Citation: Xiaojun Liu, Lang Qin, Yanlei Yu. Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230501. doi: 10.3866/PKU.WHXB202305018 shu

Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications

  • Corresponding author: Lang Qin, qinlang@fudan.edu.cn
  • Received Date: 8 May 2023
    Revised Date: 28 June 2023
    Accepted Date: 29 June 2023
    Available Online: 7 July 2023

    Fund Project: the National Natural Science Foundation of China 52173110Natural Science Foundation of Shanghai 21ZR1405900Shanghai Rising-Star Program 22QA1401200

  • Cholesteric liquid crystal (CLC) microdroplets, as three-dimensional photonic crystals, exhibit high spatial symmetry. In these microdroplets, LC molecules are aligned parallel to the surface of the spherical geometry, while the helical axes are radially oriented. This symmetrical helical superstructure arrangement forms a Bragg-onion structure within the CLC microdroplets, resulting in selective reflection of a specific wavelength in all directions. Due to their unique angle-independent photonic bandgap (reflection wavelength), CLC microdroplets have emerged as promising optical materials for applications such as omnidirectional lasers, reflective displays, and microsensors. Recently, there has been growing interest in capillary microfluidic technologies, which allow the fabrication of monodisperse and complex CLC microdroplets with regular molecular alignment in a continuous, controllable, and high-throughput manner. This review primarily focuses on CLC microdroplets fabricated using capillary microfluidic technologies. Firstly, the characteristics of capillary microfluidic technology are outlined, along with three important parameters for fabricating CLC microdroplets: inertial, viscous, and interfacial forces. Capillary microfluidic devices typically consist of hydrophilic or hydrophobic tapered capillaries inserted into a square capillary. The principle of immiscible liquids is utilized to select suitable solution systems. By designing the device structures and choosing appropriate solution systems, single, double, triple, and even multiple CLC microdroplets can be fabricated. Secondly, the optical properties of CLCs confined in spherical geometries are discussed. CLC self-organizes into ordered helical superstructures while maintaining fluidity, leading to symmetrical pitch lengths in CLC microdroplets that respond to stimuli. The mechanisms and strategies for tuning the structural colors of CLC microdroplets under varying temperatures, solvents, and light conditions are demonstrated. Additionally, the unique photonic cross-communication between closely packed, monodisperse CLC microdroplets is explained in the context of single, double, or opposite-handedness helical superstructures in CLCs. Furthermore, the review reports on the current and prospective applications of CLC microdroplets in omnidirectional lasers, reflective displays, and microsensors. Various methods for inducing lasing in CLC microdroplets are presented, including distributed feedback resonators, Bragg reflection resonators, and whispering gallery modes. Flexible reflection labels and security labels are generated by incorporating different materials in each layer of the microdroplets or by leveraging the unclonable photonic cross-communication micropatterns observed in hexagonally close-packed CLC microdroplets. The responsive pitch lengths and molecular alignments of CLC microdroplets also make them suitable candidates for colorimetric reporters and optical biosensors. Finally, the review briefly discusses the existing challenges and opportunities in the field of CLC microdroplets, offering a forecast for future developments.
  • 加载中
    1. [1]

      John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486  doi: 10.1103/PhysRevLett.58.2486

    2. [2]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. doi: 10.1103/PhysRevLett.58.2059  doi: 10.1103/PhysRevLett.58.2059

    3. [3]

      Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; Maclachlan, M. J. Nature 2010, 468, 422. doi: 10.1038/nature09540  doi: 10.1038/nature09540

    4. [4]

      Wang, L.; Urbas, A. M.; Li, Q. Adv. Mater. 2020, 32, 1801335. doi: 10.1002/adma.201801335  doi: 10.1002/adma.201801335

    5. [5]

      Bisoyi, H. K.; Li, Q. Chem. Rev. 2022, 122, 4887. doi: 10.1021/acs.chemrev.1c00761  doi: 10.1021/acs.chemrev.1c00761

    6. [6]

      Zhang, Y.; Sheng, Y.; Zhu, S.; Xiao, M.; Krolikowski, W. Optica 2021, 8, 372. doi: 10.1364/optica.416619  doi: 10.1364/optica.416619

