Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals
- Corresponding author: Shengwei Liu, liushw6@mail.sysu.edu.cn
Citation:
Xudong Lv, Tao Shao, Junyan Liu, Meng Ye, Shengwei Liu. Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals[J]. Acta Physico-Chimica Sinica,
;2024, 40(5): 230502.
doi:
10.3866/PKU.WHXB202305028
Chen, Y.; Chen, C.; Cao, X.; Wang, Z.; Zhang, N.; Liu, T. Acta Phys. -Chim. Sin. 2023, 39, 2212053. doi: 10.3866/PKU.WHXB202212053
doi: 10.3866/PKU.WHXB202212053
Han, B. Acta Phys. -Chim. Sin. 2022, 38, 2012011. doi: 10.3866/PKU.WHXB202012011
doi: 10.3866/PKU.WHXB202012011
Liu, Z.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2012024. doi: 10.3866/PKU.WHXB202012024
doi: 10.3866/PKU.WHXB202012024
Shi, Y.; Hou, M.; Li, J.; Li, L.; Zhang, Z. Acta Phys. -Chim. Sin. 2022, 38, 2206020. doi: 10.3866/PKU.WHXB202206020
doi: 10.3866/PKU.WHXB202206020
Yuan, Q.; Yang, H.; Xie, M.; Cheng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010040. doi: 10.3866/PKU.WHXB202010040
doi: 10.3866/PKU.WHXB202010040
Liang, Y.; Wu, X.; Liu, X.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2022, 304, 120978. doi: 10.1016/j.apcatb.2021.120978
doi: 10.1016/j.apcatb.2021.120978
Ye, M.; Shao, T.; Liu, J.; Li, C.; Song, B.; Liu, S. Appl. Surf. Sci. 2023, 622, 156981. doi: 10.1016/j.apsusc.2023.156981
doi: 10.1016/j.apsusc.2023.156981
Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Nano Today 2018, 21, 41. doi: 10.1016/j.nantod.2018.05.001
doi: 10.1016/j.nantod.2018.05.001
Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503
doi: 10.1038/ncomms14503
Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825. doi: 10.1016/j.cej.2021.128825
doi: 10.1016/j.cej.2021.128825
Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282
doi: 10.1002/anie.201601282
Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. Adv. Energy Mater. 2019, 9, 1803151. doi: 10.1002/aenm.201803151
doi: 10.1002/aenm.201803151
Yu, N.; Cao, W.; Huttula, M.; Kayser, Y.; Hoenicke, P.; Beckhoff, B.; Lai, F.; Dong, R.; Sun, H.; Geng, B. Appl. Catal. B: Environ. 2020, 261, 118193. doi: 10.1016/j.apcatb.2019.118193
doi: 10.1016/j.apcatb.2019.118193
Llorente, M. J.; Nguyen, B. H.; Kubiak, C. P.; Moeller, K. D. J. Am. Chem. Soc. 2016, 138, 15110. doi: 10.1021/jacs.6b08667
doi: 10.1021/jacs.6b08667
Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6
doi: 10.1038/s41560-019-0374-6
Zhang, S.; Zhuo, Y.; Ezugwu, C. I.; Wang, C. C.; Li, C.; Liu, S. Environ. Sci. Technol. 2021, 55, 8341. doi: 10.1021/acs.est.1c01277
doi: 10.1021/acs.est.1c01277
Zhuo, Y.; Guo, X.; Cai, W.; Shao, T.; Xia, D.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2023, 333, 122789. doi: 10.1016/j.apcatb.2023.122789
doi: 10.1016/j.apcatb.2023.122789
Li, S.; Ezugwu, C. I.; Zhang, S.; Xiong, Y.; Liu, S. Appl. Surf. Sci. 2019, 487, 260. doi: 10.1016/j.apsusc.2019.05.083
doi: 10.1016/j.apsusc.2019.05.083
Ezugwu, C. I.; Zhang, S.; Li, S.; Shi, S.; Li, C.; Verpoort, F.; Yu, J.; Liu, S. Environ. Sci. Nano 2019, 6, 2931. doi: 10.1039/c9en00871c
doi: 10.1039/c9en00871c
Silva, A. M. T.; Castelo-Branco, I. M.; Quinta-Ferreira, R. M.; Levec, J. Chem. Eng. Sci. 2003, 58, 963. doi: 10.1016/s0009-2509(02)00636-x
doi: 10.1016/s0009-2509(02)00636-x
Mei, X.; Guo, Z.; Liu, J.; Bi, S.; Li, P.; Wang, Y.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. Chem. Eng. J. 2019, 372, 673. doi: 10.1016/j.cej.2019.04.184
doi: 10.1016/j.cej.2019.04.184
Li, G.; Han, G.; Wang, L.; Cui, X.; Moehring, N. K.; Kidambi, P. R.; Jiang, D. E.; Sun, Y. Nat. Commun. 2023, 14, 525. doi: 10.1038/s41467-023-36142-7
