Citation: Zhi Dou, Huiyu Duan, Yixi Lin, Yinghui Xia, Mingbo Zheng, Zhenming Xu. High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230503. doi: 10.3866/PKU.WHXB202305039 shu

High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer

  • Corresponding author: Mingbo Zheng, zhengmingbo@nuaa.edu.cn Zhenming Xu, xuzhenming@nuaa.edu.cn
  • Received Date: 22 May 2023
    Revised Date: 23 June 2023
    Accepted Date: 10 July 2023
    Available Online: 18 July 2023

    Fund Project: the National Natural Science Foundation of China 22209074the Fundamental Research Funds for the Central Universities NS2022059the Fundamental Research Funds for the Central Universities NS2021039the Open Research Fund of CNMGE Platform & NSCC-TJ CNMGE202312

  • Solid electrolyte interphase (SEI) layers derived from the side reactions between Li metal anode and electrolyte, have great impacts on the electrochemical performance of lithium batteries. In solid-state batteries, SEI layers are also required as the electrical insulators but an ionic conductors, and the mechanical reinforcements for withstanding volume change and suppressing dendritic growth in Li metal anode. Introducing LiF substrates into SEI layers can significantly reduce the electron tunneling ability from Li anode to SEI layer, meanwhile providing the excellent interfacial mechanical strength. However, LiF has a very high energy barrier for ion diffusion, hindering the rapid lithium ion diffusion from SEI layer to lithium anode. Therefore, it is necessary to introduce lithium alloy phases with higher ionic conductivity into the LiF matrix to provide sufficient ion diffusion channels. By the data mining technology, high-throughput first-principle calculation and ab-initio molecular dynamics simulations, this work performed phase diagram and ion diffusion energy barrier calculations to evaluate the thermodynamic stabilities and lithium diffusion abilities of several lithium alloys. 27 lithium alloys that can be used as Li-ion conducting phases in the LiF-based artificial SEI layers are screened. Meanwhile, the structure-function relationship analysis of lithium alloys uncovers that the crystal structure type of lithium alloys has more significant impacts on lithium ion diffusion than alloy elements, that is, lithium alloy structures with the space group of I43d and Fm3m have very excellent lithium ion transport performance, while the diffusion channels of lithium alloy structures with the space group of Pm3m and F43m are narrow, leading to the poor lithium ion transport performance. In addition, this work uncovers a physical image of lithium ion transport in artificial SEI interface, that is, lithium ion diffusion in LiF crystal bulk is quite difficult, while the diffusion resistance at LiF grain boundaries and LiF/LiM alloy interfaces is small.
  • 加载中
    1. [1]

      Hu, A. J. Beijing Univ. Technol. (Soc. Sci. Ed. ) 2021, 21 (3), 1.  doi: 10.12120/bjutskxb202103001

    2. [2]

      Li, H.; Xu, X. Energy Storage Sci. Technol. 2016, 5 (5), 607.  doi: 10.12028/j.issn.2095-4239.2016.0023

    3. [3]

      Lv, L.; Zhou, L.; Muhammad, K. T.; Yang, L.; Chen, R.; Yang, W. Sci. Sin., Ser. B: Chem. 2020, 50 (9), 1031.  doi: 10.1360/SSC-2020-0089

    4. [4]

      Liu, L.; Wu, F.; Li, H.; Chen, L. J. Chin. Ceram. Soc. 2019, 47 (10), 1367.  doi: 10.14062/j.issn.0454-5648.2019.10.04

    5. [5]

      Wang, H.; An, H.; Shan, H.; Zhao, L.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37 (11), 2007070.  doi: 10.3866/PKU.WHXB202007070

    6. [6]

      Zhao, Y.; Chen, C.; Liu, W.; Hu, W.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39 (8), 2211017.  doi: 10.3866/PKU.WHXB202211017

    7. [7]

      Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Joule 2018, 2 (10), 1991. doi: 10.1016/j.joule.2018.07.009  doi: 10.1016/j.joule.2018.07.009

    8. [8]

      Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Npj Comput. Mater. 2018, 4 (1), 15. doi: 10.1038/s41524-018-0064-0  doi: 10.1038/s41524-018-0064-0

    9. [9]

      Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J. C.; Miara, L. J.; Ceder, G. Nat. Rev. Mater. 2020, 5 (2), 105. doi: 10.1038/s41578-019-0157-5  doi: 10.1038/s41578-019-0157-5

    10. [10]

      Feng, W.; Wang, F.; Zhou, X.; Ji, X.; Han, F.; Wang, C. Acta Phys. Sin. 2020, 69 (22), 137.  doi: 10.7498/aps.66.168501

    11. [11]

      Wang, J.; Chen, L.; Li, H.; Wu, F. Energy Environ. Mater. 2023, e12613. doi: 10.1002/eem2.12613  doi: 10.1002/eem2.12613

    12. [12]

      Wang, Z.; Li, X.; Chen, Y.; Pei, K.; Mai, Y.-W.; Zhang, S.; Li, J. Chem 2020, 6 (11), 2878. doi: 10.1016/j.chempr.2020.09.005  doi: 10.1016/j.chempr.2020.09.005

