [4]

      Tong, Z.; Yang, D.; Xiao, T.; Tian, Y.; Jiang, Z. Chem. Eng. J. 2015, 260, 117. doi: 10.1016/j.cej.2014.08.072  doi: 10.1016/j.cej.2014.08.072

    5. [5]

      Fu, C.; Wu, T.; Sun, G.; Yin, G.; Wang, C.; Ran, G.; Song, Q. Appl. Catal. B: Environ. 2023, 323, 122196. doi: 10.1016/j.apcatb.2022.122196  doi: 10.1016/j.apcatb.2022.122196

    6. [6]

      Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2022, 114, 81. doi: 10.1016/j.jmst.2021.12.003  doi: 10.1016/j.jmst.2021.12.003

    7. [7]

      Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Appl. Catal. B: Environ. 2020, 268, 118462. doi: 10.1016/j.apcatb.2019.118462  doi: 10.1016/j.apcatb.2019.118462

    8. [8]

      Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Appl. Catal. B: Environ. 2020, 277, 119254. doi: 10.1016/j.apcatb.2020.119254  doi: 10.1016/j.apcatb.2020.119254

    9. [9]

      Lin, B.; Li, H.; An, H.; Hao, W.; Wei, J.; Dai, Y.; Ma, C.; Yang, G. Appl. Catal. B: Environ. 2018, 220, 542. doi: 10.1016/j.apcatb.2017.08.071  doi: 10.1016/j.apcatb.2017.08.071

    10. [10]

      Yin, H.; Yuan, C.; Lv, H.; Zhang, K.; Chen, X.; Zhang, Y.; Zhang, Y. Powder Technol. 2023, 413, 118083. doi: 10.1016/j.powtec.2022.118083  doi: 10.1016/j.powtec.2022.118083

    11. [11]

      Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. ACS Sustain. Chem. Eng. 2019, 7, 625. doi: 10.1021/acssuschemeng.8b04182  doi: 10.1021/acssuschemeng.8b04182

    12. [12]

      Huang, L.; Liu, Z.; Chen, W.; Cao, D.; Zheng, A. J. Mater. Chem. A 2018, 6, 7168. doi: 10.1039/c8ta01458b  doi: 10.1039/c8ta01458b

    13. [13]

      Teng, M.; Shi, J.; Qi, H.; Shi, C.; Wang, W.; Kang, F.; Eqi, M.; Huang, Z. J. Colloid Interface Sci. 2022, 609, 592. doi: 10.1016/j.jcis.2021.11.060  doi: 10.1016/j.jcis.2021.11.060

    14. [14]

      Sun, D.; Zhang, X.; Shi, A.; Quan, C.; Xiao, S.; Ji, S.; Zhou, Z.; Li, X.; Chi, F.; Niu, X. Appl. Surf. Sci. 2022, 601, 154186. doi: 10.1016/j.apsusc.2022.154186  doi: 10.1016/j.apsusc.2022.154186

    15. [15]

      Li, K.; Cai, W.; Zhang, Z.; Xie, H.; Zhong, Q.; Qu, H. Chem. Eng. J. 2022, 435, 135017. doi: 10.1016/j.cej.2022.135017  doi: 10.1016/j.cej.2022.135017

    16. [16]

      Meng, Q.; Yang, X.; Wu, L.; Chen, T.; Li, Y.; He, R.; Zhu, W.; Zhu, L.; Duan, T. J. Hazard. Mater. 2022, 422, 126912. doi: 10.1016/j.jhazmat.2021.126912  doi: 10.1016/j.jhazmat.2021.126912

    17. [17]

      Wang, R.; Zhang, K.; Zhong, X.; Jiang, F. RSC Adv. 2022, 12, 24026. doi: 10.1039/d2ra03874a  doi: 10.1039/d2ra03874a

    18. [18]

      Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022, 14, 26742. doi: 10.1021/acsami.2c04729  doi: 10.1021/acsami.2c04729

    19. [19]

      Liu, D.; Yao, J.; Chen, S.; Zhang, J.; Li, R.; Peng, T. Appl. Catal. B: Environ. 2022, 318, 121822. doi: 10.1016/j.apcatb.2022.121822  doi: 10.1016/j.apcatb.2022.121822

    20. [20]

      Shi, J.; Wang, W.; Teng, M.; Kang, F.; E'qi, M.; Huang, Z. J. Colloid Interface Sci. 2022, 608, 954. doi: 10.1016/j.jcis.2021.10.027  doi: 10.1016/j.jcis.2021.10.027

    21. [21]

      Xiong, Z.; Liang, Y.; Yang, J.; Yang, G.; Jia, J.; Sa, K.; Zhang, X.; Zeng, Z. Sep. Purif. Technol. 2023, 306, 122522. doi: 10.1016/j.seppur.2022.122522  doi: 10.1016/j.seppur.2022.122522

