Citation: Yinjie Xu, Suiqin Li, Lihao Liu, Jiahui He, Kai Li, Mengxin Wang, Shuying Zhao, Chun Li, Zhengbin Zhang, Xing Zhong, Jianguo Wang. Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230501. doi: 10.3866/PKU.WHXB202305012 shu

Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals

  • Corresponding author: Xing Zhong, zhongx@zjut.edu.cn Jianguo Wang, jgw@zjut.edu.cn
  • Received Date: 8 May 2023
    Revised Date: 3 June 2023
    Accepted Date: 7 June 2023
    Available Online: 15 June 2023

    Fund Project: the National Key Research and Development Program of China 2022YFA1504200the National Key Research and Development Program of China 2021YFA1500903the Zhejiang Provincial Natural Science Foundation LR22B060003the National Natural Science Foundation of China 22078293the National Natural Science Foundation of China 21625604the National Natural Science Foundation of China 91934302the National Natural Science Foundation of China 22141001

  • Conventional oxidation methods of sterol intermediates using the heavy metal chromium as an oxidant has critical drawbacks, such as high toxicity and environmental pollution. Electrocatalytic oxidation (ECO), on the other hand, is considered a promising alternative to conventional processes owing to its high efficiency, eco-friendliness, and controllability. However, ECO currently faces two major challenges: low current densities and reduced space-time yields. In this study, a single-step solvothermal method was employed to synthesize self-supported nickel-iron metal-organic framework (NiFe-MOF) nanosheet electrocatalysts on graphite felt. Various analytical techniques were employed to comprehensively characterize the synthesized NiFe-MOF, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) analysis Furthermore, we implemented a synergistic electrocatalytic strategy by combining the NiFe-MOF catalyst with aminoxyl radicals, i.e., 4-acetamido-2, 2, 6, 6-tetramethyl-1-piperidine-N-oxyl (ACT), to enhance the performance of the ECO reaction. According to the results of structural characterization, the synthesized NiFe-MOF exhibited an amorphous nanosheet structure with a high specific surface area and microporosity. Moreover, we successfully achieved continuous flow with enhanced mass transfer during the electrocatalytic oxidation of 19-hydroxy-4-androstene-3, 17-dione (1a) at a current density of 100 mA∙cm−2. The optimal reaction conditions for the ECO reaction were as follows: 100 mmol∙L−1 concentration of 1a, 10% (molar fraction) of ACT, a 1 mol∙L−1 Na2CO3/acetonitrile electrolyte (6 : 4), room temperature, pH 12.5, and a flow rate of 225 mL∙min−1. Under these conditions, the conversion and selectivity of the reaction reached outstanding levels of 99 and 98%, respectively. Moreover, the space-time yield was calculated to be as high as 15.88 kg∙m−3∙h−1, with a remarkable 35-fold increase compared to that achieved in a batch reactor. The NiFe-MOF/ACT synergistic system demonstrated a high conversion rate for ECO even after 10 reaction cycles. To assess the system's efficacy in converting other sterols, we conducted an analysis of substrate expansion, which yielded conversion rates exceeding 95%. The SEM, transmission electron microscopy (TEM), and XPS results of the catalyst obtained before and after the reaction indicated that the alkaline electrolyte could effectively reconstitute the NiFe-MOF structure, leading to a significant improvement in its performance. By leveraging a ten-fold increased surface area of the NiFe-MOF and constructing a continuous flow electroreactor for ECO with a constant current, we achieved a remarkable space-time yield of 12.99 kg∙m−3∙h−1. Thus, we developed a synergistic electrocatalytic oxidation strategy based on NiFe-MOF/ACT, and this study not only provides valuable insights for realizing the selective oxidation of sterols but also contributes to the advancement of sustainable and efficient chemical processes.
  • 加载中
    1. [1]

      Peng, H.; Wang, Y.; Jiang, K.; Chen, X.; Zhang, W.; Zhang, Y.; Deng, Z.; Qu, X. Angew. Chem. Int. Ed. 2021, 60, 5414. doi: 10.1002/anie.202015462  doi: 10.1002/anie.202015462

