Citation: Liu Lin, Zemin Sun, Huatian Chen, Lian Zhao, Mingyue Sun, Yitao Yang, Zhensheng Liao, Xinyu Wu, Xinxin Li, Cheng Tang. Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230501. doi: 10.3866/PKU.WHXB202305019 shu

Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production

  • Corresponding author: Zemin Sun, zmsun@mail.bnu.edu.cn Cheng Tang, cheng-net0@tsinghua.edu.cn
  • Received Date: 9 May 2023
    Revised Date: 5 June 2023
    Accepted Date: 7 June 2023
    Available Online: 14 June 2023

    Fund Project: the Natural Science Foundation of Guangdong Province, China 2023A1515010554

  • Hydrogen peroxide (H2O2) is an environmentally friendly oxidant that has been widely used in water treatment, medical disinfection, chemical synthesis, and other industrial applications. However, traditional methods used to produce H2O2 consume significant amounts of energy and generate hazardous by-products, which limit their scope. On-site and on-demand electrocatalytic two-electron water oxidation chemistry is an attractive option for directly producing H2O2 from water; it also avoids the hazardous anthraquinone method, has fewer transportation costs and risks, and is integratable with renewable electricity. Despite these advantages, the two-electron water oxidation reaction (2e WOR) still suffers from poor selectivity and activity due to a lack of mechanistic, material-design, and reactor-engineering understanding. This study summarizes recent advances in H2O2 electrosynthesis technology using the 2e WOR. The catalytic 2e WOR mechanism is first introduced with a focus on selectivity, activity, and stability. This reaction involves the electrocatalytic oxidation of water to produce H2O2, which can be further oxidized to O2. Selectivity is influenced by a variety of factors, including the electrocatalyst, pH, and electrolyte. Various quantitative H2O2 methods are discussed along with in situ characterization studies into the 2e WOR aimed at better understanding the reaction process. Such methods include in situ Fourier-transform infrared spectroscopy and in situ Raman spectroscopy. Researchers are able to identify reaction intermediates and understand reaction mechanisms better using these techniques, thereby providing guidance for the design of more efficient electrocatalysts. In turn, various strategies for preparing high-performance electrocatalysts are summarized, including defect, doping, facet, and interfacial engineering methods. Mechanism-guided multiscale materials engineering can improve the activities and selectivities of electrocatalysts, thereby increasing H2O2 yields. In addition, device-level engineering, especially in relation to reactor and system innovations, is emphasized, which is important for improving reaction efficiency and reducing the cost of the 2e WOR. Finally, current challenges and future opportunities in the 2e WOR H2O2 electrosynthesis field are discussed. More effort directed at improving reaction selectivity, activity, and durability is required, along with exploring suitable application scenarios. The 2e WOR is expected to become a more sustainable and efficient method for producing H2O2 facilitated by continuing progress in the materials science and electrochemical technology fields.
  • 加载中
    1. [1]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Science 2019, 366 (6462), 226. doi: 10.1126/science.aay1844  doi: 10.1126/science.aay1844

    2. [2]

      Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; et al. Nat. Mater. 2013, 12 (12), 1137. doi: 10.1038/nmat3795  doi: 10.1038/nmat3795

    3. [3]

      Shi, X.; Siahrostami, S.; Li, G. L.; Zhang, Y.; Chakthranont, P.; Studt, F.; Jaramillo, T. F.; Zheng, X.; Nørskov, J. K. Nat. Commun. 2017, 8 (1), 701. doi: 10.1038/s41467-017-00585-6  doi: 10.1038/s41467-017-00585-6

    4. [4]

      Park, S. Y.; Abroshan, H.; Shi, X.; Jung, H. S.; Siahrostami, S.; Zheng, X. ACS Energy Lett. 2018, 4 (1), 352. doi: 10.1021/acsenergylett.8b02303  doi: 10.1021/acsenergylett.8b02303

    5. [5]

      Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779  doi: 10.1002/anie.200503779

    6. [6]

      Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60 (36), 19572. doi: 10.1002/anie.202101522  doi: 10.1002/anie.202101522

    7. [7]

      Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S. Z. J. Am. Chem. Soc. 2021, 143 (20), 7819. doi: 10.1021/jacs.1c03135  doi: 10.1021/jacs.1c03135

    8. [8]

      Chen, Z.; Chen, S.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J. K.; Bao, Z.; Jaramillo, T. F. React. Chem. Eng. 2017, 2 (2), 239. doi: 10.1039/c6re00195e  doi: 10.1039/c6re00195e