    22. [22]

      Zhang, X.; Zhao, X.; Wu, D.; Jing, Y.; Zhou, Z. Adv. Sci. 2016, 3, 1600062. doi: 10.1002/advs.201600062  doi: 10.1002/advs.201600062

    23. [23]

      Wang, J.; Li, X.; Wei, B.; Sun, R.; Yu, W.; Hoh, H. Y.; Xu, H.; Li, J.; Ge, X.; Chen, Z.; et al. Adv. Funct. Mater. 2020, 30, 1908708. doi: 10.1002/adfm.201908708  doi: 10.1002/adfm.201908708

    24. [24]

      Wang, F.; Shifa, T. A.; He, P.; Cheng, Z.; Chu, J.; Liu, Y.; Wang, Z.; Wang, F.; Wen, Y.; Liang, L.; et al. Nano Energy 2017, 40, 673. doi: 10.1016/j.nanoen.2017.09.017  doi: 10.1016/j.nanoen.2017.09.017

    25. [25]

      Shifa, T. A.; Wang, F.; Cheng, Z.; He, P.; Liu, Y.; Jiang, C.; Wang, Z.; He, J. Adv. Funct. Mater. 2018, 28, 1800548. doi: 10.1002/adfm.201800548  doi: 10.1002/adfm.201800548

    26. [26]

      Gusmao, R.; Sofer, Z.; Sedmidubsky, D.; Huber, S.; Pumera, M. ACS Catal. 2017, 7, 8159. doi: 10.1021/acscatal.7b02134  doi: 10.1021/acscatal.7b02134

    27. [27]

      Cheng, Z.; Shifa, T. A.; Wang, F.; Gao, Y.; He, P.; Zhang, K.; Jiang, C.; Liu, Q.; He, J. Adv. Mater. 2018, 30, 1707433. doi: 10.1002/adma.201707433  doi: 10.1002/adma.201707433

    28. [28]

      Barua, M.; Ayyub, M. M.; Vishnoi, P.; Pramoda, K.; Rao, C. N. R. J. Mater. Chem. A 2019, 7, 22500. doi: 10.1039/c9ta06044h  doi: 10.1039/c9ta06044h

    29. [29]

      Jenjeti, R. N.; Kumar, R.; Austeria, M. P.; Sampath, S. Sci. Rep. 2018, 8, 8586. doi: 10.1038/s41598-018-26522-1  doi: 10.1038/s41598-018-26522-1

    30. [30]

      Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H.; Hwang, E.; Jung, J. Phys. Rev. B 2016, 94, 184428. doi: 10.1103/PhysRevB.94.184428  doi: 10.1103/PhysRevB.94.184428

    31. [31]

      Chu, J.; Wang, F.; Yin, L.; Lei, L.; Yan, C.; Wang, F.; Wen, Y.; Wang, Z.; Jiang, C.; Feng, L.; et al. Adv. Funct. Mater. 2017, 27, 1701342. doi: 10.1002/adfm.201701342  doi: 10.1002/adfm.201701342

    32. [32]

      Fang, L.; Xie, Y.; Guo, P.; Zhu, J.; Xiao, S.; Sun, S.; Zi, W.; Zhao, H. Sustain. Energy Fuels 2021, 5, 2537. doi: 10.1039/d1se00110h  doi: 10.1039/d1se00110h

    33. [33]

      Ran, J.; Zhang, H.; Fu, S.; Jaroniec, M.; Shan, J.; Xia, B.; Qu, Y.; Qu, J.; Chen, S.; Song, L.; et al. Nat. Commun. 2022, 13, 4600. doi: 10.1038/s41467-022-32256-6  doi: 10.1038/s41467-022-32256-6

    34. [34]

      Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Org. Chem. Front. 2022, 9, 2479. doi: 10.1039/D2QI00317A  doi: 10.1039/D2QI00317A

    35. [35]

      Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y. -F.; Dai, W. -L. Appl. Catal. B: Environ. 2021, 298, 120632. doi: 10.1016/j.apcatb.2021.120632  doi: 10.1016/j.apcatb.2021.120632

    36. [36]

      Liu, C.; Xiao, W.; Yu, G.; Wang, Q.; Hu, J.; Xu, C.; Du, X.; Xu, J.; Zhang, Q.; Zou, Z. J. Colloid Interface Sci. 2023, 640, 851. doi: 10.1016/j.jcis.2023.02.137  doi: 10.1016/j.jcis.2023.02.137

    37. [37]