    7. [7]

      Parisotto, A.; Steiner, U.; Cabras, A. A.; Van Dam, M. H.; Wilts, B. D. Small 2022, 18, 2200592. doi: 10.1002/smll.202200592  doi: 10.1002/smll.202200592

    8. [8]

      Duan, C.; Cheng, Z.; Wang, B.; Zeng, J.; Xu, J.; Li, J.; Gao, W.; Chen, K. Small 2021, 17, 2007306. doi: 10.1002/smll.202007306  doi: 10.1002/smll.202007306

    9. [9]

      Beltran-Gracia, E.; Parri, O. L. J. Mater. Chem. C 2015, 3, 11335. doi: 10.1039/c5tc02920a  doi: 10.1039/c5tc02920a

    10. [10]

      Bisoyi, H. K.; Li, Q. Acc. Chem. Res. 2014, 47, 3184. doi: 10.1021/ar500249k  doi: 10.1021/ar500249k

    11. [11]

      Schwartz, M.; Lenzini, G.; Geng, Y.; Ronne, P. B.; Ryan, P. Y. A.; Lagerwall, J. P. F. Adv. Mater. 2018, 30, 1707382. doi: 10.1002/adma.201707382  doi: 10.1002/adma.201707382

    12. [12]

      Lee, S. S.; Kim, S.-H. Macromol. Res. 2018, 26, 1054. doi: 10.1007/s13233-018-6148-3  doi: 10.1007/s13233-018-6148-3

    13. [13]

      Luo, C.; Che, K.; Li, S.; Chen, L. Chin. J. Liq. Cryst. Dis. 2020, 35, 697.  doi: 10.37188/YJYXS20203507.0697

    14. [14]

      Yang, C.; Chen, D. Chin. J. Liq. Cryst. Dis. 2022, 37, 1070.  doi: 10.37188/CJLCN.2022-0002

    15. [15]

      Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. Adv. Mater. 2021, 33, 2006361. doi: 10.1002/adma.202006361  doi: 10.1002/adma.202006361

    16. [16]

      Luo, X. J.; Zhang, X.; Feng, Y. J. Acta Phys.-Chim. Sin. 2020, 36, 1910007.  doi: 10.3866/PKU.WHXB201910007

    17. [17]

      Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A. P. H. J. Adv. Opt. Mater. 2020, 8, 2000054. doi: 10.1002/adom.202000054  doi: 10.1002/adom.202000054

    18. [18]

      Froyen, A. A. F.; Debije, M. G.; Schenning, A. P. H. J. Adv. Opt. Mater. 2022, 10, 2201648. doi: 10.1002/adom.202201648  doi: 10.1002/adom.202201648

    19. [19]

      Kim, Y. G.; Park, S.; Kim, S. H. Chem. Commun. 2022, 58, 10303. doi: 10.1039/d2cc03629k  doi: 10.1039/d2cc03629k

    20. [20]

      Shang, L.; Cheng, Y.; Zhao, Y. Chem. Rev. 2017, 117, 7964. doi: 10.1021/acs.chemrev.6b00848  doi: 10.1021/acs.chemrev.6b00848

    21. [21]

      Lee, T. Y.; Choi, T. M.; Shim, T. S.; Frijns, R. A.; Kim, S. H. Lab Chip 2016, 16, 3415. doi: 10.1039/c6lc00809g  doi: 10.1039/c6lc00809g

    22. [22]

      Urbanski, M.; Reyes, C. G.; Noh, J.; Sharma, A.; Geng, Y.; Subba Rao Jampani, V.; Lagerwall, J. P. J. Phys. Condens. Matter 2017, 29, 133003. doi: 10.1088/1361-648X/aa5706  doi: 10.1088/1361-648X/aa5706

    23. [23]

      Guo, J.-K.; Vij, J. K.; Song, J.-K. Adv. Opt. Mater. 2017, 5, 1700119. doi: 10.1002/adom.201700119  doi: 10.1002/adom.201700119

    24. [24]

