胆甾相液晶微球光子禁带的动态调控及其应用

刘晓珺 秦朗 俞燕蕾

引用本文: 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶微球光子禁带的动态调控及其应用[J]. 物理化学学报, 2024, 40(5): 230501. doi: 10.3866/PKU.WHXB202305018 shu
Citation:  Xiaojun Liu, Lang Qin, Yanlei Yu. Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications[J]. Acta Physico-Chimica Sinica, 2024, 40(5): 230501. doi: 10.3866/PKU.WHXB202305018 shu

胆甾相液晶微球光子禁带的动态调控及其应用

    通讯作者: 秦朗, qinlang@fudan.edu.cn
  • 基金项目:

    国家自然科学基金 52173110

    上海市自然科学基金 21ZR1405900

    上海市青年科技启明星计划 22QA1401200

摘要: 胆甾相液晶微球是空间结构高度对称的三维光子晶体,能够全方位地选择性反射特定波长的圆偏振光,具有无角度依赖性的光子禁带,作为一种新兴的光学材料在全向激光器、反射式显示和微传感器等领域展现出广阔的应用前景。近年来,毛细管微流控技术的蓬勃发展为连续、可控、高通量地制备结构复杂且分子规则取向的单分散胆甾相液晶微球提供了强有力的支持。本综述重点关注利用毛细管微流控技术制备胆甾相液晶微球的相关研究工作,首先分析了毛细管微流控装置在设计微球结构中的决定性作用,阐明了溶液体系的选择与液晶分子取向间的关系以及边界效应对微球尺寸的影响;随后,从胆甾相液晶微球的光学特性切入,介绍了利用温度、溶剂和光等外界刺激调控螺旋结构自组装的原理和策略以及微球之间独有的“光子交叉通讯”现象;最后,总结了现阶段胆甾相液晶微球的潜在应用方向并讨论了该材料体系未来面临的挑战。

English

    1. [1]

      John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486

    2. [2]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. doi: 10.1103/PhysRevLett.58.2059

    3. [3]

      Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; Maclachlan, M. J. Nature 2010, 468, 422. doi: 10.1038/nature09540

    4. [4]

      Wang, L.; Urbas, A. M.; Li, Q. Adv. Mater. 2020, 32, 1801335. doi: 10.1002/adma.201801335

    5. [5]

      Bisoyi, H. K.; Li, Q. Chem. Rev. 2022, 122, 4887. doi: 10.1021/acs.chemrev.1c00761

    6. [6]

      Zhang, Y.; Sheng, Y.; Zhu, S.; Xiao, M.; Krolikowski, W. Optica 2021, 8, 372. doi: 10.1364/optica.416619

    7. [7]

      Parisotto, A.; Steiner, U.; Cabras, A. A.; Van Dam, M. H.; Wilts, B. D. Small 2022, 18, 2200592. doi: 10.1002/smll.202200592

    8. [8]

      Duan, C.; Cheng, Z.; Wang, B.; Zeng, J.; Xu, J.; Li, J.; Gao, W.; Chen, K. Small 2021, 17, 2007306. doi: 10.1002/smll.202007306

    9. [9]

      Beltran-Gracia, E.; Parri, O. L. J. Mater. Chem. C 2015, 3, 11335. doi: 10.1039/c5tc02920a

    10. [10]

      Bisoyi, H. K.; Li, Q. Acc. Chem. Res. 2014, 47, 3184. doi: 10.1021/ar500249k

    11. [11]

      Schwartz, M.; Lenzini, G.; Geng, Y.; Ronne, P. B.; Ryan, P. Y. A.; Lagerwall, J. P. F. Adv. Mater. 2018, 30, 1707382. doi: 10.1002/adma.201707382

    12. [12]

      Lee, S. S.; Kim, S.-H. Macromol. Res. 2018, 26, 1054. doi: 10.1007/s13233-018-6148-3

    13. [13]

      罗炜程, 车凯军, 李森森, 陈鹭剑. 液晶与显示, 2020, 35, 697. doi: 10.37188/YJYXS20203507.0697Luo, C.; Che, K.; Li, S.; Chen, L. Chin. J. Liq. Cryst. Dis. 2020, 35, 697. doi: 10.37188/YJYXS20203507.0697

