Citation: Zeyu Liu, Wenze Huang, Yang Xiao, Jundong Zhang, Weijin Kong, Peng Wu, Chenzi Zhao, Aibing Chen, Qiang Zhang. Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230504. doi: 10.3866/PKU.WHXB202305040 shu

Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries

  • Corresponding author: Chenzi Zhao, zcz@tsinghua.edu.cn Qiang Zhang, zhang-qiang@mails.tsinghua.edu.cn
  • Received Date: 22 May 2023
    Revised Date: 24 June 2023
    Accepted Date: 27 June 2023
    Available Online: 6 July 2023

    Fund Project: the National Key Research and Development Program of China 2021YFB2500300the National Natural Science Foundation of China 22108151the S&T Program of Hebei Province 22344402Dthe International Postdoctoral Exchange Fellowship Program Talent-Introduction Program YJ20210125

  • The anode-free solid-state lithium battery (AFSSLB) is a type of lithium battery that utilizes an initial charging process to generate lithium metal as the anode. With a 1 : 1 anode-to-cathode capacity ratio, it enables any lithiated cathode system to achieve a maximal energy density. Furthermore, the incorporation of inorganic solid electrolytes in the AFSSLB greatly enhances its intrinsic safety. However, the AFSSLB faces challenges related to interfacial issues between the electrolyte and collector. During the cycling process, uneven lithium-ion flux can result in contact loss and dendrite growth, ultimately leading to rapid battery failure. Addressing these interfacial problems is crucial for the successful implementation and performance of AFSSLBs. The absence of initial lithium metal material prevents the battery system from accommodating additional lithium through a modified anode. Instead, it relies on high Coulomb efficiency during cycling. Consequently, ensuring continuous and uniform contact at the anode interface is crucial for maintaining the reversibility of lithium deposition. Herein, a nanocomposite current collector is introduced to enhance the interface between the collector and electrolyte in AFSSLB. In this approach, silver nanoparticles are dispersed within the carbon materials to construct a composite current collector. The incorporation of the silver-carbon nanocomposite layer results in a low interfacial impedance of 10 Ω∙cm−2, indicating that the electrolyte-collector interface maintains contact throughout the charging and discharging processes. The focused ion beam (FIB) technology and electron microscopy were employed to analyze the battery cross sections, revealing that lithium metal could be deposited in a thickness of more than 25 μm without short-circuiting using this silver-carbon nanocomposite current collector. The solid-state batteries equipped with nanocomposite current collectors exhibited an enhanced dissolution of silver in the lithium metal, leading to the formation of abundant lithiophilic sites. The nanocomposites facilitate the rapid transfer of Li atoms within the anodes, thus achieving uniform lithium metal deposition. Theoretical analysis using the nucleation equation demonstrates that using nano-silver as a current collector can reduce the nucleation work required for deposition by at least four orders of magnitude. The smaller nucleation force contributes to the uniform and stable deposition of lithium metal during continuous cycling. The solid-state batteries demonstrated improved interfacial contact, resulting in the uniform and stable lithium metal deposition of over 7.0 mAh∙cm−2 for more than 200 cycles at 0.25 mA∙cm−2. The cycling performances of all-solid-state batteries can be significantly improved through the design of nanocomposite collectors. This presents an effective strategy for advancing the practical implementation of all-solid-state lithium metal batteries, particularly those utilizing an anode-free configuration.
  • 加载中
    1. [1]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    2. [2]

      Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; et al. InfoMat 2019, 1, 533. doi: 10.1002/inf2.12056  doi: 10.1002/inf2.12056

    3. [3]

      Shen, X.; Cheng, X.; Shi, P.; Huang, J.; Zhang, X.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    4. [4]

      Chen, J. X.; Zhang, X. Q.; Li, B. Q.; Wang, X. M.; Shi, P.; Zhu, W.; Chen, A.; Jin, Z.; Xiang, R.; Huang, J. Q. J. Energy Chem. 2020, 47, 128. doi: 10.1016/j.jechem.2019.11.024  doi: 10.1016/j.jechem.2019.11.024

    5. [5]

      Ding, J.; Xu, R.; Yan, C.; Xiao, Y.; Liang, Y.; Yuan, H.; Huang, J. Chin. Chem. Lett. 2020, 31, 2339. doi: 10.1016/j.cclet.2020.03.015  doi: 10.1016/j.cclet.2020.03.015

    6. [6]

      Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1700260. doi: 10.1002/aenm.201700260  doi: 10.1002/aenm.201700260

    7. [7]

      Yan, C.; Yuan, H.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi: 10.1016/j.jechem.2019.09.034  doi: 10.1016/j.jechem.2019.09.034

    8. [8]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    9. [9]

      Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Engineering 2018, 4, 831. doi: 10.1016/j.eng.2018.10.008  doi: 10.1016/j.eng.2018.10.008

