Citation: Xudong Lv, Tao Shao, Junyan Liu, Meng Ye, Shengwei Liu. Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230502. doi: 10.3866/PKU.WHXB202305028 shu

Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals

  • Corresponding author: Shengwei Liu, liushw6@mail.sysu.edu.cn
  • Received Date: 15 May 2023
    Revised Date: 27 May 2023
    Accepted Date: 27 May 2023
    Available Online: 25 June 2023

    Fund Project: the National Natural Science Foundation of China 51872341the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program, China 2019TQ05L196the Science and Technology Planning Project of Guangdong Province, China 2021A1515010147

  • Due to rapid industrial development and human activities, CO2 emissions have led to serious environmental/ecological problems and climate changes such as global warming. Due to this situation, achieving carbon neutrality has become an urgent mission to improve the future of mankind. The use of the electrocatalytic CO2 reduction reaction (CO2RR) to produce higher-value fuels and chemicals is an effective strategy for reducing CO2 emissions and easing the energy crisis. The water oxidation half-reaction (WOR), which occurs at the anode in a traditional CO2RR system, typically suffers from slow kinetics, a large overpotential, and high energy consumption. The organic pollutant formaldehyde (HCHO) is oxidized into industrial materials (such as formic acid) under neutral conditions, which is of great significance for the sustainable production of energy and lessening environmental pollution. In addition, the number of electron transfers involved and the required potential for the HCHO oxidation half-reaction (FOR) are smaller than those of WOR, suggesting that FOR could potentially replace WOR as a coupling reaction with CO2 reduction. In this study, FOR at a MnO2/CP anode is introduced to produce a novel paired CO2RR/FOR system. The current density and generation rate of CO2RR products in this paired CO2RR/FOR system are generally larger than those of conventional CO2RR/WOR systems at the same applied potential. Moreover, in paired CO2RR/FOR systems, HCHO can be selectively converted into HCOOH at certain applied potentials. Nearly 90% of the HCHO can be selectively converted to HCOOH with a conversion efficiency of about 48% at a cell voltage of 3.5 V in a two-electrode paired CO2RR/FOR system. More significantly, under a different working current, the potentials required for FOR are systemically smaller than those for WOR. At −10 mA∙cm−2, the cell voltage of the paired CO2RR/FOR system can be reduced by 210 mV, and the required electric energy for the paired CO2RR/FOR system can be reduced by 45.13% compared with the sum of single CO2RR and FOR systems. Notably, when a commercial polysilicon solar cell is used as the power supply, improvements in the current density, the generation rate of CO2RR products, and the HCHO to HCOOH selectivity can be still achieved in the paired CO2RR/FOR system. The present work will inspire further studies for developing novel paired CO2RR systems for the cost-effective, simultaneous conversion of CO2 and organic pollutants into valuable chemicals.
  • 加载中
    1. [1]

      Chen, Y.; Chen, C.; Cao, X.; Wang, Z.; Zhang, N.; Liu, T. Acta Phys. -Chim. Sin. 2023, 39, 2212053. doi: 10.3866/PKU.WHXB202212053  doi: 10.3866/PKU.WHXB202212053

    2. [2]

      Han, B. Acta Phys. -Chim. Sin. 2022, 38, 2012011. doi: 10.3866/PKU.WHXB202012011  doi: 10.3866/PKU.WHXB202012011

    3. [3]

      Liu, Z.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2012024. doi: 10.3866/PKU.WHXB202012024  doi: 10.3866/PKU.WHXB202012024

    4. [4]

      Shi, Y.; Hou, M.; Li, J.; Li, L.; Zhang, Z. Acta Phys. -Chim. Sin. 2022, 38, 2206020. doi: 10.3866/PKU.WHXB202206020  doi: 10.3866/PKU.WHXB202206020

    5. [5]

      Yuan, Q.; Yang, H.; Xie, M.; Cheng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010040. doi: 10.3866/PKU.WHXB202010040  doi: 10.3866/PKU.WHXB202010040

    6. [6]

      Liang, Y.; Wu, X.; Liu, X.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2022, 304, 120978. doi: 10.1016/j.apcatb.2021.120978  doi: 10.1016/j.apcatb.2021.120978

    7. [7]

