Citation: Yue Zhang, Bao Li, Lixin Wu. GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230503. doi: 10.3866/PKU.WHXB202305038 shu

GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions

  • Corresponding author: Bao Li, libao@jlu.edu.cn Lixin Wu, wulx@jlu.edu.cn
  • Received Date: 18 May 2023
    Revised Date: 26 June 2023
    Accepted Date: 27 June 2023
    Available Online: 5 July 2023

    Fund Project: the National Natural Science Foundation of China 22271117the National Natural Science Foundation of China 22172060

  • Intercepting tiny droplets in nano-emulsions is crucial for the development of membrane materials with pore diameters smaller than the droplet size, as per the size screening mechanism. While this method achieves high separation efficiency, it results in a decrease in separation flux. On the one hand, the use of macro-porous materials can increase the flux, but it does not guarantee high efficiency on the other hand. Fabricating superwetting materials that exhibit both high efficiency and flux in separating nanosized emulsions provides opportunities for overcoming the bottleneck yet how to extend the applicable range with high efficiency remains a challenge. To address this issue, we propose a strategy to enhance the hydrophilicity of supramolecular framework nanosheets by modifying hydrophilic graphene oxide (GO). By incorporating GO into the supramolecular framework (SF) composite membrane through a sequential pumping process onto a commercial matrix, we create a GO-assisted SF composite membrane capable of separating oil-in-water (O/W) emulsions containing nanosized droplets. The framework intercepts the dispersed tiny droplets in the emulsions through uniform nanoscale pores while also facilitating the demulsification process through electrostatic interaction on its negatively charged surface. The hydrophilic GO modification on the composite membrane enhances its water affinity and promotes the formation of a hydrated layer on the membrane surface. The resulting composite membrane exhibits a nanoscale cut-off size, a negatively charged surface, and oleophobicity under water. Importantly, it achieves high water flux and resistance to oil contamination. By leveraging the size screening and demulsification effects, the composite membrane efficiently removes nanosized oil droplets dispersed in O/W emulsions stabilized by non-ionic, anionic, and cationic surfactants. Particularly for emulsions containing ionic surfactants, no residual droplets are detected through dynamic light scattering (DLS) after separation. The filtrate exhibits a total organic carbon (TOC) content of less than 10 ppm, corresponding to a separation efficiency greater than 99.9%, which surpasses the standards of many countries and organizations. Furthermore, compared to the original SF membrane, the composite membrane demonstrates approximately 3.5 times higher separation permeation during the separation process of various emulsions. Additionally, the composite membrane exhibits an anti-fouling effect and achieves a high flux recovery rate, ensuring stable separation performance for 5 cycles through simple water washing treatment. The composite membrane retains its components throughout repeated use, exhibits thermal stability up to 150 ℃, and can withstand corrosive chemical environments, including 1 mol·L−1 HCl, 0.01 mol·L−1 NaOH, and 1 mol·L−1 NaCl. In this study, we realize the combination of two components with distinct structural and surface characteristics to fabricate a composite membrane through a simple method and achieve high-performance separation of nanosized O/W emulsions through synergistic functionality.
  • 加载中
    1. [1]

      Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B. Science 2003, 302, 2082. doi: 10.1126/science.1084282  doi: 10.1126/science.1084282

    2. [2]

      Schrope, M. Nature 2010, 466, 304. doi: 10.1038/466304a  doi: 10.1038/466304a

    3. [3]

      Cai, Q.; Zhu, Z.; Chen, B.; Zhang, B. Water Res. 2019, 149, 292. doi: 10.1016/j.watres.2018.11.023  doi: 10.1016/j.watres.2018.11.023

    4. [4]

      Jiang, Y.; Xian, C.; Xu, X.; Zheng, W.; Zhu, T.; Cai, W.; Huang, J.; Lai, Y. J. Membr. Sci. 2023, 667, 121166. doi: 10.1016/j.memsci.2022.121166  doi: 10.1016/j.memsci.2022.121166

    5. [5]

      Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garciacelma, M. Curr. Opin. Colloid Interface Sci. 2005, 10, 102. doi: 10.1016/j.cocis.2005.06.004  doi: 10.1016/j.cocis.2005.06.004

    6. [6]

      Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys. Condens. Matter. 2006, 18, 635. doi: 10.1088/0953-8984/18/41/r01  doi: 10.1088/0953-8984/18/41/r01

    7. [7]

      Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Adv. Colloid Interface Sci. 2004, 108, 303. doi: 10.1016/j.cis.2003.10.023  doi: 10.1016/j.cis.2003.10.023

    8. [8]

      Zouboulis, A. I.; Avranas, A. Colloid. Surf. Physicochem. Eng. Asp. 2000, 172, 153. doi: 10.1016/S0927-7757(00)00561-6  doi: 10.1016/S0927-7757(00)00561-6

    9. [9]

      Rattanapan, C.; Sawain, A.; Suksaroj, T.; Suksaroj, C. Desalination 2011, 280, 370. doi: 10.1016/j.desal.2011.07.018  doi: 10.1016/j.desal.2011.07.018

    10. [10]

      Pitakpoolsil, W.; Hunsom, M. J. Taiwan Inst. Chem. Eng. 2013, 44, 963. doi: 10.1016/j.jtice.2013.02.009  doi: 10.1016/j.jtice.2013.02.009

    11. [11]

      Li, W.; Yong, J.; Yang, Q.; Chen, F.; Fang, Y.; Hou, X. Acta Phys.-Chim. Sin. 2018, 34, 456.  doi: 10.3866/PKU.WHXB201709211

    12. [12]

      Zheng, W.; Huang, J.; Li, S.; Ge, M.; Teng, L.; Chen, Z.; Lai, Y. ACS Appl. Mater. Interfaces 2020, 13, 67. doi: 10.1021/acsami.0c18794  doi: 10.1021/acsami.0c18794

    13. [13]

      Liang, Y.; Yang, E.; Kim, M.; Kim, S.; Kim, H.; Byun, J.; Yanar, N.; Choi, H. Chem. Eng. J. 2023, 452, 139710. doi: 10.1016/j.cej.2022.139710  doi: 10.1016/j.cej.2022.139710

    14. [14]

      Gao, S. J.; Zhu, Y. Z.; Zhang, F.; Jin, J. J. Mater. Chem. A 2015, 3, 2895. doi: 10.1039/c4ta05624h  doi: 10.1039/c4ta05624h

    15. [15]

      Hu, M.-X.; Niu, H.-M.; Chen, X.-L.; Zhan, H.-B. Colloids Surf. A 2019, 564, 142. doi: 10.1016/j.colsurfa.2018.12.045  doi: 10.1016/j.colsurfa.2018.12.045

    16. [16]

      Naik, N. S.; Padaki, M.; Déon, S.; Karunakaran, G.; Dizge, N.; Saxena, M. J. Water Process Eng. 2019, 32, 100959. doi: 10.1016/j.jwpe.2019.100959  doi: 10.1016/j.jwpe.2019.100959

    17. [17]

      Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. ACS Appl. Mater. Interfaces 2017, 9, 9603. doi: 10.1021/acsami.6b15682  doi: 10.1021/acsami.6b15682

    18. [18]

      Zhan, B.; Liu, Y.; Li, S.-Y.; Kaya, C.; Stegmaier, T.; Aliabadi, M.; Han, Z.-W.; Ren, L.-Q. Appl. Surf. Sci. 2019, 496, 143580. doi: 10.1016/j.apsusc.2019.143580  doi: 10.1016/j.apsusc.2019.143580

    19. [19]

      Wang, J.; He, B.; Ding, Y.; Li, T.; Zhang, W.; Zhang, Y.; Liu, F.; Tang, C. Y. ACS Appl. Mater. Interfaces 2021, 13, 4731. doi: 10.1021/acsami.0c19561  doi: 10.1021/acsami.0c19561

