Citation: Jingyi Xie, Qianxi Lü, Weizhen Qiao, Chenyu Bu, Yusheng Zhang, Xuejun Zhai, Renqing Lü, Yongming Chai, Bin Dong. Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230502. doi: 10.3866/PKU.WHXB202305021 shu

Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution

  • Corresponding author: Yongming Chai, ymchai@upc.edu.cn Bin Dong, dongbin@upc.edu.cn
  • Received Date: 9 May 2023
    Revised Date: 8 July 2023
    Accepted Date: 10 July 2023
    Available Online: 17 July 2023

    Fund Project: the National Natural Science Foundation of China 52174283Innovation Fund Project for Graduate Student of China University of Petroleum (East China) 22CX04023A

  • Co-based oxides have shown promise as catalysts for the oxygen evolution reaction (OER), as evidenced by experimental and theoretical studies. However, these common Co-based catalysts suffer from poor stability in acidic environments, making them susceptible to corrosion in acid electrolytes. Consequently, developing OER catalysts that can maintain both activity and stability under strongly acidic conditions is a challenging task for large-scale industrial hydrogen production applications. To address this challenge, the incorporation of manganese (Mn) into the spinel lattice of Co3O4 (CoMn1O) has been proposed, resulting in a defect-rich catalyst with improved lifetime in acidic electrolytes. The crystalline phase structures and chemical valence states were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive spectroscopy (EDS) elemental maps. The introduction of Mn led to the generation of a significant number of defects due to changes in the local crystal structure. Additionally, as the amount of Mn atoms increased, a red shift was observed in the Co 2p spectrum, indicating an increase in the overall valence of Co and the formation of more stable Co―O bonds. Moreover, when the Mn-to-Co ratio reached 1 (CoMn1O), the resulting catalyst exhibited promising OER activity, with overpotentials of 415 and 552 mV at 10 and 50 mA∙cm−2, respectively. Detailed physical characterization and electrochemical tests demonstrated that CoMn1O exhibited over four times the stability of Mn-free Co3O4 (CoMn0O). This enhanced stability can be attributed to the introduction of Mn, which promotes electron density bias of Co towards O, resulting in the formation of more stable Co―O bonds. Mn also facilitates acidic oxygen evolution by delaying the oxidation rate of the Co active sites, thereby enhancing stability. Density functional theory (DFT) calculations were further employed to analyze the electronic structures of CoMn1O and CoMn0O. The d-band center of Co 3d (εd) in CoMn1O shifted closer to the Fermi level (EF) compared to that of CoMn0O, indicating a reduced reaction energy barrier for CoMn1O and enhanced bonding interaction with OER intermediates. Overall, this work presents a promising strategy for achieving highly efficient and stable acidic oxygen evolution using noble-metal-free electrocatalysts.
  • 加载中
    1. [1]

      Wang, X.; Zhong, H.; Xi, S.; Lee, W. S. V.; Xue, J. Adv. Mater. 2022, 34, 2107956. doi: 10.1002/adma.202107956  doi: 10.1002/adma.202107956

    2. [2]

      Liu, W.; Li, X.; Wang, Y.; Yang, D.; Guo, Z.; Liu, M.; Wang, J. J. Energy Chem. 2023, 81, 339. doi: 10.1016/j.jechem.2023.02.032  doi: 10.1016/j.jechem.2023.02.032

    3. [3]

      Wang, F. L.; Xu, N.; Yu, C. J.; Xie, J. Y.; Dong, B.; Zhang, X. Y.; Dong, Y. W.; Zhou, Y. L.; Chai, Y. M. Appl. Catal. B 2023, 330, 122633. doi: 10.1016/j.apcatb.2023.122633  doi: 10.1016/j.apcatb.2023.122633

    4. [4]

      Liu, W.; Wang, Y.; Qi, K.; Wang, Y.; Wen, F.; Wang, J. J. Alloy. Compd. 2023, 933, 167789. doi: 10.1016/j.jallcom.2022.167789  doi: 10.1016/j.jallcom.2022.167789

    5. [5]

      Wang, F. L.; Zhang, X. Y.; Zhou, J. C.; Shi, Z. N.; Dong, B.; Xie, J. Y.; Dong, Y. W.; Yu, J. F.; Chai, Y. M. Inorg. Chem. Front. 2022, 9, 2068. doi: 10.1039/D2QI00003B  doi: 10.1039/D2QI00003B

    6. [6]

      Zhu, K.; Shi, F.; Zhu, X.; Yang, W. Nano Energy 2020, 73, 104761. doi: 10.1016/j.nanoen.2020.104761  doi: 10.1016/j.nanoen.2020.104761

    7. [7]

      Jiang, J.; Zhou, X. L.; Lv, H. G.; Yu, H. Q.; Yu, Y. Adv. Funct. Mater. 2023, 33, 2212160. doi: 10.1002/adfm.202212160  doi: 10.1002/adfm.202212160

    8. [8]

      Chen, R.; Hung, S. F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H. B.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Adv. Mater. 2019, 31, 1903909. doi: 10.1002/adma.201903909  doi: 10.1002/adma.201903909