    10. [10]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. China Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    11. [11]

      Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S. Energy Storage Mater. 2019, 17, 204. doi: 10.1016/j.ensm.2018.11.011  doi: 10.1016/j.ensm.2018.11.011

    12. [12]

      Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Nat. Chem. 2016, 8, 426. doi: 10.1038/nchem.2470  doi: 10.1038/nchem.2470

    13. [13]

      Yu, Q.; Jiang, K.; Yu, C.; Chen, X.; Zhang, C.; Yao, Y.; Jiang, B.; Long, H. Chin. Chem. Lett. 2021, 32, 2659. doi: 10.1016/j.cclet.2021.03.032  doi: 10.1016/j.cclet.2021.03.032

    14. [14]

      Shen, Y. Q.; Zeng, F. L.; Zhou, X. Y.; Wang, A. B.; Wang, W. K.; Yuan, N. Y.; Ding, J. N. J. Energy Chem. 2020, 48, 267. doi: 10.1016/j.jechem.2020.01.016  doi: 10.1016/j.jechem.2020.01.016

    15. [15]

      Wu, J. Y.; Ling, S. G.; Yang, Q.; Li, H.; Xu, X. X.; Chen, L. Q. Chin. Phys. B 2016, 25, 078204. doi: 10.1088/1674-1056/25/7/078204  doi: 10.1088/1674-1056/25/7/078204

    16. [16]

      Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003.  doi: 10.3866/PKU.WHXB202005003

    17. [17]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    18. [18]

      Zhao, Y. M.; Ren, L. X.; Wang, A. X.; Luo, J. Y. Acta Phys. -Chim. Sin. 2021, 37, 2008090.  doi: 10.3866/PKU.WHXB202008090

    19. [19]

      Huang, W.-Z.; Zhao, C.-Z.; Wu, P.; Yuan, H.; Feng, W.-E.; Liu, Z.-Y.; Lu, Y.; Sun, S.; Fu, Z.-H.; Hu, J.-K.; et al. Adv. Energy Mater. 2022, 12, 2201044. doi: 10.1002/aenm.202201044  doi: 10.1002/aenm.202201044

    20. [20]

      Suzuki, N.; Yashiro, N.; Fujiki, S.; Omoda, R.; Shiratsuchi, T.; Watanabe, T.; Aihara, Y. Adv. Energy Sustain. Res. 2021, 2, 2100066. doi: 10.1002/aesr.202100066  doi: 10.1002/aesr.202100066

    21. [21]

      Neudecker, B. J.; Dudney, N. J.; Bates, J. B. J. Electrochem. Soc. 2000, 147, 517. doi: 10.1149/1.1393226  doi: 10.1149/1.1393226

    22. [22]

      Huang, W.-Z.; Liu, Z.-Y.; Xu, P.; Kong, W.-J.; Huang, X.-Y.; Shi, P.; Wu, P.; Zhao, C.-Z.; Yuan, H.; Huang, J.-Q.; et al. J. Mater. Chem. A 2023. 11, 12713. doi: 10.1039/D3TA00121K  doi: 10.1039/D3TA00121K

    23. [23]

      Ikhe, A. B.; Park, W. B.; Han, S. C.; Seo, J. Y.; Han, S.; Sohn, K.-S.; Pyo, M. J. Mater. Chem. A 2022, 10, 21456. doi: 10.1039/D2TA06379D  doi: 10.1039/D2TA06379D

    24. [24]

      Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O. Adv. Funct. Mater. 2021, 31, 2106608. doi: 10.1002/adfm.202106608  doi: 10.1002/adfm.202106608

    25. [25]

      Lin, Y.; Chen, J.; Zhang, H.; Wang, J. J. Energy Chem. 2023, 80, 207. doi: 10.1016/j.jechem.2023.02.005  doi: 10.1016/j.jechem.2023.02.005

    26. [26]

      Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11, 2003416. doi: 10.1002/aenm.202003416  doi: 10.1002/aenm.202003416

    27. [27]

      Jiang, F.-N.; Yang, S.-J.; Liu, H.; Cheng, X.-B.; Liu, L.; Xiang, R.; Zhang, Q.; Kaskel, S.; Huang, J.-Q. SusMat 2021, 1, 506. doi: 10.1002/sus2.37  doi: 10.1002/sus2.37

    28. [28]

      Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-  doi: 10.1038/s41563-019-0438-

    29. [29]

      Zhang, X.; Huang, L.; Xie, B.; Zhang, S.; Jiang, Z.; Xu, G.; Li, J.; Cui, G. Adv. Energy Mater. 2023, 13, 2203648. doi: 10.1002/aenm.202203648  doi: 10.1002/aenm.202203648

    30. [30]