    9. [9]

      Tang, C.; Jiao, Y.; Shi, B.; Liu, J. N.; Xie, Z.; Chen, X.; Zhang, Q.; Qiao, S. Z. Angew. Chem. Int. Ed. 2020, 59 (23), 9171. doi: 10.1002/anie.202003842  doi: 10.1002/anie.202003842

    10. [10]

      Shi, X.; Back, S.; Gill, T. M.; Siahrostami, S.; Zheng, X. Chem 2021, 7 (1), 38. doi: 10.1016/j.chempr.2020.09.013  doi: 10.1016/j.chempr.2020.09.013

    11. [11]

      Siahrostami, S.; Villegas, S. J.; Bagherzadeh Mostaghimi, A. H.; Back, S.; Farimani, A. B.; Wang, H.; Persson, K. A.; Montoya, J. ACS Catal. 2020, 10 (14), 7495. doi: 10.1021/acscatal.0c01641  doi: 10.1021/acscatal.0c01641

    12. [12]

      Hu, X.; Sun, Z.; Mei, G.; Zhao, X.; Xia, B. Y.; You, B. Adv. Energy Mater. 2022, 12 (32), 2201466. doi: 10.1002/aenm.202201466  doi: 10.1002/aenm.202201466

    13. [13]

      Edwards, J. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2008, 47 (48), 9192. doi: 10.1002/anie.200802818  doi: 10.1002/anie.200802818

    14. [14]

      Gao, M.; Wang, W. -K.; Zheng, Y. -M.; Zhao, Q. -B.; Yu, H. -Q. Chem. Eng. J. 2020, 402, 126171. doi: 10.1016/j.cej.2020.126171  doi: 10.1016/j.cej.2020.126171

    15. [15]

      Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Small 2020, 16 (15), e1902845. doi: 10.1002/smll.201902845  doi: 10.1002/smll.201902845

    16. [16]

      Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. ACS Mater. Lett. 2021, 3 (7), 996. doi: 10.1021/acsmaterialslett.1c00263  doi: 10.1021/acsmaterialslett.1c00263

    17. [17]

      Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Adv. Energy Mater. 2018, 8 (31), 1801909. doi: 10.1002/aenm.201801909  doi: 10.1002/aenm.201801909

    18. [18]

      Zhang, J. -Y.; Xia, C.; Wang, H. -F.; Tang, C. J. Energy Chem. 2022, 67, 432. doi: 10.1016/j.jechem.2021.10.013  doi: 10.1016/j.jechem.2021.10.013

    19. [19]

      Zhao, X.; Yin, Q.; Mao, X.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T. F.; Li, Y.; Li, Y. Nat. Commun. 2022, 13 (1), 2721. doi: 10.1038/s41467-022-30523-0  doi: 10.1038/s41467-022-30523-0

    20. [20]

      Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S.; et al. Nat. Mater. 2020, 19 (4), 436. doi: 10.1038/s41563-019-0571-5  doi: 10.1038/s41563-019-0571-5

    21. [21]

      Wen, Y.; Zhang, T.; Wang, J.; Pan, Z.; Wang, T.; Yamashita, H.; Qian, X.; Zhao, Y. Angew. Chem. Int. Ed. 2022, 61 (35), e202205972. doi: 10.1002/anie.202205972  doi: 10.1002/anie.202205972

    22. [22]

      Zheng, Y. R.; Hu, S.; Zhang, X. L.; Ju, H.; Wang, Z.; Tan, P. J.; Wu, R.; Gao, F. Y.; Zhuang, T.; Zheng, X.; et al. Adv. Mater. 2022, 34 (43), e2205414. doi: 10.1002/adma.202205414  doi: 10.1002/adma.202205414

    23. [23]

      Sun, Y.; Han, L.; Strasser, P. Chem. Soc. Rev. 2020, 49 (18), 6605. doi: 10.1039/d0cs00458h  doi: 10.1039/d0cs00458h

    24. [24]

      Jing, L.; Tang, C.; Tian, Q.; Liu, T.; Ye, S.; Su, P.; Zheng, Y.; Liu, J. ACS Appl. Mater. Interfaces 2021, 13 (33), 39763. doi: 10.1021/acsami.1c11765  doi: 10.1021/acsami.1c11765

    25. [25]