    14. [14]

      杨晨静, 陈东. 液晶与显示, 2022, 37, 1070. doi: 10.37188/CJLCN.2022-0002Yang, C.; Chen, D. Chin. J. Liq. Cryst. Dis. 2022, 37, 1070. doi: 10.37188/CJLCN.2022-0002

    15. [15]

      Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. Adv. Mater. 2021, 33, 2006361. doi: 10.1002/adma.202006361

    16. [16]

      罗新杰, 张熙, 冯玉军. 物理化学学报, 2020, 36, 1910007. doi: 10.3866/PKU.WHXB201910007Luo, X. J.; Zhang, X.; Feng, Y. J. Acta Phys.-Chim. Sin. 2020, 36, 1910007. doi: 10.3866/PKU.WHXB201910007

    17. [17]

      Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A. P. H. J. Adv. Opt. Mater. 2020, 8, 2000054. doi: 10.1002/adom.202000054

    18. [18]

      Froyen, A. A. F.; Debije, M. G.; Schenning, A. P. H. J. Adv. Opt. Mater. 2022, 10, 2201648. doi: 10.1002/adom.202201648

    19. [19]

      Kim, Y. G.; Park, S.; Kim, S. H. Chem. Commun. 2022, 58, 10303. doi: 10.1039/d2cc03629k

    20. [20]

      Shang, L.; Cheng, Y.; Zhao, Y. Chem. Rev. 2017, 117, 7964. doi: 10.1021/acs.chemrev.6b00848

    21. [21]

      Lee, T. Y.; Choi, T. M.; Shim, T. S.; Frijns, R. A.; Kim, S. H. Lab Chip 2016, 16, 3415. doi: 10.1039/c6lc00809g

    22. [22]

      Urbanski, M.; Reyes, C. G.; Noh, J.; Sharma, A.; Geng, Y.; Subba Rao Jampani, V.; Lagerwall, J. P. J. Phys. Condens. Matter 2017, 29, 133003. doi: 10.1088/1361-648X/aa5706

    23. [23]

      Guo, J.-K.; Vij, J. K.; Song, J.-K. Adv. Opt. Mater. 2017, 5, 1700119. doi: 10.1002/adom.201700119

    24. [24]

      Iwai, Y.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2016, 4, 1961. doi: 10.1002/adom.201600372

    25. [25]

      Hong, W.; Yuan, Z.; Chen, X. Small 2020, 16, 1907626. doi: 10.1002/smll.201907626

    26. [26]

      Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537. doi: 10.1126/science.1109164

    27. [27]

      Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L.-Y.; Kim, J.-W.; Fernandez-Nieves, A.; Martinez, C. J.; et al. Mater. Today 2008, 11, 18. doi: 10.1016/s1369-7021(08)70053-1

    28. [28]

      Utada, A. S.; Chu, L. Y.; Fernandez-Nieves, A.; Link, D. R.; Holtze, C.; Weitz, D. A. MRS Bull. 2011, 32, 702. doi: 10.1557/mrs2007.145

    29. [29]

      Martinez, C. J.; Kim, J. W.; Ye, C.; Ortiz, I.; Rowat, A. C.; Marquez, M.; Weitz, D. Macromol. Biosci. 2012, 12, 946. doi: 10.1002/mabi.201100351

    30. [30]

      Chen, H. Q.; Wang, X. Y.; Bisoyi, H. K.; Chen, L. J.; Li, Q. Langmuir 2021, 37, 3789. doi: 10.1021/acs.langmuir.1c00256

    31. [31]

      Fan, J.; Li, Y.; Bisoyi, H. K.; Zola, R. S.; Yang, D. K.; Bunning, T. J.; Weitz, D. A.; Li, Q. Angew. Chem. Int. Ed. 2015, 54, 2160. doi: 10.1002/anie.201410788

    32. [32]