    2. [2]

      Bansal, R.; Singh, R. Med. Res. Rev. 2018, 38, 1126. doi: 10.1002/med.21458  doi: 10.1002/med.21458

    3. [3]

      Disha; Nayak, M.; Kumari, P.; Patel, M.; Kumar, P. Trends Anal. Chem. 2022, 150, 116571. doi: 10.1016/j.trac.2022.116571  doi: 10.1016/j.trac.2022.116571

    4. [4]

      Grainger, W. S.; Parish, E. J. Steroids 2015, 101, 103. doi: 10.1016/j.steroids.2015.06.005  doi: 10.1016/j.steroids.2015.06.005

    5. [5]

      Su, B. -M.; Zhao, H. -R.; Xu, L.; Xu, X. Q.; Wang, L. C.; Lin, J.; Lin, W. ACS Sustain. Chem. Eng. 2022, 10, 3373. doi: 10.1021/acssuschemeng.2c00411  doi: 10.1021/acssuschemeng.2c00411

    6. [6]

      Hilario-Martínez, J. C.; Murillo, F.; García-Méndez, J.; Dzib, E.; Sandoval-Ramírez, J.; Muñoz-Hernández, M. Á.; Bernès, S.; Kürti, L.; Duarte, F.; Merino, G.; et al. Chem. Sci. 2020, 11, 12764. doi: 10.1039/d0sc01701a  doi: 10.1039/d0sc01701a

    7. [7]

      Tang, D.; Lu, G.; Shen, Z.; Hu, Y.; Yao, L.; Li, B.; Zhao, G.; Peng, B.; Huang, X. J. Energy Chem. 2023, 77, 80. doi: 10.1016/j.jechem.2022.10.038  doi: 10.1016/j.jechem.2022.10.038

    8. [8]

      Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 738. doi: 10.1021/jacs.6b09705  doi: 10.1021/jacs.6b09705

    9. [9]

      Duan, H.; Wang, H.; Huang, W. Acta Phys. -Chim. Sin. 2021, 37, 2003005.  doi: 10.3866/PKU.WHXB202003005

    10. [10]

      Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Lu, J.; Du, H. Carbon Energy 2023, 5, e339. doi: 10.1002/cey2.339  doi: 10.1002/cey2.339

    11. [11]

      Xiang, J.; Li, J.; Yang, X.; Gao, S.; Cao, R. Acta Phys. -Chim. Sin. 2023, 39, 2205039.  doi: 10.3866/PKU.WHXB202205039

    12. [12]

      You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564. doi: 10.1021/acscatal.7b00876  doi: 10.1021/acscatal.7b00876

    13. [13]

      Li, R.; Kuang, P.; Wang, L.; Tang, H.; Yu, J. Chem. Eng. J. 2022, 431, 134137. doi: 10.1016/j.cej.2021.134137  doi: 10.1016/j.cej.2021.134137

    14. [14]

      Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. J. Mater. Chem. A 2023, 11, 6375. doi: 10.1039/d2ta09426f  doi: 10.1039/d2ta09426f

    15. [15]

      Chen, Z.; Zhou, H.; Kong, F.; Wang, M. Appl. Catal. B 2022, 309, 121281. doi: 10.1016/j.apcatb.2022.121281  doi: 10.1016/j.apcatb.2022.121281

    16. [16]

      Zhong, X.; Hoque, M. A.; Graaf, M. D.; Harper, K. C.; Wang, F.; Genders, J. D.; Stahl, S. S. Org. Process. Res. Dev. 2021, 25, 2601. doi: 10.1021/acs.oprd.1c00036  doi: 10.1021/acs.oprd.1c00036

    17. [17]

      Li, S.; Wang, S.; Wang, Y.; He, J.; Li, K.; Xu, Y.; Wang, M.; Zhao, S.; Li, X.; Zhong, X.; et al. Adv. Funct. Mater. 2023, 33, 2214488. doi: 10.1002/adfm.202214488  doi: 10.1002/adfm.202214488