      Zhang, Q.; Zhou, M.; Lang, Z.; Du, X.; Cai, J.; Han, L. Chem. Eng. J. 2021, 413, 127564. doi: 10.1016/j.cej.2020.127564  doi: 10.1016/j.cej.2020.127564

    26. [26]

      Chen, Z.; Geng, S.; Wang, Y.; Wang, Y.; Song, S. Appl. Catal. B: Environ. 2022, 317, 121756. doi: 10.1016/j.apcatb.2022.121756  doi: 10.1016/j.apcatb.2022.121756

    27. [27]

      Siahrostami, S.; Li, G. L.; Viswanathan, V.; Nørskov, J. K. J. Phys. Chem. Lett. 2017, 8 (6), 1157. doi: 10.1021/acs.jpclett.6b02924  doi: 10.1021/acs.jpclett.6b02924

    28. [28]

      Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. RSC Adv. 2017, 7 (75), 47619. doi: 10.1039/c7ra09693c  doi: 10.1039/c7ra09693c

    29. [29]

      Liu, Y.; Niu, Z.; Lu, Y.; Zhang, L.; Yan, K. J. Alloy. Compd. 2018, 735, 654. doi: 10.1016/j.jallcom.2017.11.181  doi: 10.1016/j.jallcom.2017.11.181

    30. [30]

      Zhang, C.; Lu, J.; Liu, C.; Zou, Y.; Yuan, L.; Wang, J.; Yu, C. Environ. Res. 2022, 206, 112290. doi: 10.1016/j.envres.2021.112290  doi: 10.1016/j.envres.2021.112290

    31. [31]

      Kelly, S. R.; Shi, X.; Back, S.; Vallez, L.; Park, S. Y.; Siahrostami, S.; Zheng, X.; Nørskov, J. K. ACS Catal. 2019, 9 (5), 4593. doi: 10.1021/acscatal.8b04873  doi: 10.1021/acscatal.8b04873

    32. [32]

      Jimenez-Villegas, S.; Kelly, S. R.; Siahrostami, S. J. Mater. Chem. A 2022, 10 (11), 6115. doi: 10.1039/d1ta07562d  doi: 10.1039/d1ta07562d

    33. [33]

      Viswanathan, V.; Hansen, H. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6 (21), 4224. doi: 10.1021/acs.jpclett.5b02178  doi: 10.1021/acs.jpclett.5b02178

    34. [34]

      Mavrikis, S.; Goltz, M.; Rosiwal, S.; Wang, L.; Ponce de Leon, C. ChemSusChem 2022, 15 (4), e202102137. doi: 10.1002/cssc.202102137  doi: 10.1002/cssc.202102137

    35. [35]

      Espinoza-Montero, P. J.; Alulema-Pullupaxi, P.; Frontana-Uribe, B. A.; Barrera-Diaz, C. E. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3). doi: 10.1016/j.cossms.2022.100988  doi: 10.1016/j.cossms.2022.100988

    36. [36]

      Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F.; Sun, X.; Siahrostami, S.; Chan, K.; Wang, H. Nat. Catal. 2020, 3 (2), 125. doi: 10.1038/s41929-019-0402-8  doi: 10.1038/s41929-019-0402-8

    37. [37]

      Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. ChemistrySelect 2016, 1 (18), 5721. doi: 10.1002/slct.201601469  doi: 10.1002/slct.201601469

    38. [38]

      Shi, X.; Cai, L.; Choi, I. Y.; Ma, M.; Zhang, K.; Zhao, J.; Kim, J. K.; Kim, J. K.; Zheng, X.; Park, J. H. J. Mater. Chem. A 2018, 6 (40), 19542. doi: 10.1039/c8ta04081h  doi: 10.1039/c8ta04081h

    39. [39]

      Mavrikis, S.; Göltz, M.; Perry, S. C.; Bogdan, F.; Leung, P. K.; Rosiwal, S.; Wang, L.; Ponce de León, C. ACS Energy Lett. 2021, 6 (7), 2369. doi: 10.1021/acsenergylett.1c00904  doi: 10.1021/acsenergylett.1c00904

    40. [40]

      Mounfield, W. P.; Garg, A.; Shao-Horn, Y.; Román-Leshkov, Y. Chem 2018, 4 (1), 18. doi: 10.1016/j.chempr.2017.12.015  doi: 10.1016/j.chempr.2017.12.015

    41. [41]

      Xia, C.; Kim, J. Y.; Wang, H. Nat. Catal. 2020, 3 (8), 605. doi: 10.1038/s41929-020-0486-1  doi: 10.1038/s41929-020-0486-1