      Wang, L.; Chen, D.; Gutierrez-Cuevas, K. G.; Bisoyi, H. K.; Fan, J.; Zola, R. S.; Li, G.; Urbas, A. M.; Bunning, T. J.; Weitz, D. A.; et al. Mater. Horiz. 2017, 4, 1190. doi: 10.1039/c7mh00644f

    33. [33]

      Seo, H. J.; Lee, S. S.; Noh, J.; Ka, J.-W.; Won, J. C.; Park, C.; Kim, S.-H.; Kim, Y. H. J. Mater. Chem. C 2017, 5, 7567. doi: 10.1039/c7tc02660a

    34. [34]

      Qin, L.; Liu, X.; He, K.; Yu, G.; Yuan, H.; Xu, M.; Li, F.; Yu, Y. Nat. Commun. 2021, 12, 699. doi: 10.1038/s41467-021-20908-y

    35. [35]

      Gollapelli, B.; Tatipamula, A. K.; Dewanjee, S.; Pathinti, R. S.; Vallamkondu, J. J. Mater. Chem. C 2021, 9, 13991. doi: 10.1039/d1tc02801d

    36. [36]

      Lin, P.; Yan, Q.; Wei, Z.; Chen, Y.; Chen, S.; Wang, H.; Huang, Z.; Wang, X.; Cheng, Z. ACS Appl. Mater. Interfaces 2018, 10, 18289. doi: 10.1021/acsami.8b02561

    37. [37]

      Lee, W. J.; Kim, B.; Han, S. W.; Seo, M.; Choi, S.-E.; Yang, H.; Kim, S.-H.; Jeong, S.; Kim, J. W. J. Ind. Eng. Chem. 2018, 68, 393. doi: 10.1016/j.jiec.2018.08.014

    38. [38]

      Lee, S. S.; Kim, B.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2015, 27, 627. doi: 10.1002/adma.201403271

    39. [39]

      Pan, Y.; Xie, S.; Wang, H.; Huang, L.; Shen, S.; Deng, Y.; Ma, Q.; Liu, Z.; Zhang, M.; Jin, M.; et al. Adv. Opt. Mater. 2022, 11, 2202141. doi: 10.1002/adom.202202141

    40. [40]

      Kim, J. W.; Oh, Y.; Lee, S.; Kim, S. H. Adv. Funct. Mater. 2021, 32, 2107275. doi: 10.1002/adfm.202107275

    41. [41]

      Noh, K. G.; Park, S. Y. Mater. Horiz. 2017, 4, 633. doi: 10.1039/c7mh00155j

    42. [42]

      Kim, J.-G.; Park, S.-Y. Adv. Opt. Mater. 2017, 5, 1700243. doi: 10.1002/adom.201700243

    43. [43]

      Geng, Y.; Noh, J.; Drevensek-Olenik, I.; Rupp, R.; Lenzini, G.; Lagerwall, J. P. Sci. Rep. 2016, 6, 26840. doi: 10.1038/srep26840

    44. [44]

      Geng, Y.; Jang, J.-H.; Noh, K.-G.; Noh, J.; Lagerwall, J. P. F.; Park, S.-Y. Adv. Opt. Mater. 2018, 6. doi: 10.1002/adom.201700923

    45. [45]

      Myung, D. B.; Park, S. Y. ACS Appl. Mater. Interfaces 2019, 11, 20350. doi: 10.1021/acsami.9b04105

    46. [46]

      Shan, Y. W.; You, L. Q.; Bisoyi, H. K.; Yang, Y. J.; Ge, Y. H.; Che, K. J.; Li, S. S.; Chen, L. J.; Li, Q. Adv. Opt. Mater. 2020, 8, 2000692. doi: 10.1002/adom.202000692

    47. [47]

      Uchida, Y.; Takanishi, Y.; Yamamoto, J. Adv. Mater. 2013, 25, 3234. doi: 10.1002/adma.201300776

    48. [48]

      Iwai, Y.; Iijima, R.; Yamamoto, K.; Akita, T.; Uchida, Y.; Nishiyama, N. Adv. Opt. Mater. 2020, 8, 1901363. doi: 10.1002/adom.201901363

    49. [49]