    20. [20]

      Zeng, X.; Qian, L.; Yuan, X.; Zhou, C.; Li, Z.; Cheng, J.; Xu, S.; Wang, S.; Pi, P.; Wen, X. ACS Nano 2017, 11, 760. doi: 10.1021/acsnano.6b07182  doi: 10.1021/acsnano.6b07182

    21. [21]

      Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Nat. Commun. 2017, 8, 14968. doi: 10.1038/ncomms14968  doi: 10.1038/ncomms14968

    22. [22]

      Zhu, X.; Zhang, J. Q.; Zhu, L.; Wang, R.; Gan, S.; Xue, J. W.; Liu, X.; Li, H.; Xue, Q. Z. Sep. Purif. Technol. 2022, 280, 119984. doi: 10.1016/j.seppur.2021.119984  doi: 10.1016/j.seppur.2021.119984

    23. [23]

      Zuo, J.; Liu, Z.; Zhou, C.; Zhou, Y.; Wen, X.; Xu, S.; Cheng, J.; Pi, P. J. Hazard. Mater. 2020, 403, 123620. doi: 10.1016/j.jhazmat.2020.123620  doi: 10.1016/j.jhazmat.2020.123620

    24. [24]

      Zolfaghari, R.; Fakhru'l-Razi, A.; Abdullah, L. C.; Elnashaie, S. S. E. H.; Pendashteh, A. Sep. Purif. Technol. 2016, 170, 377. doi: 10.1016/j.seppur.2016.06.026  doi: 10.1016/j.seppur.2016.06.026

    25. [25]

      Liang, H.; Esmaeili, H. Environ. Technol. Innovation 2021, 22, 101498. doi: 10.1016/j.eti.2021.101498  doi: 10.1016/j.eti.2021.101498

    26. [26]

      Xu, X.; Zhu, T.; Zheng, W.; Xian, C.; Huang, J.; Chen, Z.; Cai, W.; Zhang, W.; Lai, Y. Chem. Eng. J. 2023, 451, 137879. doi: 10.1016/j.cej.2022.137879  doi: 10.1016/j.cej.2022.137879

    27. [27]

      Mao, X.; Zhao, Z.; Yang, D.; Qiao, C.; Tan, J.; Liu, Q.; Tang, T.; Zhang, H.; Zeng, H. Sep. Purif. Technol. 2022, 285, 120382. doi: 10.1016/j.seppur.2021.120382  doi: 10.1016/j.seppur.2021.120382

    28. [28]

      Hu, Y.-Q.; Li, H.-N.; Xu, Z.-K. J. Membr. Sci. 2022, 648, 120388. doi: 10.1016/j.memsci.2022.120388  doi: 10.1016/j.memsci.2022.120388

    29. [29]

      Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913. doi: 10.1021/ja4086935  doi: 10.1021/ja4086935

    30. [30]

      Zhang, X. Acta Phys.-Chim. Sin. 2020, 36, 2004004.  doi: 10.3866/PKU.WHXB202004004

    31. [31]

      Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. Nat. Commun. 2016, 7, 10742. doi: 10.1038/ncomms10742  doi: 10.1038/ncomms10742

    32. [32]

      Guan, W.; Wang, G.; Li, B.; Wu, L. Coord. Chem. Rev. 2023, 481, 215039. doi: 10.1016/j.ccr.2023.215039  doi: 10.1016/j.ccr.2023.215039

    33. [33]

      Zhou, Y.; Zhang, G.; Li, B.; Wu, L. ACS Appl. Mater. Interfaces 2020, 12, 30761. doi: 10.1021/acsami.0c05947  doi: 10.1021/acsami.0c05947

    34. [34]

      Duan, F.; Liu, X.; Qu, D.; Li, B.; Wu, L. CCS Chem. 2021, 3, 2676. doi: 10.31635/ccschem.020.202000498  doi: 10.31635/ccschem.020.202000498

    35. [35]