    42. [42]

      Gill, T. M.; Vallez, L.; Zheng, X. ACS Energy Lett. 2021, 6 (8), 2854. doi: 10.1021/acsenergylett.1c01264  doi: 10.1021/acsenergylett.1c01264

    43. [43]

      Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. Nano Lett. 2014, 14 (3), 1603. doi: 10.1021/nl500037x  doi: 10.1021/nl500037x

    44. [44]

      Ando, Y.; Tanaka, T. Int. J. Hydrog. Energy 2004, 29 (13), 1349. doi: 10.1016/j.ijhydene.2004.02.001  doi: 10.1016/j.ijhydene.2004.02.001

    45. [45]

      Izgorodin, A.; Izgorodina, E.; MacFarlane, D. R. Energy Environ. Sci. 2012, 5 (11), 9496. doi: 10.1039/c2ee21832a  doi: 10.1039/c2ee21832a

    46. [46]

      Fuku, K.; Sayama, K. Chem. Commun. 2016, 52 (31), 5406. doi: 10.1039/c6cc01605g  doi: 10.1039/c6cc01605g

    47. [47]

      Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7, 11470. doi: 10.1038/ncomms11470  doi: 10.1038/ncomms11470

    48. [48]

      Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. ACS Energy Lett. 2016, 1 (5), 913. doi: 10.1021/acsenergylett.6b00415  doi: 10.1021/acsenergylett.6b00415

    49. [49]

      Kuttassery, F.; Mathew, S.; Sagawa, S.; Remello, S. N.; Thomas, A.; Yamamoto, D.; Onuki, S.; Nabetani, Y.; Tachibana, H.; Inoue, H. ChemSusChem 2017, 10 (9), 1909. doi: 10.1002/cssc.201700322  doi: 10.1002/cssc.201700322

    50. [50]

      Shi, X.; Zhang, Y.; Siahrostami, S.; Zheng, X. Adv. Energy Mater. 2018, 8 (23), 1801158. doi: 10.1002/aenm.201801158  doi: 10.1002/aenm.201801158

    51. [51]

      Zhang, J.; Chang, X.; Luo, Z.; Wang, T.; Gong, J. Chem. Commun. 2018, 54 (51), 7026. doi: 10.1039/c8cc03303j  doi: 10.1039/c8cc03303j

    52. [52]

      Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X.; Nørskov, J.; Jung, H. S.; Siahrostami, S.; Zheng, X. ACS Energy Lett. 2019, 4 (3), 720. doi: 10.1021/acsenergylett.9b00277  doi: 10.1021/acsenergylett.9b00277

    53. [53]

      Liu, Y.; Han, Y.; Zhang, Z.; Zhang, W.; Lai, W.; Wang, Y.; Cao, R. Chem. Sci. 2019, 10 (9), 2613. doi: 10.1039/c8sc04529a  doi: 10.1039/c8sc04529a

    54. [54]

      Kang, T.; Li, B.; Hao, Q.; Gao, W.; Bin, F.; Hui, K. N.; Fu, D.; Dou, B. ACS Sustain. Chem. Eng. 2020, 8 (39), 15005. doi: 10.1021/acssuschemeng.0c05449  doi: 10.1021/acssuschemeng.0c05449

    55. [55]

      Zhang, K.; Liu, J.; Wang, L.; Jin, B.; Yang, X.; Zhang, S.; Park, J. H. J. Am. Chem. Soc. 2020, 142 (19), 8641. doi: 10.1021/jacs.9b13410  doi: 10.1021/jacs.9b13410

    56. [56]

      Dong, K.; Liang, J.; Wang, Y.; Ren, Y.; Xu, Z.; Zhou, H.; Li, L.; Liu, Q.; Luo, Y.; Li, T.; et al. Chem. Catal. 2021, 1 (7), 1437. doi: 10.1016/j.checat.2021.10.011  doi: 10.1016/j.checat.2021.10.011

    57. [57]

      Li, L.; Xu, L.; Chan, A. W. M.; Hu, Z.; Wang, Y.; Yu, J. C. Chem. Mater. 2021, 34 (1), 63. doi: 10.1021/acs.chemmater.1c02787  doi: 10.1021/acs.chemmater.1c02787

    58. [58]

      Sun, Y.; Chen, X.; Ning, S.; Zhou, W.; Yang, Z.; Cui, J.; Wang, D.; Ye, J.; Liu, L. J. Mater. Chem. A 2021, 9 (42), 23994. doi: 10.1039/d1ta06306e  doi: 10.1039/d1ta06306e

