Citation: Lei Feng, Ze-Min Zhu, Ying Yang, Zongbin He, Jiafeng Zou, Man-Bo Li, Yan Zhao, Zhikun Wu. Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230502. doi: 10.3866/PKU.WHXB202305029 shu

Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects

  • Corresponding author: Man-Bo Li, mbli@ahu.edu.cn Yan Zhao, 20231@ahu.edu.cn Zhikun Wu, zkwu@issp.ac.cn
  • Received Date: 15 May 2023
    Revised Date: 10 June 2023
    Accepted Date: 12 June 2023
    Available Online: 27 June 2023

    Fund Project: the National Natural Science Foundation of China 21925303the National Natural Science Foundation of China 21771186the National Natural Science Foundation of China 21829501the National Natural Science Foundation of China 21222301the National Natural Science Foundation of China 21528303the National Natural Science Foundation of China 21171170the National Natural Science Foundation of China 92061110CASHIPS Director's Fund BJPY2019A02Key Program of 13th Five-year Plan, CASHIPS KP-2017-16Collaborative Innovation Program of Hefei Science Center, CAS 2020HSC-CIP005Collaborative Innovation Program of Hefei Science Center, CAS 2022HSC-CIP018Anhui Provincial Natural Science Foundation 2108085Y05Hefei National Laboratory for Physical Sciences at the Microscale KF2020102the Startup Fund of Anhui University S020318006/037

  • Metal nanoclusters are rising stars in material science, and one advantage is their atomically precise tunability. It is well known that metal doping can efficiently modify the properties of metal nanoclusters. In particular, without altering the parent nanocluster framework, doping a single heterometal atom can tailor the properties of metal nanoclusters and aid investigations of the structure–property relationship of metal nanoclusters. To our knowledge, the simultaneous synthesis of a single heterometal-doped nanocluster and its parent nanocluster is challenging and has not been previously reported; however, this is highly desirable because it can prevent the influence of trace impurities and allow comparison between doped and undoped nanoclusters. The single Cd-doped gold nanocluster Au22Cd1(S-Adm)16 (S-Adm = 1-adamantanethiolate) has been previously synthesized and structurally elucidated. However, the structure of the parent nanocluster, Au23(S-Adm)16, remains unknown, inspiring this investigation. In this study, we synthesized Au23(S-Adm)16 and its single-doped Au22Cd1(S-Adm)16 nanocluster in one pot for the first time, and we resolved their structures using single-crystal X-ray crystallography. The structure of Au22Cd1(S-Adm)16 is similar to that of Au23(S-Adm)16 except that a kernel Au atom in Au23(S-Adm)16 is replaced with a Cd atom. This Cd replacement causes the kernel Au―Au bond length to increase owing to the loosening of the original closely packed structure. In contrast to prior reports, Au23(S-Adm)16 is surprisingly more stable than Au22Cd1(S-Adm)16, as determined via ultraviolet visible-near infrared (UV-Vis-NIR) spectroscopy at 80 ℃. This stability was attributed to the decrease in the kernel Au―Au bond length. Although the maximum absorption of Au22Cd1(S-Adm)16 slightly red-shifted from 605 to 608 nm after Cd doping, the molar extinction coefficient of Au23(S-Adm)16 at 605 nm was approximately twice that of Au22Cd1(S-Adm)16 at 608 nm. Thus, the increase in kernel Au―Au bond length may decrease the photoexcitation electron transfer efficiency owing to lengthening of the photoexcitation electron transfer pathway. As further support for this opinion, although the two nanoclusters showed similar emission profiles and maxima (750 nm for Au23(S-Adm)16 and 760 nm for Au22Cd1(S-Adm)16), they exhibited obvious emission intensity differences. Specifically, the quantum yield of Au23(S-Adm)16 (approximately 3.160 × 10−5) was found to be 1.13 times that of Au22Cd1(S-Adm)16 (approximately 2.793 × 10−5). Thus, the stability and absorption and emission intensities correlate with the kernel Au―Au bond length.This study shows that two metal nanoclusters with slight structural differences can exhibit different properties in terms of optical and thermal stability, providing a good reference for studying their structure–property relationships.
  • 加载中
    1. [1]

      Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318 (5849), 430. doi: 10.1126/science.1148624  doi: 10.1126/science.1148624

    2. [2]

      Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41 (9), 3594. doi: 10.1039/C2CS15325D  doi: 10.1039/C2CS15325D

    3. [3]

      Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys.-Chim. Sin. 2018, 34 (7), 792.  doi: 10.3866/PKU.WHXB201710091

    4. [4]

      Zeng, C.; Zhou, M.; Chen, Y. X.; Jin, R. Chem. Rev. 2016, 116 (18), 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    5. [5]

      Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty. A.; Garg, N.; Jin, R. J. Phys. Chem. Lett. 2010, 1 (19), 2903. doi: 10.1021/jz100944k  doi: 10.1021/jz100944k

    6. [6]

      Wu, Y.-G.; Huang, J.-H.; Zhang, C.; Guo, X.-K.; Wu, W.-N.; Dong, X.-Y.; Zang, S.-Q. Chem. Commun. 2022, 58 (52), 7321. doi: 10.1039/D2CC00794K  doi: 10.1039/D2CC00794K

    7. [7]

      Li, J.-J.; Liu, Z.; Guan, Z.-J.; Han, X.-S.; Shi, W.-Q.; Wang, Q.-M., J. Am. Chem. Soc. 2022, 144 (2), 690. doi: 10.1021/jacs.1c11643  doi: 10.1021/jacs.1c11643

    8. [8]

      Tian, S.; Cao, Y.; Chen, T.; Zang, S.; Xie, J. Chem. Commun. 2020, 56 (8), 1163. doi: 10.1039/C9CC08215H  doi: 10.1039/C9CC08215H

    9. [9]

      Yang, J.-S.; Zhang, M.-M.; Han, Z.; Li, H.-Y.; Li, L.-K.; Dong, X.-Y.; Zang, S.-Q.; Mak, T. C. W. Chem. Commun. 2020, 56 (16), 2451. doi: 10.1039/C9CC09439C  doi: 10.1039/C9CC09439C

    10. [10]

      Salorinne, K.; Man, R. W. Y.; Lummis, P. A.; Hazer, M. S. A.; Malola, S. J.; Yim, C.-H.; Veinot, A. J.; Zhou, W.; Häkkinen, H.; Nambo, M.; et al. Chem. Commun. 2020, 56 (45), 6102. doi: 10.1039/D0CC01482F  doi: 10.1039/D0CC01482F

    11. [11]

      Si, W.-D.; Li, Y.-Z.; Zhang, S.-S.; Wang, S.; Feng, L.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. ACS Nano 2021, 15 (10), 16019. doi: 10.1021/acsnano.1c04421  doi: 10.1021/acsnano.1c04421

    12. [12]

      Jin, R. Acta Phys.-Chim. Sin. 2019, 35 (3), 245.  doi: 10.3866/PKU.WHXB201803213

    13. [13]

      Zhang, Q.-F.; Williard, P. G.; Wang, L.-S. Small 2016, 12 (18), 2518. doi: 10.1002/smll.201600407  doi: 10.1002/smll.201600407

    14. [14]

      Chakrahari, K. K.; Silalahi, R. P. B.; Chiu, T.-H.; Wang, X. P.; Azrou, N.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2019, 58 (15), 4943. doi: 10.1002/anie.201814264  doi: 10.1002/anie.201814264

    15. [15]

      Li, Y., Kim, H. K., McGillicuddy, R. D.; Zheng, S.-L.; Anderton, K. J.; Stec, G. J.; Lee, J.; Cui, D.; Mason, J. A. J. Am. Chem. Soc. 2023, 145 (16), 9304. doi: 10.1021/jacs.3c02458  doi: 10.1021/jacs.3c02458

    16. [16]

      Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys.-Chim. Sin. 2023, 39 (8), 2210039.  doi: 10.3866/PKU.WHXB202210039

    17. [17]

      Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Negishi, Y. Acc. Chem. Res. 2018, 51 (12), 3114. doi: 10.1021/acs.accounts.8b00453  doi: 10.1021/acs.accounts.8b00453

    18. [18]

      Liu, Z.; Meng, X.; Gu, W.; Zha, J.; Yan, N.; You, Q.; Xia, N.; Wang, H.; Wu, Z. Acta Phys.-Chim. Sin. 2023, 39 (12), 2212064.  doi: 10.3866/PKU.WHXB202212064

    19. [19]