    18. [18]

      Li, S.; Li, C.; Li, K.; Sun, X.; Zhong, X.; He, J.; Xu, Z.; Liu, X.; Zhang, J.; Shao, F.; et al. Chem. Eng. J. 2022, 446, 2. doi: 10.1016/j.cej.2022.136659  doi: 10.1016/j.cej.2022.136659

    19. [19]

      Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys. -Chim. Sin. 2021, 37, 2010025.  doi: 10.3866/PKU.WHXB202010025

    20. [20]

      Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E. C. M.; Liu, J. Angew. Chem. Int. Ed. 2021, 60, 12770. doi: 10.1002/anie.202101878  doi: 10.1002/anie.202101878

    21. [21]

      Taffa, D. H.; Balkenhohl, D.; Amiri, M.; Wark, M. Small Struct. 2022, 263, 263. doi: 10.1002/sstr.202200263  doi: 10.1002/sstr.202200263

    22. [22]

      Chang, G.; Zhou, Y.; Wang, J.; Zhang, H.; Yan, P.; Wu, H. B.; Yu, X. Y. Small 2023, 19, 2206768. doi: 10.1002/smll.202206768  doi: 10.1002/smll.202206768

    23. [23]

      Das, A.; Stahl, S. S. Angew. Chem. Int. Ed. 2017, 56, 8892. doi: 10.1002/anie.201704921  doi: 10.1002/anie.201704921

    24. [24]

      Ma, Z.; Mahmudov, K. T.; Aliyeva, V. A.; Gurbanov, A. V.; Pombeiro, A. J. L. Coord. Chem. Rev. 2020, 423, 213482. doi: 10.1016/j.ccr.2020.213482  doi: 10.1016/j.ccr.2020.213482

    25. [25]

      Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 673. doi: 10.1021/acscatal.8b01640  doi: 10.1021/acscatal.8b01640

    26. [26]

      Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561. doi: 10.1021/acs.accounts.9b00544  doi: 10.1021/acs.accounts.9b00544

    27. [27]

      Goes, S. L.; Mayer, M. N.; Nutting, J. E.; Hoober-Burkhardt, L. E.; Stahl, S. S.; Rafiee, M. J. Chem. Educ. 2021, 98, 600. doi: 10.1021/acs.jchemed.0c01244  doi: 10.1021/acs.jchemed.0c01244

    28. [28]

      Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406. doi: 10.1038/nature18008  doi: 10.1038/nature18008

    29. [29]

      Nutting, J. E.; Mao, K.; Stahl, S. S. J. Am. Chem. Soc. 2021, 143, 10565. doi: 10.1021/jacs.1c05224  doi: 10.1021/jacs.1c05224

    30. [30]

      Wang, H.; Xu, L.; Jingcheng, W.; Wu, J.; Zhou, P.; Tao, S.; Lu, Y.; Wu, X.; Zou, Y. Chin. J. Catal. 2023, 46, 148. doi: 10.1016/s1872-2067(22)64203-7  doi: 10.1016/s1872-2067(22)64203-7

    31. [31]

      Zhang, Y.; Xie, K.; Zhou, F.; Wang, F.; Xu, Q.; Hu, J.; Ding, H.; Li, P.; Tan, Y.; Li, D.; et al. Adv. Energy Mater. 2022, 12, 29. doi: 10.1002/aenm.202201027  doi: 10.1002/aenm.202201027

    32. [32]

      Hao, H.; Zhang, Q. -A.; Feng, Z.; Tang, A. Chem. Eng. J. 2022, 450, 139170. doi: 10.1016/j.cej.2022.138170  doi: 10.1016/j.cej.2022.138170

    33. [33]

      Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Angew. Chem. Int. Ed. 2023, 62, e202300478. doi: 10.1002/anie.202300478  doi: 10.1002/anie.202300478

    34. [34]

      Lin, Z.; Richardson, J. J.; Zhou, J.; Caruso, F. Nat. Rev. Chem. 2023, 7, 273. doi: 10.1038/s41570-023-00474-1  doi: 10.1038/s41570-023-00474-1

