Citation: Hanmei Lü, Xin Chen, Qifu Sun, Ning Zhao, Xiangxin Guo. Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230501. doi: 10.3866/PKU.WHXB202305016 shu

Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes

  • Corresponding author: Ning Zhao, n.zhao@qdu.edu.cn Xiangxin Guo, xxguo@qdu.edu.cn
  • Received Date: 8 May 2023
    Revised Date: 6 June 2023
    Accepted Date: 6 June 2023
    Available Online: 13 June 2023

    Fund Project: the Key R&D Program of Shandong Province 2021CXGC010401the National Natural Science Foundation of China U1932205the National Natural Science Foundation of China 52002197

  • Solid-state lithium batteries (SSLBs) have the potential to further boost the energy density of Li-ion batteries and improve their safety by facilitating the use of Li-metal anodes and limiting flammability, respectively. Solid electrolytes, as key SSLB materials, significantly impact battery performance, among which composite polymer/garnet electrolytes are promising materials for manufacturing SSLBs on a large scale, owing to polymer electrolyte processing ease in combination with the thermal stabilities and high ionic conductivities of garnet electrolytes, both of which are beneficial. Uniformly dispersing garnet particles in the polymer matrix is important for ensuring a highly ionically conductive composite polymer electrolyte. However, high nanoparticle surface energies and incompatible organic–inorganic interfaces lead to garnet particle agglomeration in the polymer matrix and a poorly ionically conductive composite electrolyte. With the aim of promoting Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particle dispersion in both solvents and polymer matrices, in this study, we introduced the 3-glycidyloxypropyl trimethoxy silane (GPTMS) coupling agent onto the LLZTO surface. A 5-nm-thick GPTMS shell was constructed on each LLZTO nanoparticle by covalently bonding GPTMS molecules on the surface of the nanoparticle. The lipophilic epoxy group in GPTMS enables the uniform dispersion of GPTMS-modified LLZTO nanoparticles (LLZTO@GPTMS) in organic solvents, such as acetonitrile, N-methylpyrrolidone, and N, N-dimethylformamide. Particle-size-distribution experiments reveal that LLZTO-nanoparticle dispersity is positively correlated with solvent polarity. Well-dispersed LLZTO suspensions led to superior polyethylene-oxide-based (PEO-based) composite polymer electrolyte ionic conductivities of 2.31 × 10−4 S∙cm−1 at 30 ℃. Both symmetric lithium batteries and SSLBs that use LiFePO4 (LFP) cathodes, lithium-metal anodes, and the optimal PEO: LLZTO@GPTMS electrolyte exhibited prolonged cycling lives. Moreover, the polyethylene separator was homogeneously coated with LLZTO nanoparticles following GPTMS modification. LFP|Li batteries with LLZTO@GPTMS-coated PE separators exhibited better cycling stabilities than those of batteries with unmodified LLZTO/PE. This study demonstrated that GPTMS effectively improves LLZTO-nanoparticle dispersibility in both organic solvents and polymer matrices, which is also instructive for other organic–inorganic composite systems.
  • 加载中
    1. [1]

      Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Joule 2019, 3 (5), 1190. doi: 10.1016/j.joule.2019.03.019  doi: 10.1016/j.joule.2019.03.019

    2. [2]

      Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi: 10.1016/j.ensm.2020.11.038  doi: 10.1016/j.ensm.2020.11.038

    3. [3]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1399.  doi: 10.3866/PKU.WHXB201904085

    4. [4]

      Hu, X.; Zuo, D.; Cheng, S.; Chen, S.; Liu, Y.; Bao, W.; Deng, S.; Harris, S. J.; Wan, J. Chem. Soc. Rev. 2023, 52 (3), 1103. doi: 10.1039/D2CS00322H  doi: 10.1039/D2CS00322H

    5. [5]

      Mi, J.; Ma, J.; Chen, L.; Lai, C.; Yang, K.; Biao, J.; Xia, H.; Song, X.; Lv, W.; Zhong, G.; et al. Energy Storage Mater. 2022, 48, 375. doi: 10.1016/j.ensm.2022.02.048  doi: 10.1016/j.ensm.2022.02.048

    6. [6]

      Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. Appl. Phys. Lett. 2022, 121 (3), 7. doi: 10.1063/5.0098255  doi: 10.1063/5.0098255

    7. [7]

      Chen, X.; Jia, Z. Q.; Lv, H. M.; Wang, C. G.; Zhao, N.; Guo, X. X. J. Power Sources 2022, 545, 6. doi: 10.1016/j.jpowsour.2022.231939  doi: 10.1016/j.jpowsour.2022.231939

    8. [8]