      Iwai, Y.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2016, 4, 1961. doi: 10.1002/adom.201600372  doi: 10.1002/adom.201600372

    25. [25]

      Hong, W.; Yuan, Z.; Chen, X. Small 2020, 16, 1907626. doi: 10.1002/smll.201907626  doi: 10.1002/smll.201907626

    26. [26]

      Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537. doi: 10.1126/science.1109164  doi: 10.1126/science.1109164

    27. [27]

      Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L.-Y.; Kim, J.-W.; Fernandez-Nieves, A.; Martinez, C. J.; et al. Mater. Today 2008, 11, 18. doi: 10.1016/s1369-7021(08)70053-1  doi: 10.1016/s1369-7021(08)70053-1

    28. [28]

      Utada, A. S.; Chu, L. Y.; Fernandez-Nieves, A.; Link, D. R.; Holtze, C.; Weitz, D. A. MRS Bull. 2011, 32, 702. doi: 10.1557/mrs2007.145  doi: 10.1557/mrs2007.145

    29. [29]

      Martinez, C. J.; Kim, J. W.; Ye, C.; Ortiz, I.; Rowat, A. C.; Marquez, M.; Weitz, D. Macromol. Biosci. 2012, 12, 946. doi: 10.1002/mabi.201100351  doi: 10.1002/mabi.201100351

    30. [30]

      Chen, H. Q.; Wang, X. Y.; Bisoyi, H. K.; Chen, L. J.; Li, Q. Langmuir 2021, 37, 3789. doi: 10.1021/acs.langmuir.1c00256  doi: 10.1021/acs.langmuir.1c00256

    31. [31]

      Fan, J.; Li, Y.; Bisoyi, H. K.; Zola, R. S.; Yang, D. K.; Bunning, T. J.; Weitz, D. A.; Li, Q. Angew. Chem. Int. Ed. 2015, 54, 2160. doi: 10.1002/anie.201410788  doi: 10.1002/anie.201410788

    32. [32]

      Wang, L.; Chen, D.; Gutierrez-Cuevas, K. G.; Bisoyi, H. K.; Fan, J.; Zola, R. S.; Li, G.; Urbas, A. M.; Bunning, T. J.; Weitz, D. A.; et al. Mater. Horiz. 2017, 4, 1190. doi: 10.1039/c7mh00644f  doi: 10.1039/c7mh00644f

    33. [33]

      Seo, H. J.; Lee, S. S.; Noh, J.; Ka, J.-W.; Won, J. C.; Park, C.; Kim, S.-H.; Kim, Y. H. J. Mater. Chem. C 2017, 5, 7567. doi: 10.1039/c7tc02660a  doi: 10.1039/c7tc02660a

    34. [34]

      Qin, L.; Liu, X.; He, K.; Yu, G.; Yuan, H.; Xu, M.; Li, F.; Yu, Y. Nat. Commun. 2021, 12, 699. doi: 10.1038/s41467-021-20908-y  doi: 10.1038/s41467-021-20908-y

    35. [35]

      Gollapelli, B.; Tatipamula, A. K.; Dewanjee, S.; Pathinti, R. S.; Vallamkondu, J. J. Mater. Chem. C 2021, 9, 13991. doi: 10.1039/d1tc02801d  doi: 10.1039/d1tc02801d

    36. [36]

      Lin, P.; Yan, Q.; Wei, Z.; Chen, Y.; Chen, S.; Wang, H.; Huang, Z.; Wang, X.; Cheng, Z. ACS Appl. Mater. Interfaces 2018, 10, 18289. doi: 10.1021/acsami.8b02561  doi: 10.1021/acsami.8b02561

    37. [37]

      Lee, W. J.; Kim, B.; Han, S. W.; Seo, M.; Choi, S.-E.; Yang, H.; Kim, S.-H.; Jeong, S.; Kim, J. W. J. Ind. Eng. Chem. 2018, 68, 393. doi: 10.1016/j.jiec.2018.08.014  doi: 10.1016/j.jiec.2018.08.014

    38. [38]

      Lee, S. S.; Kim, B.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2015, 27, 627. doi: 10.1002/adma.201403271  doi: 10.1002/adma.201403271

