Citation: Ying Li, Yushen Zhao, Kai Chen, Xu Liu, Tingfeng Yi, Li-Feng Chen. Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230500. doi: 10.3866/PKU.WHXB202305007 shu

Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes

  • Corresponding author: Tingfeng Yi, tfyihit@163.com Li-Feng Chen, chenlf@ustc.edu.cn
  • Received Date: 8 May 2023
    Revised Date: 5 June 2023
    Accepted Date: 20 June 2023
    Available Online: 28 June 2023

    Fund Project: the National Natural Science Foundation of China 52374301the National Natural Science Foundation of China U1960107the National Natural Science Foundation of China 22075269the National Natural Science Foundation of China U2230101the National Natural Science Foundation of China GG2090007003the Anhui Provincial Major Science and Technology Project 202203a05020048the Fundamental Research Funds for the Central Universities N2123001the Fundamental Research Funds for the Central Universities WK2480000007the Hefei Innovative Program for Overseas Excellent Scholar BJ2090007002USTC Startup Program KY2090000062USTC Startup Program KY2090000098USTC Startup Program KY2090000099the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province 22567627H

  • Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh∙g−1) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ∼260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh∙g−1 at a current density of 2 A∙g−1 even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the SnxLiy alloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.
  • 加载中
    1. [1]

      Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Resour. Conserv. Recy. 2021, 168, 105249. doi: 10.1016/j.resconrec.2020.105249  doi: 10.1016/j.resconrec.2020.105249

    2. [2]

      Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. Int. J. Heat Mass Trans. 2021, 167, 120834. doi: 10.1016/j.ijheatmasstransfer.2020.120834  doi: 10.1016/j.ijheatmasstransfer.2020.120834

    3. [3]

      Zhang, L. S.; Gao, X. L.; Liu, X. H.; Zhang, Z. J.; Cao, R.; Cheng, H. C.; Wang, M. Y.; Yan, X. Y.; Yang, S. C. Rare Met. 2022, 41, 1477. doi: 10.1007/s12598-021-01925-8  doi: 10.1007/s12598-021-01925-8

    4. [4]

      Sun, Y.; Shi, X. L.; Yang, Y. L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z. G. Adv. Funct. Mater. 2022, 32, 2201584. doi: 10.1002/adfm.202201584  doi: 10.1002/adfm.202201584

    5. [5]

      Khossossi, N.; Luo, W.; Haman, Z.; Singh, D.; Essaoudi, I.; Ainane, A.; Ahuja, R. Nano Energy 2022, 96, 107066. doi: 10.1016/j.nanoen.2022.107066  doi: 10.1016/j.nanoen.2022.107066

    6. [6]

      Kuznetsov, O. A.; Mohanty, S.; Pigos, E.; Chen, G.; Cai, W.; Harutyunyan, A. R. Energy Storage Mater. 2023, 54, 266. doi: 10.1016/j.ensm.2022.10.023  doi: 10.1016/j.ensm.2022.10.023

    7. [7]

      Zhou, W.; Chen, J.; Xu, X.; Han, X.; Chen, M.; Yang, L.; Hirano, S. -I. J. Colloid Interface Sci. 2022, 612, 679. doi: 10.1016/j.jcis.2022.01.011  doi: 10.1016/j.jcis.2022.01.011

    8. [8]

      Wang, S.; Tang, C.; Huang, Y.; Gong, J. Chin. Chem. Lett. 2022, 33, 3802. doi: 10.1016/j.cclet.2021.11.037  doi: 10.1016/j.cclet.2021.11.037

    9. [9]

      Ding, X. B.; Huang, Q. H.; Xiong, X. H. Acta Phys. -Chim. Sin. 2022, 38, 2204057.  doi: 10.3866/PKU.WHXB202204057

    10. [10]

      Garcia-Gil, A.; Biswas, S.; McNulty, D.; Roy, A.; Ryan, K. M.; Nicolosi, V.; Holmes, J. D. Adv. Mater. Interfaces 2022, 9, 2201170. doi: 10.1002/admi.202201170  doi: 10.1002/admi.202201170

    11. [11]

      Xu, G. L.; Gong, Y. D.; Miao, C.; Wang, Q.; Nie, S. Q.; Xin, Y.; Wen, M. Y.; Liu, J.; Xiao, W. Rare Met. 2022, 41, 3421. doi: 10.1007/s12598-022-02073-3  doi: 10.1007/s12598-022-02073-3

    12. [12]

      Li, Y.; Lai, X. Q.; Qu, J. P.; Lai, Q. Z.; Yi, T. F. Acta Phys. -Chim. Sin. 2022, 38, 2204049.  doi: 10.3866/PKU.WHXB202204049

    13. [13]