      Li, W. K.; Zhao, N.; Bi, Z. J.; Guo, X. X. J. Inorg. Mater. 2022, 37 (2), 189. doi: 10.15541/jim20210486  doi: 10.15541/jim20210486

    9. [9]

      Wang, H.; An, H. W.; Shan, H. M.; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 37 (11), 2007070.  doi: 10.3866/PKU.WHXB202007070

    10. [10]

      Tufail, M. K.; Zhai, P.; Jia, M.; Zhao, N.; Guo, X. Energy Mater. Adv. 2023, 4, 0015. doi: 10.34133/energymatadv.0015  doi: 10.34133/energymatadv.0015

    11. [11]

      Zhai, P. B.; Yang, Z. L.; Wei, Y.; Guo, X. X.; Gong, Y. J. Adv. Energy Mater. 2022, 12 (42), 13. doi: 10.1002/aenm.202200967  doi: 10.1002/aenm.202200967

    12. [12]

      Chen, L. K.; Gu, T.; Ma, J. B.; Yang, K.; Shi, P. R.; Biao, J.; Mi, J. S.; Liu, M.; Lv, W.; He, Y. B. Nano Energy 2022, 100, 10. doi: 10.1016/j.nanoen.2022.107470  doi: 10.1016/j.nanoen.2022.107470

    13. [13]

      Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Adv. Energy Mater. 2019, 9 (17), 8. doi: 10.1002/aenm.201804004  doi: 10.1002/aenm.201804004

    14. [14]

      Mu, S.; Bi, Z. J.; Gao, S. H.; Guo, X. X. Chem. Res. Chin. Univ. 2021, 37 (2), 246. doi: 10.1007/s40242-021-1054-1  doi: 10.1007/s40242-021-1054-1

    15. [15]

      Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Nano Energy 2016, 28, 447. doi: 10.1016/j.nanoen.2016.09.002  doi: 10.1016/j.nanoen.2016.09.002

    16. [16]

      Yu, X. R.; Ma, J.; Mou, C. B.; Cui, G. L. Acta Phys. -Chim. Sin. 2022, 38 (3), 1912061.  doi: 10.3866/PKU.WHXB201912061

    17. [17]

      Zhai, P. B.; Chang, D. M.; Bi, Z. J.; Zhao, N.; Guo, X. X. Energy Storage Sci. Technol. 2022, 11 (9), 2847. doi: 10.19799/j.cnki.2095-4239.2022.0097  doi: 10.19799/j.cnki.2095-4239.2022.0097

    18. [18]

      Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. Nano Energy 2018, 46, 176. doi: 10.1016/j.nanoen.2017.12.037  doi: 10.1016/j.nanoen.2017.12.037

    19. [19]

      Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. J. Mater. Chem. A 2019, 7 (27), 16425. doi: 10.1039/c9ta03395e  doi: 10.1039/c9ta03395e

    20. [20]

      Li, L. S.; Deng, Y. F.; Chen, G. H. J. Energy Chem. 2020, 50, 154. doi: 10.1016/j.jechem.2020.03.017  doi: 10.1016/j.jechem.2020.03.017

    21. [21]

      Zagorski, J.; del Amo, J. M. L.; Cordill, M. J.; Aguesse, F.; Buannic, L.; Llordes, A. ACS Appl. Energ. Mater. 2019, 2 (3), 1734. doi: 10.1021/acsaem.8b01850  doi: 10.1021/acsaem.8b01850

    22. [22]

      Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36 (9), 1454. doi: 10.1039/b608177k  doi: 10.1039/b608177k

    23. [23]

      Shrestha, S.; Wang, B.; Dutta, P. Adv. Colloid Interface Sci. 2020, 279, 16. doi: 10.1016/j.cis.2020.102162  doi: 10.1016/j.cis.2020.102162

    24. [24]

      Jia, M. Y.; Zhao, N.; Bi, Z. J.; Fu, Z. Q.; Xu, F. F.; Shi, C.; Guo, X. X. ACS Appl. Mater. Interfaces 2020, 12 (41), 46162. doi: 10.1021/acsami.0c13434  doi: 10.1021/acsami.0c13434

    25. [25]

      Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Prog. Polym. Sci. 2013, 38 (8), 1232. doi: 10.1016/j.progpolymsci.2013.02.003  doi: 10.1016/j.progpolymsci.2013.02.003

    26. [26]

      Xie, Y. J.; Hill, C. A. S.; Xiao, Z. F.; Militz, H.; Mai, C. Compos. Pt. A-Appl. Sci. Manuf. 2010, 41 (7), 806. doi: 10.1016/j.compositesa.2010.03.005  doi: 10.1016/j.compositesa.2010.03.005