    59. [59]

      Guo, W.; Xie, Y.; Liu, Y.; Shang, S.; Lian, X.; Liu, X. Appl. Surf. Sci. 2022, 606, 155006. doi: 10.1016/j.apsusc.2022.155006  doi: 10.1016/j.apsusc.2022.155006

    60. [60]

      Baek, J.; Jin, Q.; Johnson, N. S.; Jiang, Y.; Ning, R.; Mehta, A.; Siahrostami, S.; Zheng, X. Nat. Commun. 2022, 13 (1), 7256. doi: 10.1038/s41467-022-34884-4  doi: 10.1038/s41467-022-34884-4

    61. [61]

      Fan, L.; Bai, X.; Xia, C.; Zhang, X.; Zhao, X.; Xia, Y.; Wu, Z. Y.; Lu, Y.; Liu, Y.; Wang, H. Nat. Commun. 2022, 13 (1), 2668. doi: 10.1038/s41467-022-30251-5  doi: 10.1038/s41467-022-30251-5

    62. [62]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18 (8), e2104561. doi: 10.1002/smll.202104561  doi: 10.1002/smll.202104561

    63. [63]

      Mavrikis, S.; Perry, S. C.; Leung, P. K.; Wang, L.; Ponce de León, C. ACS Sustain. Chem. Eng. 2020, 9 (1), 76. doi: 10.1021/acssuschemeng.0c07263  doi: 10.1021/acssuschemeng.0c07263

    64. [64]

      Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. -I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Nat. Rev. Chem. 2019, 3 (7), 442. doi: 10.1038/s41570-019-0110-6  doi: 10.1038/s41570-019-0110-6

    65. [65]

      Yi, Y.; Wang, L.; Li, G.; Guo, H. Catal. Sci. Technol. 2016, 6 (6), 1593. doi: 10.1039/c5cy01567g  doi: 10.1039/c5cy01567g

    66. [66]

      Li, B.; Li, J.; Rong, Y.; Tian, Y.; Li, J.; Liu, X.; Hao, Q.; Teng, B. Appl. Surf. Sci. 2022, 598, 153832. doi: 10.1016/j.apsusc.2022.153832  doi: 10.1016/j.apsusc.2022.153832

    67. [67]

      Chen, L.; Wang, L.; Wan, Y.; Zhang, Y.; Qi, Z.; Wu, X.; Xu, H. Adv. Mater. 2020, 32 (2), e1904433. doi: 10.1002/adma.201904433  doi: 10.1002/adma.201904433

    68. [68]

      Zhang, C.; Dai, Y.; Sun, Q.; Ye, C.; Lu, R.; Zhou, Y.; Zhao, Y. Mater. Today Adv. 2022, 16, 100280. doi: 10.1016/j.mtadv.2022.100280  doi: 10.1016/j.mtadv.2022.100280

    69. [69]

      Geng, X.; Wang, L.; Zhang, L.; Wang, H.; Peng, Y.; Bian, Z. Chem. Eng. J. 2021, 420, 129722. doi: 10.1016/j.cej.2021.129722  doi: 10.1016/j.cej.2021.129722

    70. [70]

      Shao, Y.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Xu, Q.; Li, C. M. Carbon 2022, 190, 337. doi: 10.1016/j.carbon.2022.01.019  doi: 10.1016/j.carbon.2022.01.019

    71. [71]

      Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X. ACS Nano 2014, 8 (6), 6202. doi: 10.1021/nn501640q  doi: 10.1021/nn501640q

    72. [72]

      Cardoso, I. M. F.; Cardoso, R. M. F.; da Silva, J. Nanomater. 2021, 11 (8), 2045. doi: 10.3390/nano11082045  doi: 10.3390/nano11082045

    73. [73]

      Wu, W.; Huang, L.; Li, Y.; Li, M.; Chen, Y.; Yang, Y.; Chen, X.; Wu, Y.; Gu, L.; Cao, X. Adv. Mater. Technol. 2022, 7 (3), 2100708. doi: 10.1002/admt.202100708  doi: 10.1002/admt.202100708

    74. [74]

      Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Chem. Eng. J. 2021, 408, 127332. doi: 10.1016/j.cej.2020.127332  doi: 10.1016/j.cej.2020.127332

    75. [75]