      Ye, M.; Shao, T.; Liu, J.; Li, C.; Song, B.; Liu, S. Appl. Surf. Sci. 2023, 622, 156981. doi: 10.1016/j.apsusc.2023.156981  doi: 10.1016/j.apsusc.2023.156981

    8. [8]

      Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Nano Today 2018, 21, 41. doi: 10.1016/j.nantod.2018.05.001  doi: 10.1016/j.nantod.2018.05.001

    9. [9]

      Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503  doi: 10.1038/ncomms14503

    10. [10]

      Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825. doi: 10.1016/j.cej.2021.128825  doi: 10.1016/j.cej.2021.128825

    11. [11]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    12. [12]

      Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. Adv. Energy Mater. 2019, 9, 1803151. doi: 10.1002/aenm.201803151  doi: 10.1002/aenm.201803151

    13. [13]

      Yu, N.; Cao, W.; Huttula, M.; Kayser, Y.; Hoenicke, P.; Beckhoff, B.; Lai, F.; Dong, R.; Sun, H.; Geng, B. Appl. Catal. B: Environ. 2020, 261, 118193. doi: 10.1016/j.apcatb.2019.118193  doi: 10.1016/j.apcatb.2019.118193

    14. [14]

      Llorente, M. J.; Nguyen, B. H.; Kubiak, C. P.; Moeller, K. D. J. Am. Chem. Soc. 2016, 138, 15110. doi: 10.1021/jacs.6b08667  doi: 10.1021/jacs.6b08667

    15. [15]

      Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6  doi: 10.1038/s41560-019-0374-6

    16. [16]

      Zhang, S.; Zhuo, Y.; Ezugwu, C. I.; Wang, C. C.; Li, C.; Liu, S. Environ. Sci. Technol. 2021, 55, 8341. doi: 10.1021/acs.est.1c01277  doi: 10.1021/acs.est.1c01277

    17. [17]

      Zhuo, Y.; Guo, X.; Cai, W.; Shao, T.; Xia, D.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2023, 333, 122789. doi: 10.1016/j.apcatb.2023.122789  doi: 10.1016/j.apcatb.2023.122789

    18. [18]

      Li, S.; Ezugwu, C. I.; Zhang, S.; Xiong, Y.; Liu, S. Appl. Surf. Sci. 2019, 487, 260. doi: 10.1016/j.apsusc.2019.05.083  doi: 10.1016/j.apsusc.2019.05.083

    19. [19]

      Ezugwu, C. I.; Zhang, S.; Li, S.; Shi, S.; Li, C.; Verpoort, F.; Yu, J.; Liu, S. Environ. Sci. Nano 2019, 6, 2931. doi: 10.1039/c9en00871c  doi: 10.1039/c9en00871c

    20. [20]

      Silva, A. M. T.; Castelo-Branco, I. M.; Quinta-Ferreira, R. M.; Levec, J. Chem. Eng. Sci. 2003, 58, 963. doi: 10.1016/s0009-2509(02)00636-x  doi: 10.1016/s0009-2509(02)00636-x

    21. [21]

      Mei, X.; Guo, Z.; Liu, J.; Bi, S.; Li, P.; Wang, Y.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. Chem. Eng. J. 2019, 372, 673. doi: 10.1016/j.cej.2019.04.184  doi: 10.1016/j.cej.2019.04.184

    22. [22]

      Li, G.; Han, G.; Wang, L.; Cui, X.; Moehring, N. K.; Kidambi, P. R.; Jiang, D. E.; Sun, Y. Nat. Commun. 2023, 14, 525. doi: 10.1038/s41467-023-36142-7  doi: 10.1038/s41467-023-36142-7

    23. [23]

      Liao, W.; Chen, Y. -W.; Liao, Y. -C.; Lin, X. -Y.; Yau, S.; Shyue, J. -J.; Wu, S. -Y.; Chen, H. -T. Electrochim. Acta 2020, 333, 135542. doi: 10.1016/j.electacta.2019.135542  doi: 10.1016/j.electacta.2019.135542

    24. [24]

      Jin, Z.; Li, P.; Liu, G.; Zheng, B.; Yuan, H.; Xiao, D. J. Mater. Chem. A 2013, 1, 14736. doi: 10.1039/c3ta13277c  doi: 10.1039/c3ta13277c

    25. [25]