      Wang, G.; Li, Y.; Jiao, S.; Li, J.; Peng, B.; Shi, L.; Zhang, G. J. Mater. Chem. A 2020, 8, 24774. doi: 10.1039/D0TA08535A  doi: 10.1039/D0TA08535A

    14. [14]

      Lyu, Z.; Koh, J. J.; Lim, G. J. H.; Zhang, D.; Xiong, T.; Zhang, L.; Liu, S.; Duan, J.; Ding, J.; Wang, J.; et al. Interdiscip. Mater. 2022, 1, 507. doi: 10.1002/idm2.12027  doi: 10.1002/idm2.12027

    15. [15]

      Wang, S.; Li, L.; Zheng, S.; Das, P.; Shi, X.; Ma, J.; Liu, Y.; Zhu, Y.; Lu, Y.; Wu, Z. S.; et al. Natl. Sci. Rev. 2023, 10, nwac271. doi: 10.1093/nsr/nwac271  doi: 10.1093/nsr/nwac271

    16. [16]

      Lyu, Z.; Lim, G. J. H.; Koh, J. J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Joule 2021, 5, 89. doi: 10.1016/j.joule.2020.11.010  doi: 10.1016/j.joule.2020.11.010

    17. [17]

      Sun, J. L.; Ma, L.; Sun, H. C.; Xu, Y. H.; Li, J. L.; Mai, W. J.; Liu, B. T. Chem. Eng. J. 2023, 455, 140902. doi: 10.1016/j.cej.2022.140902  doi: 10.1016/j.cej.2022.140902

    18. [18]

      Wang, C.; Sheng, L. Z.; Jiang, M. H.; Lin, X. R.; Wang, Q.; Guo, M. Q.; Wang, G.; Zhou, X. M.; Zhang, X.; Shi, J. Y.; et al. J. Power Sources 2023, 555, 232405. doi: 10.1016/j.jpowsour.2022.232405  doi: 10.1016/j.jpowsour.2022.232405

    19. [19]

      Li, J.; Zou, P.; Wang, R.; Yang, C. IOP Conf. Ser. : Earth Environ. Sci. 2019, 300, 042021. doi: 10.1088/1755-1315/300/4/042021  doi: 10.1088/1755-1315/300/4/042021

    20. [20]

      Kim, J. -C.; Kim, D. -W. Chem-Asian J. 2014, 9, 3313. doi: 10.1002/asia.201402849  doi: 10.1002/asia.201402849

    21. [21]

      Wang, P.; Zhu, K.; Ye, K.; Gong, Z.; Liu, R.; Cheng, K.; Wang, G.; Yan, J.; Cao, D. J. Colloid Interface Sci. 2020, 561, 203. doi: 10.1016/j.jcis.2019.11.091  doi: 10.1016/j.jcis.2019.11.091

    22. [22]

      Yan, X.; Liang, S.; Shi, H.; Hu, Y.; Liu, L.; Xu, Z. J. Colloid Interface Sci. 2021, 583, 535. doi: 10.1016/j.jcis.2020.09.025  doi: 10.1016/j.jcis.2020.09.025

    23. [23]

      Tomboc, G. M.; Wang, Y.; Wang, H.; Li, J.; Lee, K. Energy Storage Mater. 2021, 39, 21. doi: 10.1016/j.ensm.2021.04.009  doi: 10.1016/j.ensm.2021.04.009

    24. [24]

      Yang, C.; Ren, J.; Zheng, M.; Zhang, M.; Zhong, Z.; Liu, R.; Huang, J.; Lan, J.; Yu, Y.; Yang, X. Electrochim. Acta 2020, 359, 136898. doi: 10.1016/j.electacta.2020.136898  doi: 10.1016/j.electacta.2020.136898

    25. [25]

      Duan, Y. S.; Du, S. L.; Tao, H. C.; Yang, X. L. Ionics 2021, 27, 1403. doi: 10.1007/s11581-021-03906-4  doi: 10.1007/s11581-021-03906-4

    26. [26]

      Tang, S. Y.; Lu, G. T.; Su, Y.; Wang, G.; Li, X. Z.; Zhang, G. Q.; Wei, Y.; Zhang, Y. G. Acta Phys. -Chim. Sin. 2022, 38, 2001007.  doi: 10.3866/PKU.WHXB202001007

    27. [27]

      Liu, T.; Peng, N.; Zhang, X.; Zheng, R.; Xia, M.; Yu, H.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2021, 79, 105460. doi: 10.1016/j.nanoen.2020.105460  doi: 10.1016/j.nanoen.2020.105460

    28. [28]

      Liu, Y. C.; Fan, L. Z.; Jiao, L. F. J. Mater. Chem. A 2017, 5, 1698. doi: 10.1039/c6ta09961k  doi: 10.1039/c6ta09961k

    29. [29]

      Zhao, W.; Hu, X.; Ci, S.; Chen, J.; Wang, G.; Xu, Q.; Wen, Z. Small 2019, 15, e1904054. doi: 10.1002/smll.201904054  doi: 10.1002/smll.201904054

