Citation: Wuxin Bai, Qianqian Zhou, Zhenjie Lu, Ye Song, Yongsheng Fu. Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230504. doi: 10.3866/PKU.WHXB202305041 shu

Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution

  • Corresponding author: Yongsheng Fu, fuyongsheng@njust.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 22 May 2023
    Revised Date: 27 June 2023
    Accepted Date: 10 July 2023
    Available Online: 19 July 2023

    Fund Project: the National Natural Science Foundation of China 52173255

  • In recent years, hydrogen production has driving a growing focus in the researches of clean energy, particularly the significance of the oxygen evolution reaction (OER) in water splitting. However, the most fascinating OER catalysts of noble metals are hindered by high cost, limited resources, and poor stability. Therefore, the development of low-cost, efficient, stable, and replaceable electrocatalysts is of utmost importance to accelerate the rate of OER in water splitting and realizing renewable, clean, and large-scale energy conversion technologies. Bimetallic and polymetallic electrocatalysts have shown enormous potential, as each metal component can independently or synergistically enhance the electrocatalytic activity. However, during the catalytic process, some metal ions may leach, leading to changes in the catalyst surface morphology and a significant reduction in activity and stability. Extensive research efforts are being devoted to effectively address the challenges associated with metal dissolution. In this study, we have developed a simple method for preparing bimetallic CoNi zeolitic imidazolate framework (CoNi-ZIF) by removing guest molecules through low-temperature pyrolysis and firmly loading CoNi-ZIF nanosheets onto carbon cloth (CoNi-ZIF-CC-200). The resulting free-standing electrodes have several advantages, including independence from adhesives and avoidance of ineffective surface area, thereby significantly improving the catalytic activity and mass transfer efficiency of the catalyst. The electrochemical test results indicate that the CoNi-ZIF-CC-200 free-standing electrode exhibits good electrochemical activity and stability during the OER process. Specifically, the CoNi-ZIF-CC-200 electrode demonstrates a low overpotential of 255 mV under a current density of 10 mA∙cm−2 and maintains stable operation for over 10 h during potentiostatic measurements. Additionally, the water splitting system consisting of the CoNi-ZIF-CC-200 free-standing electrode as the anode and Pt/C as the cathode exhibits excellent stability. The research highlights the use of a low-temperature pyrolysis strategy for firmly loading bimetallic ZIF-L nanosheets onto carbon cloth. This approach results in well-arranged nanosheet arrays, which prevent ineffective surface area and improve mass transfer efficiency during the OER process. Moreover, the removal of guest molecules at low temperatures leads to the formation of Co/Ni oxides, which play a crucial role in catalyzing the OER. The prepared free-standing electrode based on bimetallic ZIF and oxide demonstrates excellent electrochemical activity and stability in both three-electrode and two-electrode water splitting systems using 1 mol∙L−1 KOH as the electrolyte. It is strongly believed that CoNi-ZIF-CC-200 holds great promise for future applications in large-scale electrocatalytic hydrogen production systems.
  • 加载中
    1. [1]

      Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185. doi: 10.1039/D0EE01856B  doi: 10.1039/D0EE01856B

    2. [2]

      Jia, Y.; Yao, X. Chem 2020, 6, 548. doi: 10.1016/j.chempr.2020.02.011  doi: 10.1016/j.chempr.2020.02.011

    3. [3]

      Sun, Y.; Wu, W.; Yu, L.; Xu, S.; Zhang, Y.; Yu, L.; Xia, B.; Ding, S.; Li, M.; Jiang, L.; et al. Angew. Chem. Int. Ed. 2023, 5, e263. doi: 10.1002/cey2.263  doi: 10.1002/cey2.263

    4. [4]

      Arafat, Y.; Azhar, M. R.; Zhong, Y.; Abid, H. R.; Tadé, M. O.; Shao, Z. Adv. Energy Mater. 2021, 11, 2100514. doi: 10.1002/aenm.202100514  doi: 10.1002/aenm.202100514

    5. [5]

      Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340  doi: 10.1016/j.ccr.2021.214340

    6. [6]

      Lu, Z.; Yao, S.; Dong, Y.; Wu, D.; Pan, H.; Huang, X.; Wang, T.; Sun, Z.; Chen, X. J. Energy Chem. 2021, 56, 87. doi: 10.1016/j.jechem.2020.07.040  doi: 10.1016/j.jechem.2020.07.040

    7. [7]

      Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. J. Energy Chem. 2022, 69, 301. doi: 10.1016/j.jechem.2022.01.025  doi: 10.1016/j.jechem.2022.01.025

    8. [8]

      Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2018, 57, 172. doi: 10.1002/anie.201710877  doi: 10.1002/anie.201710877

    9. [9]

      Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Science 2016, 352, 73. doi: 10.1126/science.aad8892  doi: 10.1126/science.aad8892

    10. [10]

      Zhang, X.; Truong-Phuoc, L.; Liao, X.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. ACS Catal. 2021, 11, 8915. doi: 10.1021/acscatal.1c01638  doi: 10.1021/acscatal.1c01638