    39. [39]

      Pan, Y.; Xie, S.; Wang, H.; Huang, L.; Shen, S.; Deng, Y.; Ma, Q.; Liu, Z.; Zhang, M.; Jin, M.; et al. Adv. Opt. Mater. 2022, 11, 2202141. doi: 10.1002/adom.202202141  doi: 10.1002/adom.202202141

    40. [40]

      Kim, J. W.; Oh, Y.; Lee, S.; Kim, S. H. Adv. Funct. Mater. 2021, 32, 2107275. doi: 10.1002/adfm.202107275  doi: 10.1002/adfm.202107275

    41. [41]

      Noh, K. G.; Park, S. Y. Mater. Horiz. 2017, 4, 633. doi: 10.1039/c7mh00155j  doi: 10.1039/c7mh00155j

    42. [42]

      Kim, J.-G.; Park, S.-Y. Adv. Opt. Mater. 2017, 5, 1700243. doi: 10.1002/adom.201700243  doi: 10.1002/adom.201700243

    43. [43]

      Geng, Y.; Noh, J.; Drevensek-Olenik, I.; Rupp, R.; Lenzini, G.; Lagerwall, J. P. Sci. Rep. 2016, 6, 26840. doi: 10.1038/srep26840  doi: 10.1038/srep26840

    44. [44]

      Geng, Y.; Jang, J.-H.; Noh, K.-G.; Noh, J.; Lagerwall, J. P. F.; Park, S.-Y. Adv. Opt. Mater. 2018, 6. doi: 10.1002/adom.201700923  doi: 10.1002/adom.201700923

    45. [45]

      Myung, D. B.; Park, S. Y. ACS Appl. Mater. Interfaces 2019, 11, 20350. doi: 10.1021/acsami.9b04105  doi: 10.1021/acsami.9b04105

    46. [46]

      Shan, Y. W.; You, L. Q.; Bisoyi, H. K.; Yang, Y. J.; Ge, Y. H.; Che, K. J.; Li, S. S.; Chen, L. J.; Li, Q. Adv. Opt. Mater. 2020, 8, 2000692. doi: 10.1002/adom.202000692  doi: 10.1002/adom.202000692

    47. [47]

      Uchida, Y.; Takanishi, Y.; Yamamoto, J. Adv. Mater. 2013, 25, 3234. doi: 10.1002/adma.201300776  doi: 10.1002/adma.201300776

    48. [48]

      Iwai, Y.; Iijima, R.; Yamamoto, K.; Akita, T.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2020, 8, 1901363. doi: 10.1002/adom.201901363  doi: 10.1002/adom.201901363

    49. [49]

      Lin, Y.; Gong, L.; Che, K.; Li, S.; Chu, C.; Cai, Z.; Yang, C. J.; Chen, L. Appl. Phys. Lett. 2017, 110, 223301. doi: 10.1063/1.4984743  doi: 10.1063/1.4984743

    50. [50]

      Chen, L.; Gong, L.; Lin, Y.; Jin, X.; Li, H.; Li, S.; Che, K.; Cai, Z.; Yang, C. J. Lab Chip 2016, 16, 1206. doi: 10.1039/c6lc00070c  doi: 10.1039/c6lc00070c

    51. [51]

      Chen, L.; Li, Y.; Fan, J.; Bisoyi, H. K.; Weitz, D. A.; Li, Q. Adv. Opt. Mater. 2014, 2, 845. doi: 10.1002/adom.201400166  doi: 10.1002/adom.201400166

    52. [52]

      Lin, Y.; Yang, Y.; Shan, Y.; Gong, L.; Chen, J.; Li, S.; Chen, L. Nanomaterials 2017, 7, 376. doi: 10.3390/nano7110376  doi: 10.3390/nano7110376

    53. [53]

      Jang, J.-H.; Park, S.-Y. Sens. Actuators B-Chem. 2017, 241, 636. |doi: 10.1016/j.snb.2016.10.118  doi: 10.1016/j.snb.2016.10.118

    54. [54]