    9. [9]

      Kibsgaard, J.; Chorkendorff, I. Nat. Energy 2019, 4, 430. doi: 10.1038/s41560-019-0407-1  doi: 10.1038/s41560-019-0407-1

    10. [10]

      Blasco Ahicart, M.; Soriano López, J.; Carbó, J. J.; Poblet, J. M.; Galan Mascaros, J. R. Nat. Chem. 2018, 10, 24. doi: 10.1038/nchem.2874  doi: 10.1038/nchem.2874

    11. [11]

      Kim, M.; Park, J.; Wang, M.; Wang, Q.; Kim, M. J.; Kim, J. Y.; Cho, H. S.; Kim, C. H.; Feng, Z.; Kim, B. H.; et al. Appl. Catal. B 2022, 302, 120834. doi: 10.1016/j.apcatb.2021.120834  doi: 10.1016/j.apcatb.2021.120834

    12. [12]

      Xia, T.; Liu, C.; Lu, Y.; Jiang, W.; Li, H.; Ma, Y.; Wu, Y.; Che, G. Appl. Surf. Sci. 2022, 605, 154727. doi: 10.1016/j.apsusc.2022.154727  doi: 10.1016/j.apsusc.2022.154727

    13. [13]

      Choi, S.; Park, J.; Kabiraz, M. K.; Hong, Y.; Kwon, T.; Kim, T.; Oh, A.; Baik, H.; Lee, M.; Paek, S. M.; et al. Adv. Funct. Mater. 2020, 30, 2003935. doi: 10.1002/adfm.202003935  doi: 10.1002/adfm.202003935

    14. [14]

      Zhu, J.; Xie, M.; Chen, Z.; Lyu, Z.; Chi, M.; Jin, W.; Xia, Y. Adv. Energy Mater. 2020, 10, 1904114. doi: 10.1002/aenm.201904114  doi: 10.1002/aenm.201904114

    15. [15]

      Joo, J.; Park, Y.; Kim, J.; Kwon, T.; Jun, M.; Ahn, D.; Baik, H.; Jang, J. H.; Kim, J. Y.; Lee, K. Small Methods 2022, 6, 2101236. doi: 10.1002/smtd.202101236  doi: 10.1002/smtd.202101236

    16. [16]

      Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; et al. Angew. Chem. Int. Ed. 2014, 53, 14016. doi: 10.1002/anie.201406455  doi: 10.1002/anie.201406455

    17. [17]

      Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Chem. Sci. 2015, 6, 3321. doi: 10.1039/C5SC00518C  doi: 10.1039/C5SC00518C

    18. [18]

      Su, H.; Zhao, X.; Cheng, W.; Zhang, H.; Li, Y.; Zhou, W.; Liu, M.; Liu, Q. ACS Energy Lett. 2019, 4, 1816. doi: 10.1021/acsenergylett.9b01129  doi: 10.1021/acsenergylett.9b01129

    19. [19]

      Yang, S.; Zhang, T.; Li, G.; Yang, L.; Lee, J. Y. Energy Storage Mater. 2017, 6, 140. doi: 10.1016/j.ensm.2016.11.001  doi: 10.1016/j.ensm.2016.11.001

    20. [20]

      Wang, H.; Zhang, X.; Yin, F.; Chu, W.; Chen, B. J. Mater. Chem. A 2020, 8, 22111. doi: 10.1039/D0TA04331A  doi: 10.1039/D0TA04331A

    21. [21]

      Natarajan, K.; Munirathinam, E.; Yang, T. C. K. ACS Appl. Mater. Interfaces 2021, 13, 27140. doi: 10.1021/acsami.1c07267  doi: 10.1021/acsami.1c07267

    22. [22]

      Shang, F.; He, H.; Li, P.; Cai, H.; An, B.; Li, X.; Yang, S.; Sun, Z.; Wang, B. J. Colloid Interface Sci. 2023, 641, 329. doi: 10.1016/j.jcis.2023.03.036  doi: 10.1016/j.jcis.2023.03.036

    23. [23]

      Jiao, F.; Frei, H. Angew. Chem. Int. Ed. 2009, 48, 1841. doi: 10.1002/anie.200805534  doi: 10.1002/anie.200805534

    24. [24]

      Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E. Chem. Mater. 2017, 29, 950. doi: 10.1021/acs.chemmater.6b02879  doi: 10.1021/acs.chemmater.6b02879

    25. [25]

      Frydendal, R.; Paoli, E. A.; Chorkendorff, I.; Rossmeisl, J.; Stephens, I. E. L. Adv. Energy Mater. 2015, 5, 1500991. doi: 10.1002/aenm.201500991  doi: 10.1002/aenm.201500991

    26. [26]

      Li, A.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y.; Jiang, Q.; Li, C.; Han, H.; Nakamura, R. Angew. Chem. Int. Ed. 2019, 58, 5054. doi: 10.1002/anie.201813361  doi: 10.1002/anie.201813361

    27. [27]

      Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K.; et al. Science 2016, 353, 1011. doi: 10.1126/science.aaf5050  doi: 10.1126/science.aaf5050

    28. [28]

      Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K.; et al. ACS Energy Lett. 2021, 6, 1588. doi: 10.1021/acsenergylett.1c00283  doi: 10.1021/acsenergylett.1c00283

    29. [29]

      Strickler, A. L.; Flores, R. A.; King, L. A.; Nørskov, J. K.; Bajdich, M.; Jaramillo, T. F. ACS Appl. Mater. Interfaces 2019, 11, 34059. doi: 10.1021/acsami.9b13697  doi: 10.1021/acsami.9b13697

    30. [30]

      Fan, R. Y.; Zhao, H. Y.; Zhen, Y. N.; Wang, F. G.; Hu, H.; Chai, Y. M.; Dong, B. Fuel 2023, 333, 126361. doi: 10.1016/j.fuel.2022.126361  doi: 10.1016/j.fuel.2022.126361

    31. [31]

      Li, A.; Kong, S.; Guo, C.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q.; Han, H.; Xiao, J.; Nakamura, R. Nat. Catal. 2022, 5, 109. 10. doi: 1038/s41929-021-00732-9

    32. [32]

      Xie, J. Y.; Liu, Z. Z.; Li, J.; Feng, L.; Yang, M.; Ma, Y.; Liu, D. P.; Wang, L.; Chai, Y. M.; Dong, B. J. Energy Chem. 2020, 48, 328. doi: 10.1016/j.jechem.2020.02.031  doi: 10.1016/j.jechem.2020.02.031

    33. [33]

      Rong, C.; Shen, X.; Wang, Y.; Thomsen, L.; Zhao, T.; Li, Y.; Lu, X.; Amal, R.; Zhao, C. Adv. Mater. 2022, 34, 2110103. doi: 10.1002/adma.202110103  doi: 10.1002/adma.202110103

    34. [34]

      Liu, S.; Yin, Y.; Ni, D.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. Energy Storage Mater. 2019, 22, 384. doi: 10.1016/j.ensm.2019.02.014  doi: 10.1016/j.ensm.2019.02.014

    35. [35]

      Silva, A. L.; Esteves, L. M.; Silva, L. P. C.; Ramos, V. S.; Passos, F. B.; Carvalho, N. M. F. RSC Adv. 2022, 12, 26846. doi: 10.1039/D2RA04570B  doi: 10.1039/D2RA04570B

    36. [36]

      Kwong, W. L.; Lee, C. C.; Shchukarev, A.; Messinger, J. Chem. Commun. 2019, 55, 5017. doi: 10.1039/C9CC01369E  doi: 10.1039/C9CC01369E

    37. [37]

      Zhu, Y.; Zhang, T.; An, T.; Zong, Y.; Lee, J. Y. J. Energy Chem. 2020, 49, 8. doi: 10.1016/j.jechem.2020.01.026  doi: 10.1016/j.jechem.2020.01.026

    38. [38]

      Yan, K. L.; Qin, J. F.; Lin, J. H.; Dong, B.; Chi, J. Q.; Liu, Z. Z.; Dai, F. N.; Chai, Y. M.; Liu, C. G. J. Mater. Chem. A 2018, 6, 5678. doi: 10.1039/C8TA00070K  doi: 10.1039/C8TA00070K

    39. [39]

      Yang, S.; Zhan, Y.; Li, J.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8, 3535. doi: 10.1021/acsami.6b00437  doi: 10.1021/acsami.6b00437

    40. [40]

      Niu, S.; Kong, X. P.; Li, S.; Zhang, Y.; Wu, J.; Zhao, W.; Xu, P. Appl. Catal. B 2021, 297, 120442. doi: 10.1016/j.apcatb.2021.120442  doi: 10.1016/j.apcatb.2021.120442

    41. [41]

      Anantharaj, S.; Karthick, K.; Kundu, S. Inorg. Chem. 2019, 58, 8570. doi: 10.1021/acs.inorgchem.9b00868  doi: 10.1021/acs.inorgchem.9b00868

    42. [42]

      Chatti, M.; Gardiner, J. L.; Fournier, M.; Johannessen, B.; Williams, T.; Gengenbach, T. R.; Pai, N.; Nguyen, C.; MacFarlane, D. R.; Hocking, R. K.; et al. Nat. Catal. 2019, 2, 457. doi: 10.1038/s41929-019-0277-8  doi: 10.1038/s41929-019-0277-8

    43. [43]

      Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 2300765. doi: 10.1002/aenm.202300765  doi: 10.1002/aenm.202300765

    44. [44]

      Wang, F. L.; Dong, Y. W.; Yu, C. J.; Dong, B.; Zhang, X. Y.; Fan, R. Y.; Xie, J. Y.; Zhou, Y. N.; Chai, Y. M. Appl. Catal. B 2023, 331, 122660. doi: 10.1016/j.apcatb.2023.122660  doi: 10.1016/j.apcatb.2023.122660

  • 加载中
    1. [1]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(1)
  • Abstract views(803)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return