    11. [11]

      Yang, W.; Vogler, B.; Lei, Y.; Wu, T. Environ. Sci. Water Res. Technol. 2017, 3, 1143. doi: 10.1039/C7EW00273D  doi: 10.1039/C7EW00273D

    12. [12]

      van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x  doi: 10.1038/s41929-019-0364-x

    13. [13]

      Zhong, H.; Wang, J.; Meng, F.; Zhang, X. Angew. Chem. Int. Ed. 2016, 55, 9937. doi: 10.1002/anie.201604040  doi: 10.1002/anie.201604040

    14. [14]

      Sun, Y.; Ding, S.; Xu, S.; Duan, J.; Chen, S. J. Power Sources 2021, 494, 229733. doi: 10.1016/j.jpowsour.2021.229733  doi: 10.1016/j.jpowsour.2021.229733

    15. [15]

      Chen, Y.; Qiao, S.; Tang, Y.; Du, Y.; Zhang, D.; Wang, W.; Zhang, H.; Sun, X.; Liu, C. ACS Nano 2022, 16, 15273. doi: 10.1021/acsnano.2c06700  doi: 10.1021/acsnano.2c06700

    16. [16]

      Huo, M.; Wang, B.; Zhang, C.; Ding, S.; Yuan, H.; Liang, Z.; Qi, J.; Chen, M.; Xu, Y.; Zhang, W.; et al. Chem. Eur. J. 2019, 25, 12780. doi: 10.1002/chem.201902389  doi: 10.1002/chem.201902389

    17. [17]

      Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8, 2002631. doi: 10.1002/advs.202002631  doi: 10.1002/advs.202002631

    18. [18]

      Lei, Z.; Jin, X.; Li, J.; Liu, Y.; Liu, J.; Jiao, S.; Cao, R. J. Energy Chem. 2022, 65, 505. doi: 10.1016/j.jechem.2021.06.019  doi: 10.1016/j.jechem.2021.06.019

    19. [19]

      Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M. ACS Energy Lett. 2017, 2, 1263. doi: 10.1021/acsenergylett.7b00265  doi: 10.1021/acsenergylett.7b00265

    20. [20]

      Jin, W.; Lu, Z.; Wang, Q.; Zhu, Y.; Pan, H.; Yao, S.; Fang, Z.; Huang, X.; Chen, X. J. Phys Mater. 2021, 4, 024006. doi: 10.1088/2515-7639/abebe8  doi: 10.1088/2515-7639/abebe8

    21. [21]

      Chen, C.; Deng, X.; Deng, Y.; An, L.; Deng, Y.; Zheng, Y.; Dang, D.; Yang, X. Int. J. Hydrogen Energy 2022, 47, 14896. doi: 10.1016/j.ijhydene.2022.03.017  doi: 10.1016/j.ijhydene.2022.03.017

    22. [22]

      Li, Y.; Wang, Z.; Hu, J.; Li, S.; Du, Y.; Han, X.; Xu, P. Adv. Funct. Mater. 2020, 30, 1910498. doi: 10.1002/adfm.201910498  doi: 10.1002/adfm.201910498

    23. [23]

      Choi, W. H.; Kim, K.-H.; Lee, H.; Choi, J. W.; Park, D. G.; Kim, G. H.; Choi, K. M.; Kang, J. K. Adv. Sci. 2021, 8, 2100044. doi: 10.1002/advs.202100044  doi: 10.1002/advs.202100044

    24. [24]

      Lu, Z.; Luo, W.; Huang, X.; Yu, H.; Li, Z.; Liu, G.; Liu, J.; Chen, X. J. Colloid Interface Sci. 2022, 611, 599. doi: 10.1016/j.jcis.2021.12.132  doi: 10.1016/j.jcis.2021.12.132

    25. [25]

      Yuan, W.; Zhao, M.; Yuan, J.; Li, C. M. J. Power Sources 2016, 319, 159. doi: 10.1016/j.jpowsour.2016.04.044  doi: 10.1016/j.jpowsour.2016.04.044

    26. [26]

      Liu, H.; Huang, X.; Lu, Z.; Wang, T.; Zhu, Y.; Cheng, J.; Wang, Y.; Wu, D.; Sun, Z.; Robertson, A. W.; et al. Nanoscale 2020, 12, 9628. doi: 10.1039/C9NR10800A  doi: 10.1039/C9NR10800A

    27. [27]

      Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Chem. Eng. J. 2022, 439, 135634. doi: 10.1016/j.cej.2022.135634  doi: 10.1016/j.cej.2022.135634

    28. [28]

      Yang, L.; Wu, D.; Wang, T.; Jia, D. ACS Appl. Mater. Interfaces 2020, 12, 18692. doi: 10.1021/acsami.0c01655  doi: 10.1021/acsami.0c01655

    29. [29]

      Guo, C.; Zhang, W.; Liu, Y.; He, J.; Yang, S.; Liu, M.; Wang, Q.; Guo, Z. Adv. Funct. Mater. 2019, 29, 1901925. doi: 10.1002/adfm.201901925  doi: 10.1002/adfm.201901925