      Lee, S. S.; Seo, H. J.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2017, 29, 1606894. doi: 10.1002/adma.201606894  doi: 10.1002/adma.201606894

    55. [55]

      Che, K. J.; Yang, Y. J.; Lin, Y. L.; Shan, Y. W.; Ge, Y. H.; Li, S. S.; Chen, L. J.; Yang, C. J. Lab Chip 2019, 19, 3116. doi: 10.1039/c9lc00655a  doi: 10.1039/c9lc00655a

    56. [56]

      Kang, J. H.; Kim, S. H.; Fernandez-Nieves, A.; Reichmanis, E. J. Am. Chem. Soc. 2017, 139, 5708. doi: 10.1021/jacs.7b01981  doi: 10.1021/jacs.7b01981

    57. [57]

      Lee, S. S.; Kim, J. B.; Kim, Y. H.; Kim, S. H. Sci. Adv. 2018, 4, eaat8276. doi: 10.1126/sciadv.aat8276  doi: 10.1126/sciadv.aat8276

    58. [58]

      Lee, S. S.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Angew. Chem. Int. Ed. 2015, 54, 15266. doi: 10.1002/anie.201507723  doi: 10.1002/anie.201507723

    59. [59]

      Park, S.; Lee, S. S.; Kim, S. H. Adv. Mater. 2020, 32, 2002166. doi: 10.1002/adma.202002166  doi: 10.1002/adma.202002166

    60. [60]

      Liu, M.; Fu, J.; Yang, S.; Wang, Y.; Jin, L.; Nah, S. H.; Gao, Y.; Ning, Y.; Murray, C. B.; Yang, S. Adv. Mater. 2023, 35, 2207985. doi: 10.1002/adma.202207985  doi: 10.1002/adma.202207985

    61. [61]

      Concellón, A.; Fong, D.; Swager, T. M. J. Am. Chem. Soc. 2021, 143, 9177. doi: 10.1021/jacs.1c04115  doi: 10.1021/jacs.1c04115

    62. [62]

      Liao, Z.-J.; Qin, Z.-L.; Du, S.-N.; Li, S.-Y.; Chen, G.-H.; Zuo, F.; Luo, J.-B. Acta Phys.-Chim. Sin. 2015, 31, 1733.  doi: 10.3866/PKU.WHXB201508101

    63. [63]

      Tran, L.; Lavrentovich, M. O.; Durey, G.; Darmon, A.; Haase, M. F.; Li, N.; Lee, D.; Stebe, K. J.; Kamien, R. D.; Lopez-Leon, T. Phys. Rev. X 2017, 7, 041029 doi: 10.1103/PhysRevX.7.041029  doi: 10.1103/PhysRevX.7.041029

    64. [64]

      Brake, J. M.; Abbott, N. L. Langmuir 2002, 18, 6101. doi: 10.1021/la011746t  doi: 10.1021/la011746t

    65. [65]

      Zhang, W.; Froyen, A. A. F.; Schenning, A. P. H. J.; Zhou, G.; Debije, M. G.; de Haan, L. T. Adv. Photon. Res. 2021, 2, 2100016. doi: 10.1002/adpr.202100016  doi: 10.1002/adpr.202100016

    66. [66]

      Yang, T.; Yuan, D.; Liu, W.; Zhang, Z.; Wang, K.; You, Y.; Ye, H.; de Haan, L. T.; Zhang, Z.; Zhou, G. ACS Appl. Mater. Interfaces 2022, 14, 4588. doi: 10.1021/acsami.1c23101  doi: 10.1021/acsami.1c23101

    67. [67]

      White, T. J.; McConney, M. E.; Bunning, T. J. J. Mater. Chem. 2010, 20, 9832. doi: 10.1039/c0jm00843e  doi: 10.1039/c0jm00843e

    68. [68]

      McConney, M. E.; Rumi, M.; Godman, N. P.; Tohgha, U. N.; Bunning, T. J. Adv. Opt. Mater. 2019, 7, 1900429. doi: 10.1002/adom.201900429  doi: 10.1002/adom.201900429

    69. [69]