      Han, L.; Peng, C.; Huang, J.; Wang, S.; Zhang, X.; Chen, H.; Yang, Y. Rsc Adv. 2021, 11, 36166. doi: 10.1039/d1ra07275g  doi: 10.1039/d1ra07275g

    38. [38]

      Zhang, J.; Jing, B.; Tang, Z.; Ao, Z.; Xia, D.; Zhu, M.; Wang, S. Appl. Catal. B: Environ. 2021, 289, 120023. doi: 10.1016/j.apcatb.2021.120023  doi: 10.1016/j.apcatb.2021.120023

    39. [39]

      Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K.; et al. J. Am. Chem. Soc. 2019, 141, 5415. doi: 10.1021/jacs.9b00144  doi: 10.1021/jacs.9b00144

    40. [40]

      Sun, Z.; Luo, E.; Meng, Q.; Wang, X.; Ge, J.; Liu, C.; Xing, W. Acta Phys. -Chim. Sin. 2022, 38, 2003035. doi: 10.3866/PKU.WHXB202003035  doi: 10.3866/PKU.WHXB202003035

    41. [41]

      Wang, J.; Wang, T.; Shi, X.; Wu, J.; Xu, Y.; Ding, X.; Yu, Q.; Zhang, K.; Zhou, P.; Jiang, Z. J. Mater. Chem. C 2019, 7, 14625. doi: 10.1039/c9tc04722k  doi: 10.1039/c9tc04722k

    42. [42]

      Zhang, J.; Tao, H.; Wu, S.; Yang, J.; Zhu, M. Appl. Catal. B: Environ. 2021, 296, 120372. doi: 10.1016/j.apcatb.2021.120372  doi: 10.1016/j.apcatb.2021.120372

    43. [43]

      Li, S.; Wang, C.; Cai, M.; Liu, Y.; Dong, K.; Zhang, J. J. Colloid Interface Sci. 2022, 624, 219. doi: 10.1016/j.jcis.2022.05.151  doi: 10.1016/j.jcis.2022.05.151

    44. [44]

      Zhang, G.; Wang, Z.; He, T.; Wu, J.; Zhang, J.; Wu, J. Chem. Eng. J. 2022, 442, 136309. doi: 10.1016/j.cej.2022.136309  doi: 10.1016/j.cej.2022.136309

    45. [45]

      Liu, C.; Han, Z.; Feng, Y.; Dai, H.; Zhao, Y.; Han, N.; Zhang, Q.; Zou, Z. J. Colloid Interface Sci. 2021, 583, 58. doi: 10.1016/j.jcis.2020.09.018  doi: 10.1016/j.jcis.2020.09.018

    46. [46]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    47. [47]

      Che, H.; Wang, J.; Gao, X.; Chen, J.; Wang, P.; Liu, B.; Ao, Y. J. Colloid Interface Sci. 2022, 627, 739. doi: 10.1016/j.jcis.2022.07.080  doi: 10.1016/j.jcis.2022.07.080

    48. [48]

      Zhan, X.; Zheng, Y.; Li, B.; Fang, Z.; Yang, H.; Zhang, H.; Xu, L.; Shao, G.; Hou, H.; Yang, W. Chem. Eng. J. 2022, 431, 134053. doi: 10.1016/j.cej.2021.134053  doi: 10.1016/j.cej.2021.134053

    49. [49]

      Zhao, L.; Lei, S.; Tang, C.; Tu, Q.; Rao, L.; Liao, H.; Zeng, W.; Xiao, Y.; Cheng, B. J. Colloid Interface Sci. 2022, 616, 401. doi: 10.1016/j.jcis.2022.02.089  doi: 10.1016/j.jcis.2022.02.089

    50. [50]

      Vedhanarayanan, B.; Chiu, C. -C.; Regner, J.; Sofer, Z.; Seetha Lakshmi, K. C.; Lin, J. -Y.; Lin, T. -W. Chem. Eng. J. 2022, 430, 132649. doi: 10.1016/j.cej.2021.132649  doi: 10.1016/j.cej.2021.132649

    51. [51]

      Mane, G. P.; Talapaneni, S. N.; Lakhi, K. S.; Ilbeygi, H.; Ravon, U.; Al-Bahily, K.; Mori, T.; Park, D. -H.; Vinu, A. Angew. Chem. Int. Ed. 2017, 56, 8481. doi: 10.1002/anie.201702386  doi: 10.1002/anie.201702386

    52. [52]

      Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem. Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488  doi: 10.1016/j.cej.2022.137488

    53. [53]

      Sun, H.; Shi, Y.; Shi, W.; Guo, F. Appl. Surf. Sci. 2022, 593, 153281. doi: 10.1016/j.apsusc.2022.153281  doi: 10.1016/j.apsusc.2022.153281