    30. [30]

      Chen, C.; Lu, Y.; Ge, Y.; Zhu, J.; Jiang, H.; Li, Y.; Hu, Y.; Zhang, X. Energy Technol. 2016, 4, 1440. doi: 10.1002/ente.201600205  doi: 10.1002/ente.201600205

    31. [31]

      Huang, Q. Y.; Hu, J. B.; Zhang, M.; Li, M. X.; Li, T.; Yuan, G. M.; Liu, Y.; Zhang, X.; Cheng, X. W. Chin. Chem. Lett. 2022, 33, 1091. doi: 10.1016/j.cclet.2021.06.088  doi: 10.1016/j.cclet.2021.06.088

    32. [32]

      Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi: 10.1016/j.est.2023.106716  doi: 10.1016/j.est.2023.106716

    33. [33]

      Fan, B.; Liu, J.; Xu, Y.; Tang, Q.; Zhang, Y.; Chen, X.; Hu, A. J. Alloys Compd. 2021, 857, 157920. doi: 10.1016/j.jallcom.2020.157920  doi: 10.1016/j.jallcom.2020.157920

    34. [34]

      Wu, K.; Feng, Y.; Huang, J.; Bai, C.; He, M. Chem. Phys. Lett. 2020, 756, 137832. doi: 10.1016/j.cplett.2020.137832  doi: 10.1016/j.cplett.2020.137832

    35. [35]

      Li, J.; Wang, G.; Yu, L.; Gao, J.; Li, Y.; Zeng, S.; Zhang, G. ACS Appl. Mater. Interfaces 2021, 13, 13139. doi: 10.1021/acsami.0c21883  doi: 10.1021/acsami.0c21883

    36. [36]

      Yang, Y.; Zhu, J. W.; Wang, P. Y.; Liu, H. M.; Zeng, W. H.; Chen, L.; Chen, Z. X.; Mu, S. C. Acta Phys. -Chim. Sin. 2022, 38, 2106002.  doi: 10.3866/PKU.WHXB202106002

    37. [37]

      Chen, C.; Li, G.; Zhu, J.; Lu, Y.; Jiang, M.; Hu, Y.; Shen, Z.; Zhang, X. Carbon 2017, 120, 380. doi: 10.1016/j.carbon.2017.05.072  doi: 10.1016/j.carbon.2017.05.072

    38. [38]

      Wang, Z.; Bai, J.; Xu, H.; Chen, G.; Kang, S.; Li, X. J. Colloid Interface Sci. 2020, 577, 329. doi: 10.1016/j.jcis.2020.05.035  doi: 10.1016/j.jcis.2020.05.035

    39. [39]

      Zhuo, R.; Quan, W.; Huang, X.; He, Q.; Sun, Z.; Zhang, Z.; Wang, J. Nanotechnology 2021, 32, 145402. doi: 10.1088/1361-6528/abd4a1  doi: 10.1088/1361-6528/abd4a1

    40. [40]

      Zhang, X.; Wang, C.; Dong, X.; Liang, J.; Gao, D.; Yang, W.; Zhang, Z. J. Solid State Chem. 2020, 290, 121543. doi: 10.1016/j.jssc.2020.121543  doi: 10.1016/j.jssc.2020.121543

    41. [41]

      Ying, H.; Zhang, S.; Meng, Z.; Sun, Z.; Han, W. -Q. J. Mater. Chem. A 2017, 5, 8334. doi: 10.1039/c7ta01480e  doi: 10.1039/c7ta01480e

    42. [42]

      Feng, Y.; Wu, K.; Dong, H.; Huang, X.; Bai, C.; Ke, J.; Xiong, D.; He, M. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 602, 125069. doi: 10.1016/j.colsurfa.2020.125069  doi: 10.1016/j.colsurfa.2020.125069

    43. [43]

      Bi, H.; Li, X.; Chen, J. J.; Zhang, L. X.; Bie, L. J. J. Mater. Sci. -Mater. Electron. 2020, 31, 22224. doi: 10.1007/s10854-020-04723-7  doi: 10.1007/s10854-020-04723-7

    44. [44]

      Zhang, L.; Liu, J.; Wang, W.; Li, D.; Wang, C.; Wang, P.; Zhu, K.; Li, Z. Mater. Chem. Phys. 2021, 260, 124199. doi: 10.1016/j.matchemphys.2020.124199  doi: 10.1016/j.matchemphys.2020.124199

    45. [45]

      Kang, Y.; Zhang, Y. -H.; Shi, Q.; Shi, H.; Xue, D.; Shi, F. -N. J. Colloid Interface Sci. 2021, 585, 705. doi: 10.1016/j.jcis.2020.10.050  doi: 10.1016/j.jcis.2020.10.050