      Bokare, A. D.; Choi, W. J. Hazard. Mater. 2014, 275, 121. doi: 10.1016/j.jhazmat.2014.04.054  doi: 10.1016/j.jhazmat.2014.04.054

    76. [76]

      Yang, Y.; Pignatello, J. J.; Ma, J.; Mitch, W. A. Water Res. 2016, 89, 192. doi: 10.1016/j.watres.2015.11.049  doi: 10.1016/j.watres.2015.11.049

    77. [77]

      Xiao, Y.; Zhang, L.; Zhang, W.; Lim, K. Y.; Webster, R. D.; Lim, T. T. Water Res. 2016, 102, 629. doi: 10.1016/j.watres.2016.07.004  doi: 10.1016/j.watres.2016.07.004

    78. [78]

      Luo, C.; Ma, J.; Jiang, J.; Liu, Y.; Song, Y.; Yang, Y.; Guan, Y.; Wu, D. Water Res. 2015, 80, 99. doi: 10.1016/j.watres.2015.05.019  doi: 10.1016/j.watres.2015.05.019

    79. [79]

      Attri, P.; Kim, Y. H.; Park, D. H.; Park, J. H.; Hong, Y. J.; Uhm, H. S.; Kim, K. N.; Fridman, A.; Choi, E. H. Sci. Rep. 2015, 5, 9332. doi: 10.1038/srep09332  doi: 10.1038/srep09332

    80. [80]

      Scherer, N. F.; Zewail, A. H. J. Chem. Phys. 1987, 87 (1), 97. doi: 10.1063/1.453529  doi: 10.1063/1.453529

    81. [81]

      Kim, M. S.; Lee, C.; Kim, J. H. Water Res. 2021, 201, 117338. doi: 10.1016/j.watres.2021.117338  doi: 10.1016/j.watres.2021.117338

    82. [82]

      Sun, Z.; Lin, L.; He, J.; Ding, D.; Wang, T.; Li, J.; Li, M.; Liu, Y.; Li, Y.; Yuan, M.; et al. J. Am. Chem. Soc. 2022, 144 (18), 8204. doi: 10.1021/jacs.2c01153  doi: 10.1021/jacs.2c01153

    83. [83]

      Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135 (36), 13521. doi: 10.1021/ja405997s  doi: 10.1021/ja405997s

    84. [84]

      Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. J. Electroanal. Chem. 2007, 607 (1–2), 83. doi: 10.1016/j.jelechem.2006.11.008  doi: 10.1016/j.jelechem.2006.11.008

    85. [85]

      Exner, K. S. ChemCatChem 2020, 12 (7), 2000. doi: 10.1002/cctc.201902363  doi: 10.1002/cctc.201902363

    86. [86]

      Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8 (11), 1702774. doi: 10.1002/aenm.201702774  doi: 10.1002/aenm.201702774

    87. [87]

      Pang, Y.; Xie, H.; Sun, Y.; Titirici, M. -M.; Chai, G. -L. J. Mater. Chem. A 2020, 8 (47), 24996. doi: 10.1039/d0ta09122g  doi: 10.1039/d0ta09122g

    88. [88]

      Li, L.; Hu, Z.; Yu, J. C. Angew. Chem. Int. Ed. 2020, 59 (46), 20538. doi: 10.1002/anie.202008031  doi: 10.1002/anie.202008031

    89. [89]

      Guo, W.; Xie, Y.; Tang, S.; Yu, B.; Lian, X.; Henkelman, G.; Liu, X. Appl. Surf. Sci. 2022, 596, 153634. doi: 10.1016/j.apsusc.2022.153634  doi: 10.1016/j.apsusc.2022.153634

    90. [90]

      Nadar, A.; Gupta, S. S.; Kar, Y.; Shetty, S.; van Bavel, A. P.; Khushalani, D. J. Phys. Chem. C 2020, 124 (7), 4152. doi: 10.1021/acs.jpcc.9b11418  doi: 10.1021/acs.jpcc.9b11418

    91. [91]

      Chaudhary, P.; Evazzade, I.; Belosludov, R.; Alexandrov, V. ChemCatChem 2023, 15 (10), e202300055. doi: 10.1002/cctc.202300055  doi: 10.1002/cctc.202300055

    92. [92]

      Huang, Z. -F.; Song, J.; Dou, S.; Li, X.; Wang, J.; Wang, X. Matter 2019, 1 (6), 1494. doi: 10.1016/j.matt.2019.09.011  doi: 10.1016/j.matt.2019.09.011