    30. [30]

      Zhao, J.-Y.; Wang, R.; Wang, S.; Lv, Y.-R.; Xu, H.; Zang, S.-Q. J. Mater. Chem. A 2019, 7, 7389. doi: 10.1039/C8TA12116H  doi: 10.1039/C8TA12116H

    31. [31]

      Yi, P.; Zhang, X.; Jin, L.; Chen, P.; Tao, J.; Zhou, J.; Yao, Z. Chem. Eng. J. 2022, 430, 132879. doi: 10.1016/j.cej.2021.132879  doi: 10.1016/j.cej.2021.132879

    32. [32]

      de Sánchez, N. A.; Carrasco, C.; Prieto, P. Phys. B 2003, 337, 318. doi: 10.1016/S0921-4526(03)00423-X  doi: 10.1016/S0921-4526(03)00423-X

    33. [33]

      Zhao, Y.; Zhan, X.; Sun, Y.; Wang, H.; Chen, L.; Liu, J.; Shi, H. Chemosphere 2023, 310, 136937. doi: 10.1016/j.chemosphere.2022.136937  doi: 10.1016/j.chemosphere.2022.136937

    34. [34]

      Wang, Z.; Yang, J.; Tang, Y.; Chen, Z.; Lu, Q.; Shen, G.; Wen, Y.; Liu, X.; Liu, F.; Chen, R.; et al. Sustain. Energy Fuels 2021, 5, 2985. doi: 10.1039/D1SE00459J  doi: 10.1039/D1SE00459J

    35. [35]

      Hong, W.; Kitta, M.; Xu, Q. Small Methods 2018, 2, 1800214. doi: 10.1002/smtd.201800214  doi: 10.1002/smtd.201800214

    36. [36]

      Li, Y.; Li, H.; Cao, K.; Jin, T.; Wang, X.; Sun, H.; Ning, J.; Wang, Y.; Jiao, L. Energy Storage Mater. 2018, 12, 44. doi: 10.1016/j.ensm.2017.11.006  doi: 10.1016/j.ensm.2017.11.006

    37. [37]

      Wang, X.-T.; Ouyang, T.; Wang, L.; Zhong, J.-H.; Ma, T.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2019, 58, 13291. doi: 10.1002/anie.201907595  doi: 10.1002/anie.201907595

    38. [38]

      Cai, Z.; Yamada, I.; Yagi, S. ACS Appl. Mater. Interfaces 2020, 12, 5847. doi: 10.1021/acsami.9b19268  doi: 10.1021/acsami.9b19268

    39. [39]

      Mansour, A. N. Surf. Sci. Spectra 1994, 3, 231. doi: 10.1116/1.1247751  doi: 10.1116/1.1247751

    40. [40]

      Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Adv. Mater. 2019, 31, 1806312. doi: 10.1002/adma.201806312  doi: 10.1002/adma.201806312

    41. [41]

      Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. eScience 2023, 3, 100111. doi: 10.1016/j.esci.2023.100111  doi: 10.1016/j.esci.2023.100111

    42. [42]

      Tang, W.; Liu, X.; Li, Y.; Pu, Y.; Lu, Y.; Song, Z.; Wang, Q.; Yu, R.; Shui, J. Nano Res. 2020, 13, 447. doi: 10.1007/s12274-020-2627-x  doi: 10.1007/s12274-020-2627-x

    43. [43]

      Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi: 10.1007/s12274-021-3966-y  doi: 10.1007/s12274-021-3966-y

    44. [44]

      Zhang, F.; Chen, L.; Yang, H.; Zhang, Y.; Peng, Y.; Luo, X.; Ahmad, A.; Ramzan, N.; Xu, Y.; Shi, Y. Chem. Eng. J. 2022, 431, 133734. doi: 10.1016/j.cej.2021.133734  doi: 10.1016/j.cej.2021.133734

    45. [45]

      Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P. W. Small 2023, 2206723. doi: 10.1002/smll.202206723  doi: 10.1002/smll.202206723

    46. [46]

      Zhou, Z.; Zaman, W. Q.; Sun, W.; Cao, L.-m.; Tariq, M.; Yang, J. Chem. Commun. 2018, 54, 4959. doi: 10.1039/C8CC02008F  doi: 10.1039/C8CC02008F

    47. [47]

      Jović, B. M.; Lačnjevac, U. Č.; Jović, V. D.; Krstajić, N. V. J. Electroanal. Chem. 2015, 754, 100. doi: 10.1016/j.jelechem.2015.07.013  doi: 10.1016/j.jelechem.2015.07.013

    48. [48]

      Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 16607. doi: 10.1002/anie.202104480  doi: 10.1002/anie.202104480

  • 加载中
    1. [1]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    2. [2]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    13. [13]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    14. [14]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    15. [15]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    20. [20]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

Metrics
  • PDF Downloads(2)
  • Abstract views(800)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return