      Bisoyi, H. K.; Li, Q. Chem. Rev. 2016, 116, 15089. doi: 10.1021/acs.chemrev.6b00415  doi: 10.1021/acs.chemrev.6b00415

    70. [70]

      Han, S.-Q.; Chen, Y.-Y.; Xu, B.; Wei, J.; Yu, Y.-L. Chin. J. Polym. Sci. 2020, 38, 806. doi: 10.1007/s10118-020-2383-0  doi: 10.1007/s10118-020-2383-0

    71. [71]

      Lin, S.; Gutierrez-Cuevas, K. G.; Zhang, X.; Guo, J.; Li, Q. Adv. Funct. Mater. 2020, 31, 2007957. doi: 10.1002/adfm.202007957  doi: 10.1002/adfm.202007957

    72. [72]

      Qin, L.; Gu, W.; Wei, J.; Yu, Y. Adv. Mater. 2018, 30, 1704941. doi: 10.1002/adma.201704941  doi: 10.1002/adma.201704941

    73. [73]

      Qin, L.; Wei, J.; Yu, Y. Adv. Opt. Mater. 2019, 7, 1900430. doi: 10.1002/adom.201900430  doi: 10.1002/adom.201900430

    74. [74]

      Cui, S.; Qin, L.; Liu, X.; Yu, Y. Adv. Opt. Mater. 2022, 10, 2102108. doi: 10.1002/adom.202102108  doi: 10.1002/adom.202102108

    75. [75]

      Hu, H.; Liu, B.; Li, M.; Zheng, Z.; Zhu, W. H. Adv. Mater. 2022, 34, 2110170. doi: 10.1002/adma.202110170  doi: 10.1002/adma.202110170

    76. [76]

      Zheng, Z.; Hu, H.; Zhang, Z.; Liu, B.; Li, M.; Qu, D.-H.; Tian, H.; Zhu, W.-H.; Feringa, B. L. Nat. Photon. 2022, 16, 226. doi: 10.1038/s41566-022-00957-5  doi: 10.1038/s41566-022-00957-5

    77. [77]

      Liu, X. J.; Qin, L.; Zhan, Y. Y.; Chen, M.; Yu, Y. L. Acta Chim. Sin. 2020, 78, 478.  doi: 10.6023/A20040103

    78. [78]

      Liu, X. J.; Qin, L.; Yu, Y. L. Prog. Chem. 2023, 35, 247.  doi: 10.7536/PC220806

    79. [79]

      Noh, J.; Liang, H.-L.; Drevensek-Olenik, I.; Lagerwall, J. P. F. J. Mater. Chem. C 2014, 2, 806. doi: 10.1039/c3tc32055c  doi: 10.1039/c3tc32055c

    80. [80]

      Abetahoff, S. J.; Sukas, S.; Yamaguchi, T.; Hommersom, C. A.; Le Gac, S.; Katsonis, N. Sci. Rep. 2015, 5, 14183. doi: 10.1038/srep14183  doi: 10.1038/srep14183

    81. [81]

      Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Adv. Mater. 2019, 31, 1806172. doi: 10.1002/adma.201806172  doi: 10.1002/adma.201806172

    82. [82]

      Humar, M.; Muševič, I. Opt. Express 2010, 18, 26995. doi: 10.1364/OE.18.026995  doi: 10.1364/OE.18.026995

    83. [83]

      Li, Y.; Jun-Yan Suen, J.; Prince, E.; Larin, E. M.; Klinkova, A.; Therien-Aubin, H.; Zhu, S.; Yang, B.; Helmy, A. S.; Lavrentovich, O. D.; et al. Nat. Commun. 2016, 7, 12520. doi: 10.1038/ncomms12520  doi: 10.1038/ncomms12520

    84. [84]

      Franklin, D.; Ueltschi, T.; Carlini, A.; Yao, S.; Reeder, J.; Richards, B.; Van Duyne, R. P.; Rogers, J. A. ACS Nano 2021, 15, 2327. doi: 10.1021/acsnano.0c10234  doi: 10.1021/acsnano.0c10234

    85. [85]