      Li, T.; Li, Q.; Yang, S.; Xu, L.; Chai, J.; Li, P.; Zhu, M. Chem. Commun. 2021, 57 (38), 4682. doi: 10.1039/D1CC00577D  doi: 10.1039/D1CC00577D

    20. [20]

      Hossain, S.; Suzuki, D.; Iwasa, T.; Kaneko, R.; Negishi, Y. J. Phys. Chem. C 2020, 124 (40), 22304. doi: 10.1021/acs.jpcc.0c06858  doi: 10.1021/acs.jpcc.0c06858

    21. [21]

      Ito, E.; Ito, S.; Takano, S.; Nakamura, T.; Tsukuda, T. JACS AU 2022, 2 (11), 2627. doi: 10.1021/jacsau.2c00519  doi: 10.1021/jacsau.2c00519

    22. [22]

      Yao, C.; Chen, J.; Li, M.-B.; Liu, L.; Yang, J.; Wu, Z. Nano Lett. 2015, 15 (2), 1281. doi: 10.1021/nl504477t  doi: 10.1021/nl504477t

    23. [23]

      Kzan, R.; Müller, U.; Bürgi, T. Nanoscale 2019, 11 (6), 2938. doi: 10.1039/C8NR09214A  doi: 10.1039/C8NR09214A

    24. [24]

      Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Acc. Chem. Res. 2018, 51 (12), 3094. doi: 10.1021/acs.accounts.8b00412  doi: 10.1021/acs.accounts.8b00412

    25. [25]

      Sun, Y.; Cheng, X.; Zhang, Y.; Tang, A.; Cai, X.; Liu, X.; Zhu, Y. Nanoscale 2020, 12 (35), 18004. doi: 10.1039/D0NR04871B  doi: 10.1039/D0NR04871B

    26. [26]

      Yao, C.; Lin, Y. J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-H.; Wu, Z. J. Am. Chem. Soc. 2015, 137 (49), 15350. doi: 10.1021/jacs.5b09627  doi: 10.1021/jacs.5b09627

    27. [27]

      Zheng, Y.; Jiang, H.; Wang, X. Acta Phys.-Chim. Sin. 2018, 34 (7), 740.  doi: 10.3866/PKU.WHXB201712111

    28. [28]

      Zou, J.; Fei, W.; Qiao, Y.; Yang, Y.; He, Z.; Feng, L.; Li, M.-B.; Wu, Z. Chin. Chem. Lett. 2023, 34 (4), 107660. doi: 10.1016/j.cclet.2022.07.003  doi: 10.1016/j.cclet.2022.07.003

    29. [29]

      Tang, L.; Ma, A.; Zhang, C.; Liu, X.; Wang, S.; Jin, R. Angew. Chem. Int. Ed. 2021, 133 (33), 18113. doi: 10.1002/ange.202106804  doi: 10.1002/ange.202106804

    30. [30]

      Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. Chem. Sci. 2021, 12 (38), 12819. doi: 10.1039/D1SC03679C  doi: 10.1039/D1SC03679C

    31. [31]

      Du, Y.; Guan, Z.-J.; Wen, Z.-R.; Lin, Y.-M.; Wang, Q.-M. Chem. Eur. J. 2018, 24 (60), 16029. doi: 10.1002/chem.201886065  doi: 10.1002/chem.201886065

    32. [32]

      Li, Y.; Cowan, M. J.; Zhou, M.; Luo, T.; Jin, R. J. Am. Chem. Soc. 2020, 142 (48), 20426. doi: 10.1021/jacs.0c09110  doi: 10.1021/jacs.0c09110

    33. [33]

      Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. J. Am. Chem. Soc. 2014, 136 (42), 14933. doi: 10.1021/ja507738e  doi: 10.1021/ja507738e

    34. [34]

      Ren, X.; Lin, X.; Fu, X.; Liu, C.; Yan, J.; Huang, J. Acta Phys.-Chim. Sin. 2018, 34 (7), 825.  doi: 10.3866/PKU.WHXB201712013

    35. [35]

      Wu, Z. Angew. Chem. Int. Ed. 2012, 51 (12), 2934. doi: 10.1002/anie.201107822  doi: 10.1002/anie.201107822

    36. [36]

      Wang, M.; Chu, Z.; Yang, J.; Yao, C.; Wu, Z. Chem.-Asian. J. 2014, 9 (4), 1006. doi: 10.1002/asia.201301562  doi: 10.1002/asia.201301562