    13. [13]

      Hu, A.; Chen, W.; Du, X.; Hu, Y.; Lei, T.; Wang, H.; Xue, L.; Li, Y.; Sun, H.; Yan, Y. Energy Environ. Sci. 2021, 14 (7), 4115. doi: 10.1039/D1EE00508A  doi: 10.1039/D1EE00508A

    14. [14]

      Luo, L.; Zheng, F.; Gao, H.; Lan, C.; Sun, Z.; Huang, W.; Han, X.; Zhang, Z.; Su, P.; Wang, P. Nano Res. 2023, 16 (1), 1634. doi: 10.1007/s12274-022-5136-2  doi: 10.1007/s12274-022-5136-2

    15. [15]

      Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    16. [16]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133. doi: 10.1103/PhysRev.140.A1133  doi: 10.1103/PhysRev.140.A1133

    18. [18]

      Wisesa, P.; McGill, K. A.; Mueller, T. Phys. Rev. B 2016, 93 (15), 155109. doi: 10.1103/PhysRevB.93.155109  doi: 10.1103/PhysRevB.93.155109

    19. [19]

      Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113 (22), 9978. doi: 10.1063/1.1323224  doi: 10.1063/1.1323224

    20. [20]

      Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314. doi: 10.1016/j.commatsci.2012.10.028  doi: 10.1016/j.commatsci.2012.10.028

    21. [21]

      Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi: 10.1103/PhysRevA.31.1695  doi: 10.1103/PhysRevA.31.1695

    22. [22]

      He, X.; Zhu, Y.; Epstein, A.; Mo, Y. Npj Comput. Mater. 2018, 4 (1), 18. doi: 10.1038/s41524-018-0074-y  doi: 10.1038/s41524-018-0074-y

    23. [23]

      Pan, Y. Ceram. Int. 2019, 45 (15), 18315. doi: 10.1016/j.ceramint.2019.06.044  doi: 10.1016/j.ceramint.2019.06.044

    24. [24]

      Gertsman, V. Acta Crystallogr. Sect. A: Found. Crystallogr. 2001, 57 (6), 649. doi: 10.1107/S0108767301009102  doi: 10.1107/S0108767301009102

    25. [25]

      Ren, Y.; Zou, Z.; Zhao, Q.; Wang, D.; Yu, J.; Shi, S. Acta Phys. Sin. 2020, 69 (22), 226601.  doi: 10.7498/aps.69.20201519

    26. [26]

      Chang, D.; Oh, K.; Kim, S. J.; Kang, K. Chem. Mater. 2018, 30 (24), 8764. doi: 10.1021/acs.chemmater.8b03000  doi: 10.1021/acs.chemmater.8b03000

    27. [27]

      Oh, K.; Chang, D.; Lee, B.; Kim, D.-H.; Yoon, G.; Park, I.; Kim, B.; Kang, K. Chem. Mater. 2018, 30 (15), 4995. doi: 10.1021/acs.chemmater.8b01163  doi: 10.1021/acs.chemmater.8b01163

    28. [28]

      Dobhal, G.; Walsh, T. R.; Tawfik, S. A. ACS Appl. Mater. Interfaces 2022, 14 (50), 55471. doi: 10.1021/acsami.2c12192  doi: 10.1021/acsami.2c12192

    29. [29]

      Yildirim, H.; Kinaci, A.; Chan, M. K.; Greeley, J. P. ACS Appl. Mater. Interfaces 2015, 7 (34), 18985. doi: 10.1021/acsami.5b02904  doi: 10.1021/acsami.5b02904

    30. [30]

      Modak, P.; Modak, B. Comput. Mater. Sci. 2022, 202, 110977. doi: 10.1016/j.commatsci.2021.110977  doi: 10.1016/j.commatsci.2021.110977

    31. [31]

      Krauskopf, T.; Muy, S.; Culver, S. P.; Ohno, S.; Delaire, O.; Shao-Horn, Y.; Zeier, W. G. J. Am. Chem. Soc. 2018, 140 (43), 14464. doi: 10.1021/jacs.8b09340  doi: 10.1021/jacs.8b09340

    32. [32]

      Uematsu, M. Self-Diffusion and Dopant Diffusion in Germanium (Ge) and Silicon–Germanium (SiGe) Alloys. In Silicon–Germanium (SiGe) Nanostructures; Woodhead: Cambridge, UK, 2011; pp. 299–337.

    33. [33]

      Chen, Y.; Ouyang, C.; Song, L.; Sun, Z. J. Phys. Chem. C 2011, 115 (14), 7044. doi: 10.1021/jp112202s  doi: 10.1021/jp112202s

    34. [34]

      Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi: 10.1038/35050047  doi: 10.1038/35050047

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    7. [7]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    8. [8]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    9. [9]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    15. [15]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    16. [16]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    17. [17]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    19. [19]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    20. [20]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(6)
  • Abstract views(767)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return