      Lin, Y.; Gong, L.; Che, K.; Li, S.; Chu, C.; Cai, Z.; Yang, C. J.; Chen, L. Appl. Phys. Lett. 2017, 110, 223301. doi: 10.1063/1.4984743

    50. [50]

      Chen, L.; Gong, L.; Lin, Y.; Jin, X.; Li, H.; Li, S.; Che, K.; Cai, Z.; Yang, C. J. Lab Chip 2016, 16, 1206. doi: 10.1039/c6lc00070c

    51. [51]

      Chen, L.; Li, Y.; Fan, J.; Bisoyi, H. K.; Weitz, D. A.; Li, Q. Adv. Opt. Mater. 2014, 2, 845. doi: 10.1002/adom.201400166

    52. [52]

      Lin, Y.; Yang, Y.; Shan, Y.; Gong, L.; Chen, J.; Li, S.; Chen, L. Nanomaterials 2017, 7, 376. doi: 10.3390/nano7110376

    53. [53]

      Jang, J.-H.; Park, S.-Y. Sens. Actuators B-Chem. 2017, 241, 636. |doi: 10.1016/j.snb.2016.10.118

    54. [54]

      Lee, S. S.; Seo, H. J.; Kim, Y. H.; Kim, S. H. Adv. Mater. 2017, 29, 1606894. doi: 10.1002/adma.201606894

    55. [55]

      Che, K. J.; Yang, Y. J.; Lin, Y. L.; Shan, Y. W.; Ge, Y. H.; Li, S. S.; Chen, L. J.; Yang, C. J. Lab Chip 2019, 19, 3116. doi: 10.1039/c9lc00655a

    56. [56]

      Kang, J. H.; Kim, S. H.; Fernandez-Nieves, A.; Reichmanis, E. J. Am. Chem. Soc. 2017, 139, 5708. doi: 10.1021/jacs.7b01981

    57. [57]

      Lee, S. S.; Kim, J. B.; Kim, Y. H.; Kim, S. H. Sci. Adv. 2018, 4, eaat8276. doi: 10.1126/sciadv.aat8276

    58. [58]

      Lee, S. S.; Kim, S. K.; Won, J. C.; Kim, Y. H.; Kim, S. H. Angew. Chem. Int. Ed. 2015, 54, 15266. doi: 10.1002/anie.201507723

    59. [59]

      Park, S.; Lee, S. S.; Kim, S. H. Adv. Mater. 2020, 32, 2002166. doi: 10.1002/adma.202002166

    60. [60]

      Liu, M.; Fu, J.; Yang, S.; Wang, Y.; Jin, L.; Nah, S. H.; Gao, Y.; Ning, Y.; Murray, C. B.; Yang, S. Adv. Mater. 2023, 35, 2207985. doi: 10.1002/adma.202207985

    61. [61]

      Concellón, A.; Fong, D.; Swager, T. M. J. Am. Chem. Soc. 2021, 143, 9177. doi: 10.1021/jacs.1c04115

    62. [62]

      廖芝建, 秦振立, 杜思南, 李思雨, 陈冠侯, 左芳, 罗建斌. 物理化学学报, 2015, 31, 1733. doi: 10.3866/PKU.WHXB201508101Liao, Z.-J.; Qin, Z.-L.; Du, S.-N.; Li, S.-Y.; Chen, G.-H.; Zuo, F.; Luo, J.-B. Acta Phys.-Chim. Sin. 2015, 31, 1733. doi: 10.3866/PKU.WHXB201508101

    63. [63]

      Tran, L.; Lavrentovich, M. O.; Durey, G.; Darmon, A.; Haase, M. F.; Li, N.; Lee, D.; Stebe, K. J.; Kamien, R. D.; Lopez-Leon, T. Phys. Rev. X 2017, 7, 041029 doi: 10.1103/PhysRevX.7.041029

    64. [64]

      Brake, J. M.; Abbott, N. L. Langmuir 2002, 18, 6101. doi: 10.1021/la011746t

    65. [65]

      Zhang, W.; Froyen, A. A. F.; Schenning, A. P. H. J.; Zhou, G.; Debije, M. G.; de Haan, L. T. Adv. Photon. Res. 2021, 2, 2100016. doi: 10.1002/adpr.202100016