    37. [37]

      Gan, Z.; Xia, N.; Wu, Z. Acc. Chem. Res. 2018, 51 (11), 2774. doi: 10.1021/acs.accounts.8b00374  doi: 10.1021/acs.accounts.8b00374

    38. [38]

      Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2019, 132 (8), 3097. doi: 10.1002/ange.201912845  doi: 10.1002/ange.201912845

    39. [39]

      Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem.-Eur. J. 2009, 15 (39), doi: 10.1002/chem.200901425  doi: 10.1002/chem.200901425

    40. [40]

      Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M. Angew. Chem. Int. Ed. 2015, 54 (20), 5977. doi: 10.1002/anie.201500590  doi: 10.1002/anie.201500590

    41. [41]

      Kang, X.; Xiang, J.; Lv, Y.; Du, W.; Yu, H.; Wang, S.; Zhu, M. Chem. Mater. 2017, 29 (16), 6856. doi: 10.1021/acs.chemmater.7b02015  doi: 10.1021/acs.chemmater.7b02015

    42. [42]

      Liu, C.; Ren, X.; Lin, F.; Fu, X.; Lin, X.; Li, T.; Sun, K.; Huang, J. Angew. Chem. Int. Ed. 2019, 58 (33), 11335. doi: 10.1002/anie.201904612  doi: 10.1002/anie.201904612

    43. [43]

      Song, Y.; Chai, J.; Abroshan, H.; Kang, X.; Kim, H.; Zhu, M.; Jin, R. Chem. Mater. 2017, 29 (7), 3055. doi: 10.1021/acs.chemmater.7b00058  doi: 10.1021/acs.chemmater.7b00058

    44. [44]

      Zhao, Y.; Zhuang, S.; Liao, L.; Wang, C.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Wu, Z. J. Am. Chem. Soc. 2020, 142 (2), 973. doi: 10.1021/jacs.9b11017  doi: 10.1021/jacs.9b11017

    45. [45]

      Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M. Angew. Chem. Int. Ed. 2015, 127 (20), 6075. doi: 10.1002/ange.201500590  doi: 10.1002/ange.201500590

    46. [46]

      Li, H.; Zhou, C.; Wang, E.; Kang, X.; Xu, W.; Zhu, M. Chem. Commun. 2022, 58 (33), 5092. doi: 10.1039/D2CC00987K  doi: 10.1039/D2CC00987K

    47. [47]

      Yang, Y.; Chen, C.; X, G.-Y.; Yuan, J.; Ye, S.-F.; Chen, L.; Lv, Q.-L.; Luo, G.; Yang, J.; Li, M.-B.; et al. J. Catal. 2021, 401, 206. doi: 10.1016/j.jcat2021.07.023  doi: 10.1016/j.jcat2021.07.023

    48. [48]

      Zhu, M.; Wang, P.; Yan, N.; Chai, X.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; et al. Angew. Chem. Int. Ed. 2018, 57 (17), 4500. doi: 10.1002/anie.201800877  doi: 10.1002/anie.201800877

    49. [49]

      Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. L. Angew. Chem. Int. Ed. 2021, 60 (41), 22293. doi: 10.1002/anie.202106311  doi: 10.1002/anie.202106311

    50. [50]

      Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135 (49), 18264. doi: 10.1021/ja409177s  doi: 10.1021/ja409177s

    51. [51]

      Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc. 2008, 130 (4), 1138. doi: 10.1021/ja0782448  doi: 10.1021/ja0782448

    52. [52]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130 (18), 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    53. [53]

      Fan, W.; Yang, Y.; You, Q.; Li, J.; Deng, H.; Yan, N.; Wu, Z. J. Phys. Chem. C 2023, 127 (1), 816. doi: 10.1021/acs.jpcc.2c07678  doi: 10.1021/acs.jpcc.2c07678

    54. [54]

      Zhuang, B.; Jin, Z.; Tian, D.; Zhu, L.; Zeng, L.; Fan, J.; Lou, Z.; Li, W. Acta Phys.-Chim. Sin. 2023, 39 (1), 2209007.  doi: 10.3866/PKU.WHXB202209007

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    6. [6]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    7. [7]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    10. [10]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1)
  • Abstract views(290)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return