doi: 10.1038/s41467-023-36142-7
Liao, W.; Chen, Y. -W.; Liao, Y. -C.; Lin, X. -Y.; Yau, S.; Shyue, J. -J.; Wu, S. -Y.; Chen, H. -T. Electrochim. Acta 2020, 333, 135542. doi: 10.1016/j.electacta.2019.135542
doi: 10.1016/j.electacta.2019.135542
Jin, Z.; Li, P.; Liu, G.; Zheng, B.; Yuan, H.; Xiao, D. J. Mater. Chem. A 2013, 1, 14736. doi: 10.1039/c3ta13277c
doi: 10.1039/c3ta13277c
Fukunaga, M. T.; Guimarães, J. R.; Bertazzoli, R. Chem. Eng. J. 2008, 136, 236. doi: 10.1016/j.cej.2007.04.006
doi: 10.1016/j.cej.2007.04.006
He, D.; Wang, G.; Liu, G.; Bai, J.; Suo, H.; Zhao, C. J. Alloy. Compd. 2017, 699, 706. doi: 10.1016/j.jallcom.2016.12.398
doi: 10.1016/j.jallcom.2016.12.398
Babakhani, B.; Ivey, D. G. J. Power Sources 2011, 196, 10762. doi: 10.1016/j.jpowsour.2011.08.102
doi: 10.1016/j.jpowsour.2011.08.102
Sun, M.; Fang, L. M.; Liu, J. Q.; Zhang, F.; Zhai, L. F. Chemosphere 2019, 234, 269. doi: 10.1016/j.chemosphere.2019.06.083
doi: 10.1016/j.chemosphere.2019.06.083
Wang, Z.; Jia, H.; Liu, Z.; Peng, Z.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. J. Hazard. Mater. 2021, 413, 125285. doi: 10.1016/j.jhazmat.2021.125285
doi: 10.1016/j.jhazmat.2021.125285
Guan, S.; Huang, Q.; Ma, J.; Li, W.; Ogunbiyi, A. T.; Zhou, Z.; Chen, K.; Zhang, Q. Ind. Eng. Chem. Res. 2019, 59, 596. doi: 10.1021/acs.iecr.9b05191
doi: 10.1021/acs.iecr.9b05191
Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. ACS Catal. 2017, 7, 1749. doi: 10.1021/acscatal.6b03147
doi: 10.1021/acscatal.6b03147
Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K. Surf. Sci. 2016, 654, 56. doi: 10.1016/j.susc.2016.08.006
doi: 10.1016/j.susc.2016.08.006
Ren, D.; Fong, J.; Yeo, B. S. Nat. Commun. 2018, 9, 925. doi: 10.1038/s41467-018-03286-w
doi: 10.1038/s41467-018-03286-w
Hu, X.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. -M.; Welter, E.; Lamagni, P.; Buh, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 6255. doi: 10.1021/acscatal.8b01022
doi: 10.1021/acscatal.8b01022
Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.1021/ja309317u
doi: 10.1021/ja309317u
Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060
doi: 10.1038/nature19060
Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. Appl. Catal. B: Environ. 2017, 204, 147. doi: 10.1016/j.apcatb.2016.11.036
doi: 10.1016/j.apcatb.2016.11.036
Montoya, J. H.; Shi, C.; Chan, K.; Norskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722
doi: 10.1021/acs.jpclett.5b00722
Jin, L.; Seifitokaldani, A. Catalysts 2020, 10, 481. doi: 10.3390/catal10050481
doi: 10.3390/catal10050481
Rong, S.; He, T.; Zhang, P. Appl. Catal. B: Environ. 2020, 267, 118375. doi: 10.1016/j.apcatb.2019.118375
doi: 10.1016/j.apcatb.2019.118375
Hasanzadeh, M.; Khalilzadeh, B.; Shadjou, N.; Karim-Nezhad, G.; Saghatforoush, L.; Kazeman, I.; Abnosi, M. H. Electroanalysis 2010, 22, 168. doi: 10.1002/elan.200900294
doi: 10.1002/elan.200900294
Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464-21472. doi: 10.1002/anie.202107510
doi: 10.1002/anie.202107510
Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J.; Dismukes, G. C. ACS Catal. 2016, 6, 2089. doi: 10.1021/acscatal.6b00099
doi: 10.1021/acscatal.6b00099
Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Appl. Catal. B: Environ. 2020, 260, 118210. doi: 10.1016/j.apcatb.2019.118210
doi: 10.1016/j.apcatb.2019.118210
Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551
doi: 10.1002/anie.202014551
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313
doi: 10.1038/nmat3313
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005