    93. [93]

      Toma, F. M.; Cooper, J. K.; Kunzelmann, V.; McDowell, M. T.; Yu, J.; Larson, D. M.; Borys, N. J.; Abelyan, C.; Beeman, J. W.; Yu, K. M.; et al. Nat. Commun. 2016, 7, 12012. doi: 10.1038/ncomms12012  doi: 10.1038/ncomms12012

    94. [94]

      Singh, A. K.; Zhou, L.; Shinde, A.; Suram, S. K.; Montoya, J. H.; Winston, D.; Gregoire, J. M.; Persson, K. A. Chem. Mater. 2017, 29 (23), 10159. doi: 10.1021/acs.chemmater.7b03980  doi: 10.1021/acs.chemmater.7b03980

    95. [95]

      Gill, T. M.; Zheng, X. Chem. Mater. 2020, 32 (15), 6285. doi: 10.1021/acs.chemmater.0c02010  doi: 10.1021/acs.chemmater.0c02010

    96. [96]

      Zhang, C.; Lu, R.; Liu, C.; Yuan, L.; Wang, J.; Zhao, Y.; Yu, C. Adv. Funct. Mater. 2021, 31 (26), 2100099. doi: 10.1002/adfm.202100099  doi: 10.1002/adfm.202100099

    97. [97]

      Zhang, Q.; Tan, X.; Bedford, N. M.; Han, Z.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Nat. Commun. 2020, 11 (1), 4181. doi: 10.1038/s41467-020-17782-5  doi: 10.1038/s41467-020-17782-5

    98. [98]

      Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Energy Environ. Sci. 2020, 13 (11), 4189. doi: 10.1039/d0ee01925a  doi: 10.1039/d0ee01925a

    99. [99]

      Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D. L.; et al. Nat. Commun. 2020, 11 (1), 3928. doi: 10.1038/s41467-020-175  doi: 10.1038/s41467-020-175

    100. [100]

      Wang, L.; Lu, Y.; Han, N.; Dong, C.; Lin, C.; Lu, S.; Min, Y.; Zhang, K. Small 2021, 17 (13), e2100400. doi: 10.1002/smll.202100400  doi: 10.1002/smll.202100400

    101. [101]

      Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C. J. Am. Chem. Soc. 2019, 141 (39), 15684. doi: 10.1021/jacs.9b07979  doi: 10.1021/jacs.9b07979

    102. [102]

      Deng, Y.; Yeo, B. S. ACS Catal. 2017, 7 (11), 7873. doi: 10.1021/acscatal.7b02561  doi: 10.1021/acscatal.7b02561

    103. [103]

      Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y.; Xu, B. J. Am. Chem. Soc. 2018, 140 (41), 13387. doi: 10.1021/jacs.8b08379  doi: 10.1021/jacs.8b08379

    104. [104]

      Kakizaki, H.; Ooka, H.; Hayashi, T.; Yamaguchi, A.; Bonnet‐Mercier, N.; Hashimoto, K.; Nakamura, R. Adv. Funct. Mater. 2018, 28 (24), 1706319. doi: 10.1002/adfm.201706319  doi: 10.1002/adfm.201706319

    105. [105]

      Ibrahim, K. B.; Tsai, M. C.; Chala, S. A.; Berihun, M. K.; Kahsay, A. W.; Berhe, T. A.; Su, W. N.; Hwang, B. J. J. Chin. Chem. Soc. 2019, 66 (8), 829. doi: 10.1002/jccs.201900001  doi: 10.1002/jccs.201900001

    106. [106]

      Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Chem. Sci. 2014, 5 (10), 3976. doi: 10.1039/c4sc00565a  doi: 10.1039/c4sc00565a

    107. [107]

      Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Chem. Soc. Rev. 2015, 44 (3), 623. doi: 10.1039/c4cs00236a  doi: 10.1039/c4cs00236a

    108. [108]

      Yang, C.; Zhu, Y.; Liu, J.; Qin, Y.; Wang, H.; Liu, H.; Chen, Y.; Zhang, Z.; Hu, W. Nano Energy 2020, 77, 105126. doi: 10.1016/j.nanoen.2020.105126  doi: 10.1016/j.nanoen.2020.105126

    109. [109]

      Zhang, J.; Zhang, J.; He, F.; Chen, Y.; Zhu, J.; Wang, D.; Mu, S.; Yang, H. Y. Nanomicro. Lett. 2021, 13 (1), 65. doi: 10.1007/s40820-020-00579-y  doi: 10.1007/s40820-020-00579-y