    46. [46]

      Yang, Q.; Xia, Y.; Wu, G. H.; Li, M. Z.; Wan, S. Y.; Rao, P. G.; Wang, Z. L. J. Alloys Compd. 2021, 859, 8. doi: 10.1016/j.jallcom.2020.157799  doi: 10.1016/j.jallcom.2020.157799

    47. [47]

      Ding, S.; Cheng, W.; Zhang, L.; Du, G.; Hao, X.; Nie, G.; Xu, B.; Zhang, M.; Su, Q.; Serra, C. A. J. Colloid Interface Sci. 2021, 589, 308. doi: 10.1016/j.jcis.2020.12.086  doi: 10.1016/j.jcis.2020.12.086

    48. [48]

      Lu, X.; Luo, F.; Ji, Y.; Zhang, W.; Tian, Q.; Sui, Z.; Yang, L. J. Alloys Compd. 2021, 863, 158743. doi: 10.1016/j.jallcom.2021.158743  doi: 10.1016/j.jallcom.2021.158743

    49. [49]

      Zhu, J.; Zhang, Z.; Ding, X.; Cao, J. P.; Hu, G. J. Colloid Interface Sci. 2021, 587, 367. doi: 10.1016/j.jcis.2020.12.030  doi: 10.1016/j.jcis.2020.12.030

    50. [50]

      Gao, S. S.; Tang, Y. K.; Wang, L.; Liu, L.; Sun, Z. P.; Wang, S.; Zhao, H. Y.; Kong, L. B.; Jia, D. Z. ACS Sustain. Chem. Eng. 2018, 6, 3255. doi: 10.1021/acssuschemeng.7b03421  doi: 10.1021/acssuschemeng.7b03421

    51. [51]

      Zhang, B.; Yu, Y.; Xu, Z. -L.; Abouali, S.; Akbari, M.; He, Y. -B.; Kang, F.; Kim, J. -K. Adv. Energy Mater. 2014, 4, 1301448. doi: 10.1002/aenm.201301448  doi: 10.1002/aenm.201301448

    52. [52]

      Jin, J.; Shi, Z. -Q.; Wang, C. -Y. Electrochim. Acta 2014, 141, 302. doi: 10.1016/j.electacta.2014.07.079  doi: 10.1016/j.electacta.2014.07.079

    53. [53]

      Xing, B. L.; Zhang, C. T.; Liu, Q. R.; Zhang, C. X.; Huang, G. X.; Guo, H.; Cao, J. L.; Cao, Y. J.; Yu, J. L.; Chen, Z. F. J. Alloys Compd. 2019, 795, 91. doi: 10.1016/j.jallcom.2019.04.300  doi: 10.1016/j.jallcom.2019.04.300

    54. [54]

      Wang, Y. X.; Chou, S. L.; Kim, J. H.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2013, 93, 213. doi: 10.1016/j.electacta.2013.01.092  doi: 10.1016/j.electacta.2013.01.092

    55. [55]

      He, L.; Zhou, P.; Wang, L.; Zhang, M.; Huang, Q.; Su, Z.; Wang, X.; Xu, P.; Song, W.; Zou, R. J. Alloys Compd. 2022, 909, 164758. doi: 10.1016/j.jallcom.2022.164758  doi: 10.1016/j.jallcom.2022.164758

    56. [56]

      Lee, J.; Lee, N. E.; Lee, S. Y.; Cheon, S.; Cho, S. O. Mater. Today Sustain. 2023, 22, 100370. doi: 10.1016/j.mtsust.2023.100370  doi: 10.1016/j.mtsust.2023.100370

    57. [57]

      Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Energy Storage Mater. 2020, 25, 572. doi: 10.1016/j.ensm.2019.09.025  doi: 10.1016/j.ensm.2019.09.025

    58. [58]

      Ding, K.; Lee, J.; Lee, L. Y. S.; Wong, K. Y. J. Electroanal. Chem. 2022, 905, 115965. doi: 10.1016/j.jelechem.2021.115965  doi: 10.1016/j.jelechem.2021.115965

    59. [59]

      Liu, X. Q.; Zhu, S. L.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Luo, S. Y.; Chang, C. T.; Cui, Z. D. J. Alloys Compd. 2022, 892, 162083. doi: 10.1016/j.jallcom.2021.162083  doi: 10.1016/j.jallcom.2021.162083

    60. [60]

      Toh, C. -T.; Zhang, H.; Lin, J.; Mayorov, A. S.; Wang, Y. -P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z.; et al. Nature 2020, 577, 199. doi: 10.1038/s41586-019-1871-2  doi: 10.1038/s41586-019-1871-2

  • 加载中
    1. [1]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    5. [5]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    6. [6]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    9. [9]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    10. [10]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    15. [15]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(5)
  • Abstract views(776)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return