    27. [27]

      Li, C.; Liang, Z.; Li, Z.; Cao, D.; Zuo, D.; Chang, J.; Wang, J.; Deng, Y.; Liu, K.; Kong, X.; et al. Nano Lett. 2023, 23 (9), 4014. doi: 10.1021/acs.nanolett.3c00783  doi: 10.1021/acs.nanolett.3c00783

    28. [28]

      Yan, C. Y.; Zhu, P.; Jia, H.; Du, Z.; Zhu, J. D.; Orenstein, R.; Cheng, H.; Wu, N. Q.; Dirican, M.; Zhang, X. W. Energy Storage Mater. 2020, 26, 448. doi: 10.1016/j.ensm.2019.11.018  doi: 10.1016/j.ensm.2019.11.018

    29. [29]

      Zhang, Z. Y.; Zhang, S.; Geng, S. X.; Zhou, S. B.; Hu, Z. L.; Luo, J. Y. Energy Storage Mater. 2022, 51, 19. doi: 10.1016/j.ensm.2022.06.025  doi: 10.1016/j.ensm.2022.06.025

    30. [30]

      Li, X. X.; Zheng, B. Y.; Xu, L. M.; Wu, D. D.; Liu, Z. L.; Zhang, H. C. Rare Metal Mat. Eng. 2012, 41 (1), 24. doi: 10.1016/s1875-5372(12)60024-1  doi: 10.1016/s1875-5372(12)60024-1

    31. [31]

      Li, H.; Wang, C. A.; Guo, Z. H.; Wang, H. R.; Zhang, Y. X.; Hong, R.; Peng, Z. R. Effects of Silane Coupling Agents on the Electrical Properties of Silica/Epoxy Nanocomposites, In IEEE International Conference on Dielectrics (ICD), Montpellier, France July 03–07; IEEE: Montpellier, France, 2016; pp. 1036.

    32. [32]

      Jia, M. Y.; Bi, Z. J.; Shi, C.; Zhao, N.; Guo, X. X. J. Power Sources 2021, 486, 7. doi: 10.1016/j.jpowsour.2020.229363  doi: 10.1016/j.jpowsour.2020.229363

    33. [33]

      Gu, J.; Zhang, Q.; Dang, J.; Zhang, J.; Chen, S. Polym. Bull. 2009, 62 (5), 689. doi: 10.1007/s00289-009-0045-z  doi: 10.1007/s00289-009-0045-z

    34. [34]

      Yan, B.; Kotobuki, M.; Liu, J. Mater. Technol. 2016, 31 (11), 623. doi: 10.1080/10667857.2016.1196033  doi: 10.1080/10667857.2016.1196033

    35. [35]

      Song, S. D.; Chen, B. T.; Ruan, Y. L.; Sun, J.; Yu, L. M.; Wang, Y.; Thokchom, J. Electrochim. Acta 2018, 270, 501. doi: 10.1016/j.electacta.2018.03.101  doi: 10.1016/j.electacta.2018.03.101

    36. [36]

      Ghadimi, A.; Metselaar, I. H. Exp. Therm. Fluid Sci. 2013, 51, 1. doi: 10.1016/j.expthermflusci.2013.06.001  doi: 10.1016/j.expthermflusci.2013.06.001

    37. [37]

      Jiang, L. Q.; Gao, L.; Sun, J. J. Colloid Interface Sci. 2003, 260 (1), 89. doi: 10.1016/s0021-9797(02)00176-5  doi: 10.1016/s0021-9797(02)00176-5

    38. [38]

      Sadeghi, R.; Etemad, S. G.; Keshavarzi, E.; Haghshenasfard, M. Microfluid. Nanofluid. 2015, 18 (5–6), 1023. doi: 10.1007/s10404-014-1491-y  doi: 10.1007/s10404-014-1491-y

    39. [39]

      Isaac, J. A.; Devaux, D.; Bouchet, R. Nat. Mater. 2022, 21(12), 1412. doi: 10.1038/s41563-022-01343-w  doi: 10.1038/s41563-022-01343-w

    40. [40]

      Huang, W. L.; Zhao, N.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Mater. Today Nano 2020, 10, 100075. doi: 10.1016/j.mtnano.2020.100075  doi: 10.1016/j.mtnano.2020.100075

    41. [41]

      Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. Adv. Mater. 2020, 32 (17), 8. doi: 10.1002/adma.202000399  doi: 10.1002/adma.202000399

  • 加载中
    1. [1]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    3. [3]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    10. [10]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    11. [11]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    12. [12]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    16. [16]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    17. [17]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(6)
  • Abstract views(745)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return