    66. [66]

      Yang, T.; Yuan, D.; Liu, W.; Zhang, Z.; Wang, K.; You, Y.; Ye, H.; de Haan, L. T.; Zhang, Z.; Zhou, G. ACS Appl. Mater. Interfaces 2022, 14, 4588. doi: 10.1021/acsami.1c23101

    67. [67]

      White, T. J.; McConney, M. E.; Bunning, T. J. J. Mater. Chem. 2010, 20, 9832. doi: 10.1039/c0jm00843e

    68. [68]

      McConney, M. E.; Rumi, M.; Godman, N. P.; Tohgha, U. N.; Bunning, T. J. Adv. Opt. Mater. 2019, 7, 1900429. doi: 10.1002/adom.201900429

    69. [69]

      Bisoyi, H. K.; Li, Q. Chem. Rev. 2016, 116, 15089. doi: 10.1021/acs.chemrev.6b00415

    70. [70]

      Han, S.-Q.; Chen, Y.-Y.; Xu, B.; Wei, J.; Yu, Y.-L. Chin. J. Polym. Sci. 2020, 38, 806. doi: 10.1007/s10118-020-2383-0

    71. [71]

      Lin, S.; Gutierrez-Cuevas, K. G.; Zhang, X.; Guo, J.; Li, Q. Adv. Funct. Mater. 2020, 31, 2007957. doi: 10.1002/adfm.202007957

    72. [72]

      Qin, L.; Gu, W.; Wei, J.; Yu, Y. Adv. Mater. 2018, 30, 1704941. doi: 10.1002/adma.201704941

    73. [73]

      Qin, L.; Wei, J.; Yu, Y. Adv. Opt. Mater. 2019, 7, 1900430. doi: 10.1002/adom.201900430

    74. [74]

      Cui, S.; Qin, L.; Liu, X.; Yu, Y. Adv. Opt. Mater. 2022, 10, 2102108. doi: 10.1002/adom.202102108

    75. [75]

      Hu, H.; Liu, B.; Li, M.; Zheng, Z.; Zhu, W. H. Adv. Mater. 2022, 34, 2110170. doi: 10.1002/adma.202110170

    76. [76]

      Zheng, Z.; Hu, H.; Zhang, Z.; Liu, B.; Li, M.; Qu, D.-H.; Tian, H.; Zhu, W.-H.; Feringa, B. L. Nat. Photon. 2022, 16, 226. doi: 10.1038/s41566-022-00957-5

    77. [77]

      刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾. 化学学报, 2020, 78, 478. doi: 10.6023/A20040103Liu, X. J.; Qin, L.; Zhan, Y. Y.; Chen, M.; Yu, Y. L. Acta Chim. Sin. 2020, 78, 478. doi: 10.6023/A20040103

    78. [78]

      刘晓珺, 秦朗, 俞燕蕾. 化学进展, 2023, 35, 247. doi: 10.7536/PC220806Liu, X. J.; Qin, L.; Yu, Y. L. Prog. Chem. 2023, 35, 247. doi: 10.7536/PC220806

    79. [79]

      Noh, J.; Liang, H.-L.; Drevensek-Olenik, I.; Lagerwall, J. P. F. J. Mater. Chem. C 2014, 2, 806. doi: 10.1039/c3tc32055c

    80. [80]

      Abetahoff, S. J.; Sukas, S.; Yamaguchi, T.; Hommersom, C. A.; Le Gac, S.; Katsonis, N. Sci. Rep. 2015, 5, 14183. doi: 10.1038/srep14183

    81. [81]

      Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Adv. Mater. 2019, 31, 1806172. doi: 10.1002/adma.201806172

    82. [82]

      Humar, M.; Muševič, I. Opt. Express 2010, 18, 26995. doi: 10.1364/OE.18.026995

    83. [83]

      Li, Y.; Jun-Yan Suen, J.; Prince, E.; Larin, E. M.; Klinkova, A.; Therien-Aubin, H.; Zhu, S.; Yang, B.; Helmy, A. S.; Lavrentovich, O. D.; et al. Nat. Commun. 2016, 7, 12520. doi: 10.1038/ncomms12520