      Jo, C.-H.; Sohn, K.-S.; Myung, S.-T. Energy Storage Mater. 2023, 57, 471. doi: 10.1016/j.ensm.2023.02.040  doi: 10.1016/j.ensm.2023.02.040

    31. [31]

      Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Nat. Mater. 2022, 21, 1050. doi: 10.1038/s41563-022-01264-8  doi: 10.1038/s41563-022-01264-8

    32. [32]

      Fang, C.; Lu, B.; Pawar, G.; Zhang, M.; Cheng, D.; Chen, S.; Ceja, M.; Doux, J.-M.; Musrock, H.; Cai, M.; et al. Nat. Energy 2021, 6, 987. doi: 10.1038/s41560-021-00917-3  doi: 10.1038/s41560-021-00917-3

    33. [33]

      Lin, L.; Qin, K.; Li, M.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Suo, L. Energy Storage Mater. 2022, 45, 821. doi: 10.1016/j.ensm.2021.12.036  doi: 10.1016/j.ensm.2021.12.036

    34. [34]

      Shin, W.; Manthiram, A. Angew. Chem. Int. Ed. 2022, 61, e202115909. doi: 10.1002/anie.202115909  doi: 10.1002/anie.202115909

    35. [35]

      Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 299. doi: 10.1038/s41560-020-0575-z  doi: 10.1038/s41560-020-0575-z

    36. [36]

      Liang, P.; Sun, H.; Huang, C. L.; Zhu, G.; Tai, H. C.; Li, J.; Wang, F.; Wang, Y.; Huang, C. J.; Jiang, S. K.; et al. Adv. Mater. 2022, 34, 2207361. doi: 10.1002/adma.202207361  doi: 10.1002/adma.202207361

    37. [37]

      Lin, L.; Qin, K.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y. S.; Li, H.; Huang, X.; Chen, L. Angew. Chem. Int. Ed. 2021, 60, 8289. doi: 10.1002/anie.202017063  doi: 10.1002/anie.202017063

    38. [38]

      Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    39. [39]

      Garcia-Calvo, O.; Gutiérrez-Pardo, A.; Combarro, I.; Orue, A.; Lopez-Aranguren, P.; Urdampilleta, I.; Kvasha, A. Front. Chem. 2022, 10, 934365. doi: 10.3389/fchem.2022.934365  doi: 10.3389/fchem.2022.934365

    40. [40]

      Chen, X.-R.; Chen, X.; Yan, C.; Zhang, X.-Q.; Zhang, Q.; Huang, J.-Q. Energy Fuels 2021, 35, 12746. doi: 10.1021/acs.energyfuels.1c01602  doi: 10.1021/acs.energyfuels.1c01602

    41. [41]

      Lu, Y.; Zhao, C.-Z.; Hu, J.-K.; Sun, S.; Yuan, H.; Fu, Z.-H. Sci. Adv. 2022, 8, eadd0510. doi: 10.1126/sciadv.add0510  doi: 10.1126/sciadv.add0510

    42. [42]

      Lewis, J. A.; Cavallaro, K. A.; Liu, Y.; McDowell, M. T. Joule 2022, 6, 1418. doi: 10.1016/j.joule.2022.05.016  doi: 10.1016/j.joule.2022.05.016

    43. [43]

      Han, S. Y.; Lee, C.; Lewis, J. A.; Yeh, D.; Liu, Y.; Lee, H.-W.; McDowell, M. T. Joule 2021, 5, 2450. doi: 10.1016/j.joule.2021.07.002  doi: 10.1016/j.joule.2021.07.002

    44. [44]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X.-Q.; Chen, X.-R.; Cheng, X.-B.; Yan, C.; Zhao, C.-Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.joule.2018.02.001  doi: 10.1016/j.joule.2018.02.001

    45. [45]

      Wang, C.; Wang, H.; Tao, L.; Wang, X.; Cao, P.; Lin, F. ACS Energy Lett. 2023, 8, 1929. doi: 10.1021/acsenergylett.3c00180  doi: 10.1021/acsenergylett.3c00180

    46. [46]

      Zhang, W.-J. J. Power Sources 2011, 196, 877. doi: 10.1016/j.jpowsour.2010.08.114  doi: 10.1016/j.jpowsour.2010.08.114

    47. [47]

      Jin, S.; Ye, Y.; Niu, Y.; Xu, Y.; Jin, H.; Wang, J.; Sun, Z.; Cao, A.; Wu, X.; Luo, Y.; et al. J. Am. Chem. Soc. 2020, 142, 8818. doi: 10.1021/jacs.0c01811  doi: 10.1021/jacs.0c01811

  • 加载中
    1. [1]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    2. [2]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    5. [5]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    10. [10]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    11. [11]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    12. [12]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    14. [14]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    16. [16]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(34)
  • Abstract views(1202)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return