    54. [54]

      Chen, K.; Shi, Y.; Shu, P.; Luo, Z.; Shi, W.; Guo, F. Chem. Eng. J. 2023, 454, 140053. doi: 10.1016/j.cej.2022.140053  doi: 10.1016/j.cej.2022.140053

    55. [55]

      Yu, G.; Zhang, Y.; Du, X.; Wu, J.; Liu, C.; Zou, Z. J. Colloid Interface Sci. 2022, 623, 205. doi: 10.1016/j.jcis.2022.05.040  doi: 10.1016/j.jcis.2022.05.040

    56. [56]

      Xiong, Z; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W. J.; Wang, S. Acta Phys. -Chim. Sin. 2022, 38, 2111021. doi: 10.3866/PKU.WHXB202111021  doi: 10.3866/PKU.WHXB202111021

    57. [57]

      Yu, G.; Hu, F.; Cheng, W.; Han, Z.; Liu, C.; Dai, Y. Acta Phys. -Chim. Sin. 2020, 36, 1911016. doi: 10.3866/PKU.WHXB201911016  doi: 10.3866/PKU.WHXB201911016

    58. [58]

      Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi: 10.3866/PKU.WHXB202302017  doi: 10.3866/PKU.WHXB202302017

    59. [59]

      Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Sep. Purif. Technol. 2023, 304, 122401. doi: 10.1016/j.seppur.2022.122401  doi: 10.1016/j.seppur.2022.122401

    60. [60]

      Liu, C.; Xu, Q.; Zhang, Q.; Zhu, Y.; Ji, M.; Tong, Z.; Hou, W.; Zhang, Y.; Xu, J. J. Mater. Sci. 2019, 54, 2458. doi: 10.1007/s10853-018-2990-0  doi: 10.1007/s10853-018-2990-0

    61. [61]

      Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z.; Su, C. Acta Phys. -Chim. Sin. 2023, 39, 2301001. doi: 10.3866/PKU.WHXB202301001  doi: 10.3866/PKU.WHXB202301001

    62. [62]

      Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007  doi: 10.1016/j.jmst.2023.04.007

    63. [63]

      Liu, C.; Feng, Y.; Han, Z.; Sun, Y.; Wang, X.; Zhang, Q.; Zou, Z. Chin. J. Catal. 2021, 42, 164. doi: 10.1016/S1872-2067(20)63608-7  doi: 10.1016/S1872-2067(20)63608-7

    64. [64]

      Dang, X.; Xie, M.; Dai, F.; Guo, J.; Liu, J.; Lu, X. J. Mater. Chem. A 2021, 9, 14888. doi: 10.1039/D1TA02052H  doi: 10.1039/D1TA02052H

    65. [65]

      Zhang, X.; Hu, K.; Zhang, X.; Ali, W.; Li, Z.; Qu, Y.; Wang, H.; Zhang, Q.; Jing, L. Appl. Surf. Sci. 2019, 492, 125. doi: 10.1016/j.apsusc.2019.06.189  doi: 10.1016/j.apsusc.2019.06.189

    66. [66]

      Wang, J.; Qin, C.; Wang, H.; Chu, M.; Zada, A.; Zhang, X.; Li, J.; Raziq, F.; Qu, Y.; Jing, L. Appl. Catal. B: Environ. 2018, 221, 459. doi: 10.1016/j.apcatb.2017.09.042  doi: 10.1016/j.apcatb.2017.09.042

    67. [67]

      Li, L.; Zhang, R.; Lin, Y.; Wang, D.; Xie, T. Chem. Eng. J. 2023, 453, 139970. doi: 10.1016/j.cej.2022.139970  doi: 10.1016/j.cej.2022.139970

    68. [68]

      Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38, 2109023. doi: 10.3866/PKU.WHXB202109023  doi: 10.3866/PKU.WHXB202109023

    69. [69]

      Guo, S.; Li, Y.; Xue, C.; Sun, Y.; Wu, C.; Shao, G.; Zhang, P. Chem. Eng. J. 2021, 419, 129213. doi: 10.1016/j.cej.2021.129213  doi: 10.1016/j.cej.2021.129213

    70. [70]

      Cheng, C.; Zhang, J.; Zeng, R.; Xing, F.; Huang, C. Appl. Catal. B: Environ. 2022, 310, 121321. doi: 10.1016/j.apcatb.2022.121321  doi: 10.1016/j.apcatb.2022.121321

    71. [71]

      Zheng, J.; Lei, Z. Appl. Catal. B: Environ. 2018, 237, 1. doi: 10.1016/j.apcatb.2018.05.060  doi: 10.1016/j.apcatb.2018.05.060

  • 加载中
    1. [1]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(247)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return