    35. [35]

      Liu, D.; Xu, H.; Wang, C.; Ye, C.; Yu, R.; Du, Y. J. Mater. Chem. A 2021, 9, 24670. doi: 10.1039/d1ta06438j  doi: 10.1039/d1ta06438j

    36. [36]

      Liu, J.; Ji, Y.; Nai, J.; Niu, X.; Luo, Y.; Guo, L.; Yang, S. Energy Environ. Sci. 2018, 11, 1736. doi: 10.1039/c8ee00611c  doi: 10.1039/c8ee00611c

    37. [37]

      Li, B.; Zeng, H. C. Chem. Mater. 2019, 31, 5320. doi: 10.1021/acs.chemmater.9b02070  doi: 10.1021/acs.chemmater.9b02070

    38. [38]

      Li, Y.; Ma, W.; Yang, H.; Tian, Q.; Xu, Q.; Han, B. Chem. Commun. 2022, 58, 6833. doi: 10.1039/d2cc01163h  doi: 10.1039/d2cc01163h

    39. [39]

      Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584. doi: 10.1002/aenm.201800584  doi: 10.1002/aenm.201800584

    40. [40]

      Wei, K.; Wang, X.; Jiao, X.; Li, C.; Chen, D.; Lin, Y. Appl. Surf. Sci. 2021, 550, 149323. doi: 10.1016/j.apsusc.2021.149323  doi: 10.1016/j.apsusc.2021.149323

    41. [41]

      Liu, Y.; Li, X.; Sun, Q.; Wang, Z.; Huang, W. H.; Guo, X.; Fan, Z.; Ye, R.; Zhu, Y.; Chueh, C. C.; et al. Small 2022, 18, 26. doi: 10.1002/smll.202201076  doi: 10.1002/smll.202201076

    42. [42]

      Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L.; Li, G. R. Angew. Chem. Int. Ed. 2022, 61, e202116934. doi: 10.1002/anie.202116934  doi: 10.1002/anie.202116934

    43. [43]

      Rinawati, M.; Wang, Y. -X.; Chen, K. -Y.; Yeh, M. -H. Chem. Eng. J 2021, 423, 130204. doi: 10.1016/j.cej.2021.130204  doi: 10.1016/j.cej.2021.130204

    44. [44]

      Wang, Y.; Liu, B.; Shen, X.; Arandiyan, H.; Zhao, T.; Li, Y.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A.; et al. Adv. Energy Mater. 2021, 11, 16. doi: 10.1002/aenm.202003759  doi: 10.1002/aenm.202003759

    45. [45]

      Zhu, J.; Qian, J.; Peng, X.; Xia, B.; Gao, D. Nanomicro. Lett. 2023, 15, 30. doi: 10.1007/s40820-022-01011-3  doi: 10.1007/s40820-022-01011-3

    46. [46]

      Xu, X.; Song, F.; Hu, X. Nat. Commun. 2016, 7, 12324. doi: 10.1038/ncomms12324  doi: 10.1038/ncomms12324

    47. [47]

      Guo, C.; Chen, Q.; Zhong, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Ind. Eng. Chem. Res. 2023, 62, 4356. doi: 10.1021/acs.iecr.2c04643  doi: 10.1021/acs.iecr.2c04643

    48. [48]

      Liu, X.; Xia, F.; Guo, R.; Huang, M.; Meng, J.; Wu, J.; Mai, L. Adv. Funct. Mater. 2021, 31, 31. doi: 10.1002/adfm.202101792  doi: 10.1002/adfm.202101792

    49. [49]

      Wu, Y.; Yang, J.; Tu, T.; Li, W.; Zhang, P.; Zhou, Y.; Li, J.; Li, J.; Sun, S. Angew. Chem. Int. Ed. 2021, 60, 26829. doi: 10.1002/ange.202112447  doi: 10.1002/ange.202112447

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(1)
  • Abstract views(638)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return