    84. [84]

      Franklin, D.; Ueltschi, T.; Carlini, A.; Yao, S.; Reeder, J.; Richards, B.; Van Duyne, R. P.; Rogers, J. A. ACS Nano 2021, 15, 2327. doi: 10.1021/acsnano.0c10234

    85. [85]

      Wang, C.; Gong, C.; Zhang, Y.; Qiao, Z.; Yuan, Z.; Gong, Y.; Chang, G. E.; Tu, W. C.; Chen, Y. C. ACS Nano 2021, 15, 11126. doi: 10.1021/acsnano.1c02650

    86. [86]

      Zhang, Y. S.; Weng, H. S.; Jiang, S. A.; Mo, T. S.; Yang, P. C.; Lin, J. D.; Lee, C. R. Adv. Opt. Mater. 2021, 9, 2100667. doi: 10.1002/adom.202100667

    87. [87]

      Agha, H.; Geng, Y.; Ma, X.; Avsar, D. I.; Kizhakidathazhath, R.; Zhang, Y.; Tourani, A.; Bavle, H.; Sanchez-Lopez, J.; Voos, H.; et al. Light Sci. Appl. 2022, 11, 309. doi: 10.1038/s41377-022-01002-4

    88. [88]

      Concellón, A.; Zentner, C. A.; Swager, T. M. J. Am. Chem. Soc. 2019, 141, 18246. doi: 10.1021/jacs.9b09216

    89. [89]

      Lee, H. G.; Munir, S.; Park, S. Y. ACS Appl. Mater. Interfaces 2016, 8, 26407. doi: 10.1021/acsami.6b09624

    90. [90]

      Lim, J.-S.; Kim, Y.-J.; Park, S.-Y. Sens. Actuators B-Chem. 2021, 329, 129165. doi: 10.1016/j.snb.2020.129165

    91. [91]

      Belmonte, A.; Bus, T.; Broer, D. J.; Schenning, A. ACS Appl. Mater. Interfaces 2019, 11, 14376. doi: 10.1021/acsami.9b02680

    92. [92]

      Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; et al. Adv. Mater. 2018, 30, 1707344. doi: 10.1002/adma.201707344

    93. [93]

      Wang, Y.; Shang, L.; Bian, F.; Zhang, X.; Wang, S.; Zhou, M.; Zhao, Y. Small 2019, 15, 1900056. doi: 10.1002/smll.201900056

    94. [94]

      Choi, T. M.; Je, K.; Park, J. G.; Lee, G. H.; Kim, S. H. Adv. Mater. 2018, 30, 1803387. doi: 10.1002/adma.201803387

    95. [95]

      Yang, Y.; Kim, J. B.; Nam, S. K.; Zhang, M.; Xu, J.; Zhu, J.; Kim, S. H. Nat. Commun. 2023, 14, 793. doi: 10.1038/s41467-023-36482-4

    96. [96]

      Lin, P.; Chen, H.; Li, A.; Zhuang, H.; Chen, Z.; Xie, Y.; Zhou, H.; Mo, S.; Chen, Y.; Lu, X.; et al. ACS Appl. Mater. Interfaces 2020, 12, 46788. doi: 10.1021/acsami.0c14698

    97. [97]

      Lin, P.; Wei, Z.; Yan, Q.; Chen, Y.; Wu, M.; Xie, J.; Zeng, M.; Wang, W.; Xu, J.; Cheng, Z. J. Mater. Chem. C 2019, 7, 4822. doi: 10.1039/c8tc05879b

    98. [98]

      Liu, Y.; Wu, P. Adv. Funct. Mater. 2020, 30, 2002193. doi: 10.1002/adfm.202002193

    99. [99]

      Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Adv. Mater. 2019, 31, 1903733. doi: 10.1002/adma.201903733

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  480
  • HTML全文浏览量:  41
文章相关
  • 发布日期:  2024-05-15
  • 收稿日期:  2023-05-08
  • 接受日期:  2023-06-29
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-07-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章