      Wang, C.; Gong, C.; Zhang, Y.; Qiao, Z.; Yuan, Z.; Gong, Y.; Chang, G. E.; Tu, W. C.; Chen, Y. C. ACS Nano 2021, 15, 11126. doi: 10.1021/acsnano.1c02650  doi: 10.1021/acsnano.1c02650

    86. [86]

      Zhang, Y. S.; Weng, H. S.; Jiang, S. A.; Mo, T. S.; Yang, P. C.; Lin, J. D.; Lee, C. R. Adv. Opt. Mater. 2021, 9, 2100667. doi: 10.1002/adom.202100667  doi: 10.1002/adom.202100667

    87. [87]

      Agha, H.; Geng, Y.; Ma, X.; Avsar, D. I.; Kizhakidathazhath, R.; Zhang, Y.; Tourani, A.; Bavle, H.; Sanchez-Lopez, J.; Voos, H.; et al. Light Sci. Appl. 2022, 11, 309. doi: 10.1038/s41377-022-01002-4  doi: 10.1038/s41377-022-01002-4

    88. [88]

      Concellón, A.; Zentner, C. A.; Swager, T. M. J. Am. Chem. Soc. 2019, 141, 18246. doi: 10.1021/jacs.9b09216  doi: 10.1021/jacs.9b09216

    89. [89]

      Lee, H. G.; Munir, S.; Park, S. Y. ACS Appl. Mater. Interfaces 2016, 8, 26407. doi: 10.1021/acsami.6b09624  doi: 10.1021/acsami.6b09624

    90. [90]

      Lim, J.-S.; Kim, Y.-J.; Park, S.-Y. Sens. Actuators B-Chem. 2021, 329, 129165. doi: 10.1016/j.snb.2020.129165  doi: 10.1016/j.snb.2020.129165

    91. [91]

      Belmonte, A.; Bus, T.; Broer, D. J.; Schenning, A. ACS Appl. Mater. Interfaces 2019, 11, 14376. doi: 10.1021/acsami.9b02680  doi: 10.1021/acsami.9b02680

    92. [92]

      Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; et al. Adv. Mater. 2018, 30, 1707344. doi: 10.1002/adma.201707344  doi: 10.1002/adma.201707344

    93. [93]

      Wang, Y.; Shang, L.; Bian, F.; Zhang, X.; Wang, S.; Zhou, M.; Zhao, Y. Small 2019, 15, 1900056. doi: 10.1002/smll.201900056  doi: 10.1002/smll.201900056

    94. [94]

      Choi, T. M.; Je, K.; Park, J. G.; Lee, G. H.; Kim, S. H. Adv. Mater. 2018, 30, 1803387. doi: 10.1002/adma.201803387  doi: 10.1002/adma.201803387

    95. [95]

      Yang, Y.; Kim, J. B.; Nam, S. K.; Zhang, M.; Xu, J.; Zhu, J.; Kim, S. H. Nat. Commun. 2023, 14, 793. doi: 10.1038/s41467-023-36482-4  doi: 10.1038/s41467-023-36482-4

    96. [96]

      Lin, P.; Chen, H.; Li, A.; Zhuang, H.; Chen, Z.; Xie, Y.; Zhou, H.; Mo, S.; Chen, Y.; Lu, X.; et al. ACS Appl. Mater. Interfaces 2020, 12, 46788. doi: 10.1021/acsami.0c14698  doi: 10.1021/acsami.0c14698

    97. [97]

      Lin, P.; Wei, Z.; Yan, Q.; Chen, Y.; Wu, M.; Xie, J.; Zeng, M.; Wang, W.; Xu, J.; Cheng, Z. J. Mater. Chem. C 2019, 7, 4822. doi: 10.1039/c8tc05879b  doi: 10.1039/c8tc05879b

    98. [98]

      Liu, Y.; Wu, P. Adv. Funct. Mater. 2020, 30, 2002193. doi: 10.1002/adfm.202002193  doi: 10.1002/adfm.202002193

    99. [99]

      Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Adv. Mater. 2019, 31, 1903733. doi: 10.1002/adma.201903733  doi: 10.1002/adma.201903733

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(3)
  • Abstract views(478)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return