      Li, B.; Wu, L. Polyoxometalates 2023, 2, 9140016. doi: 10.26599/pom.2022.9140016  doi: 10.26599/pom.2022.9140016

    36. [36]

      Zhang, G.; Li, B.; Zhou, Y.; Chen, X.; Li, B.; Lu, Z.-Y.; Wu, L. Nat. Commun. 2020, 11, 425. doi: 10.1038/s41467-019-14227-6  doi: 10.1038/s41467-019-14227-6

    37. [37]

      Zhang, Y.; Zhang, G.; Li, B.; Wu, L. Small Methods 2023, 7, 2201455. doi: 10.1002/smtd.202201455  doi: 10.1002/smtd.202201455

    38. [38]

      Zhang, G.; Li, X.; Chen, G.; Zhang, Y.; Wei, M.; Chen, X.; Li, B.; Wu, Y.; Wu, L. Nat. Commun. 2023, 14, 975. doi: 10.1038/s41467-023-36684-w  doi: 10.1038/s41467-023-36684-w

    39. [39]

      Ma, S.-D.; Chen, Y.-L.; Feng, J.; Liu, J.-J.; Zuo, X.-W.; Chen, X.-G. Anal. Chem. 2016, 88, 10474. doi: 10.1021/acs.analchem.6b02448  doi: 10.1021/acs.analchem.6b02448

    40. [40]

      Gao, S.; Zhu, Y.; Wang, J.; Zhang, F.; Li, J.; Jin, J. Adv. Funct. Mater. 2018, 28, 1801944. doi: 10.1002/adfm.201801944  doi: 10.1002/adfm.201801944

    41. [41]

      An, Y. P.; Yang, J.; Yang, H. C.; Wu, M. B.; Xu, Z. K. ACS Appl. Mater. Interfaces 2018, 10, 9832. doi: 10.1021/acsami.7b19700  doi: 10.1021/acsami.7b19700

    42. [42]

      Eda, G.; Chhowalla, M. Adv. Mater. 2010, 22, 2392. doi: 10.1002/adma.200903689  doi: 10.1002/adma.200903689

    43. [43]

      Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L. Adv. Mater. 2009, 21, 665. doi: 10.1002/adma.200801782  doi: 10.1002/adma.200801782

    44. [44]

      Feng, L.; Gao, Y.; Xu, Y.; Dan, H.; Qi, Y.; Wang, S.; Yin, F.; Yue, Q.; Gao, B. J. Hazard. Mater. 2021, 420, 126681. doi: 10.1016/j.jhazmat.2021.126681  doi: 10.1016/j.jhazmat.2021.126681

    45. [45]

      Kim, B.-S.; Harriott, P. J. Colloid Interface Sci. 1987, 115, 1. doi: 10.1016/0021-9797(87)90002-6  doi: 10.1016/0021-9797(87)90002-6

    46. [46]

      Lu, T.; Deng, Y.; Cui, J.; Cao, W.; Qu, Q.; Wang, Y.; Xiong, R.; Ma, W.; Lei, J.; Huang, C. ACS Appl. Mater. Interfaces 2021, 13, 22874. doi: 10.1021/acsami.1c05667  doi: 10.1021/acsami.1c05667

    47. [47]

      He, H.; Liu, Y.; Zhu, Y.; Zhang, T. C.; Yuan, S. Sep. Purif. Technol. 2022, 293, 121089. doi: 10.1016/j.seppur.2022.121089  doi: 10.1016/j.seppur.2022.121089

    48. [48]

      Zheng, Y.; Zhang, C.; Wang, L.; Long, X.; Zhang, J.; Zuo, Y.; Jiao, F. Sep. Purif. Technol. 2021, 272, 118893. doi: 10.1016/j.seppur.2021.118893  doi: 10.1016/j.seppur.2021.118893

    49. [49]

      Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Adv. Funct. Mater. 2018, 28, 1804121. doi: 10.1002/adfm.201804121  doi: 10.1002/adfm.201804121

  • 加载中
    1. [1]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(0)
  • Abstract views(256)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return