      Fukunaga, M. T.; Guimarães, J. R.; Bertazzoli, R. Chem. Eng. J. 2008, 136, 236. doi: 10.1016/j.cej.2007.04.006  doi: 10.1016/j.cej.2007.04.006

    26. [26]

      He, D.; Wang, G.; Liu, G.; Bai, J.; Suo, H.; Zhao, C. J. Alloy. Compd. 2017, 699, 706. doi: 10.1016/j.jallcom.2016.12.398  doi: 10.1016/j.jallcom.2016.12.398

    27. [27]

      Babakhani, B.; Ivey, D. G. J. Power Sources 2011, 196, 10762. doi: 10.1016/j.jpowsour.2011.08.102  doi: 10.1016/j.jpowsour.2011.08.102

    28. [28]

      Sun, M.; Fang, L. M.; Liu, J. Q.; Zhang, F.; Zhai, L. F. Chemosphere 2019, 234, 269. doi: 10.1016/j.chemosphere.2019.06.083  doi: 10.1016/j.chemosphere.2019.06.083

    29. [29]

      Wang, Z.; Jia, H.; Liu, Z.; Peng, Z.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. J. Hazard. Mater. 2021, 413, 125285. doi: 10.1016/j.jhazmat.2021.125285  doi: 10.1016/j.jhazmat.2021.125285

    30. [30]

      Guan, S.; Huang, Q.; Ma, J.; Li, W.; Ogunbiyi, A. T.; Zhou, Z.; Chen, K.; Zhang, Q. Ind. Eng. Chem. Res. 2019, 59, 596. doi: 10.1021/acs.iecr.9b05191  doi: 10.1021/acs.iecr.9b05191

    31. [31]

      Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. ACS Catal. 2017, 7, 1749. doi: 10.1021/acscatal.6b03147  doi: 10.1021/acscatal.6b03147

    32. [32]

      Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K. Surf. Sci. 2016, 654, 56. doi: 10.1016/j.susc.2016.08.006  doi: 10.1016/j.susc.2016.08.006

    33. [33]

      Ren, D.; Fong, J.; Yeo, B. S. Nat. Commun. 2018, 9, 925. doi: 10.1038/s41467-018-03286-w  doi: 10.1038/s41467-018-03286-w

    34. [34]

      Hu, X.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. -M.; Welter, E.; Lamagni, P.; Buh, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 6255. doi: 10.1021/acscatal.8b01022  doi: 10.1021/acscatal.8b01022

    35. [35]

      Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.1021/ja309317u  doi: 10.1021/ja309317u

    36. [36]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    37. [37]

      Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. Appl. Catal. B: Environ. 2017, 204, 147. doi: 10.1016/j.apcatb.2016.11.036  doi: 10.1016/j.apcatb.2016.11.036

    38. [38]

      Montoya, J. H.; Shi, C.; Chan, K.; Norskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722  doi: 10.1021/acs.jpclett.5b00722

    39. [39]

      Jin, L.; Seifitokaldani, A. Catalysts 2020, 10, 481. doi: 10.3390/catal10050481  doi: 10.3390/catal10050481

    40. [40]

      Rong, S.; He, T.; Zhang, P. Appl. Catal. B: Environ. 2020, 267, 118375. doi: 10.1016/j.apcatb.2019.118375  doi: 10.1016/j.apcatb.2019.118375

    41. [41]

      Hasanzadeh, M.; Khalilzadeh, B.; Shadjou, N.; Karim-Nezhad, G.; Saghatforoush, L.; Kazeman, I.; Abnosi, M. H. Electroanalysis 2010, 22, 168. doi: 10.1002/elan.200900294  doi: 10.1002/elan.200900294

    42. [42]

      Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464-21472. doi: 10.1002/anie.202107510  doi: 10.1002/anie.202107510

    43. [43]

      Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J.; Dismukes, G. C. ACS Catal. 2016, 6, 2089. doi: 10.1021/acscatal.6b00099  doi: 10.1021/acscatal.6b00099

    44. [44]

      Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Appl. Catal. B: Environ. 2020, 260, 118210. doi: 10.1016/j.apcatb.2019.118210  doi: 10.1016/j.apcatb.2019.118210

    45. [45]

      Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551  doi: 10.1002/anie.202014551

    46. [46]

      Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313  doi: 10.1038/nmat3313

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(1)
  • Abstract views(237)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return