    110. [110]

      Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Adv. Mater. 2017, 29 (48), 1606459. doi: 10.1002/adma.201606459  doi: 10.1002/adma.201606459

    111. [111]

      Jiang, H.; Gu, J.; Zheng, X.; Liu, M.; Qiu, X.; Wang, L.; Li, W.; Chen, Z.; Ji, X.; Li, J. Energy Eniron. Sci. 2019, 12 (1), 322. doi: 10.1039/c8ee03276a  doi: 10.1039/c8ee03276a

    112. [112]

      Anantharaj, S.; Kundu, S.; Noda, S. Nano Energy 2021, 80, 105514. doi: 10.1016/j.nanoen.2020.105514  doi: 10.1016/j.nanoen.2020.105514

    113. [113]

      Sun, Y.; Li, R.; Chen, X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Wang, L.; Zhang, Z.; Liao, Q.; et al. Adv. Energy Mater. 2021, 11 (12), 2003755. doi: 10.1002/aenm.202003755  doi: 10.1002/aenm.202003755

    114. [114]

      Böhm, D.; Beetz, M.; Schuster, M.; Peters, K.; Hufnagel, A. G.; Döblinger, M.; Böller, B.; Bein, T.; Fattakhova‐Rohlfing, D. Adv. Funct. Mater. 2019, 30 (1), 1906670. doi: 10.1002/adfm.201906670  doi: 10.1002/adfm.201906670

    115. [115]

      Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Proc. Natl. Acad. Sci. 2017, 114 (7), 1486. doi: 10.1073/pnas.1620787114  doi: 10.1073/pnas.1620787114

    116. [116]

      Xue, S. G.; Tang, L.; Tang, Y. K.; Li, C. X.; Li, M. L.; Zhou, J. J.; Chen, W.; Zhu, F.; Jiang, J. ACS Appl. Mater. Interfaces 2020, 12 (4), 4423. doi: 10.1021/acsami.9b16937  doi: 10.1021/acsami.9b16937

    117. [117]

      Zhang, K.; Lu, Y.; Zou, Q.; Jin, J.; Cho, Y.; Wang, Y.; Zhang, Y.; Park, J. H. ACS Energy Lett. 2021, 6 (11), 4071. doi: 10.1021/acsenergylett.1c01831  doi: 10.1021/acsenergylett.1c01831

    118. [118]

      Cheng, M.; Li, Z.; Xu, T.; Mao, Y.; Zhang, Y.; Zhang, G.; Yan, Z. Electrochim. Acta 2022, 430, 141091. doi: 10.1016/j.electacta.2022.141091  doi: 10.1016/j.electacta.2022.141091

    119. [119]

      Shan, J.; Zheng, Y.; Shi, B.; Davey, K.; Qiao, S. -Z. ACS Energy Lett. 2019, 4 (11), 2719. doi: 10.1021/acsenergylett.9b01758  doi: 10.1021/acsenergylett.9b01758

    120. [120]

      Luo, X.; Ji, P.; Wang, P.; Cheng, R.; Chen, D.; Lin, C.; Zhang, J.; He, J.; Shi, Z.; Li, N.; et al. Adv. Energy Mater. 2020, 10 (17), 1903891. doi: 10.1002/aenm.201903891  doi: 10.1002/aenm.201903891

    121. [121]

      Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55 (23), 6702. doi: 10.1002/anie.201602237  doi: 10.1002/anie.201602237

    122. [122]

      Liu, Y.; Jiang, S.; Li, S.; Zhou, L.; Li, Z.; Li, J.; Shao, M. Appl. Catal. B: Environ. 2019, 247, 107. doi: 10.1016/j.apcatb.2019.01.094  doi: 10.1016/j.apcatb.2019.01.094

    123. [123]

      Li, Z.; Zhang, X.; Kang, Y.; Yu, C. C.; Wen, Y.; Hu, M.; Meng, D.; Song, W.; Yang, Y. Adv. Sci. 2021, 8 (2), 2002631. doi: 10.1002/advs.202002631  doi: 10.1002/advs.202002631

    124. [124]

      Young, M. N.; Links, M. J.; Popat, S. C.; Rittmann, B. E.; Torres, C. I. ChemSusChem 2016, 9 (23), 3345. doi: 10.1002/cssc.201601182  doi: 10.1002/cssc.201601182

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(9)
  • Abstract views(1022)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return