Citation: Yixuan Wang, Canhui Zhang, Xingkun Wang, Jiarui Duan, Kecheng Tong, Shuixing Dai, Lei Chu, Minghua Huang. Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230500. doi: 10.3866/PKU.WHXB202305004 shu

Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries

  • Corresponding author: Xingkun Wang, xingkunwang@163.com Minghua Huang, 
  • Received Date: 8 May 2023
    Revised Date: 26 July 2023
    Accepted Date: 27 July 2023
    Available Online: 10 August 2023

    Fund Project: the National Natural Science Foundation of China 52261145700the National Natural Science Foundation of China 22279124the Natural Science Foundation of Shandong Province ZR2022ZD30

  • With the depletion of fossil fuel resources and the increasing severity of environmental pollution, it has become imperative to seek energy conversion devices with low cost, high efficiency and excellent environmental compatibility. Considering their high theoretical energy density, affordability and environmentally friendly nature, Zn-air batteries (ZABs) are regarded as promising energy storage and conversion devices. The utilization of seawater in ZABs (S-ZABs) holds great potential, given the abundance of seawater reserves, offering economic and social benefits such as reducing electrolyte costs and alleviating competition for freshwater consumption in human activities. However, the application of S-ZABs remains challenging, particularly in constructing high-performance cathode oxygen reduction reaction (ORR) catalysts that are highly resistant to Cl corrosion in seawater-based electrolytes. In this study, we have engineered an ultrathin carbon-chainmail-shell encapsulated Co9Se8 nanoparticles on N-doped mesoporous carbon (named as NMC-Co9Se8) electrocatalysts using the high-temperature selenization strategy. The ultrathin carbon-chainmail-shell on the outside improves electron transfer during the electrocatalysis and suppresses nanoparticles agglomeration. Additionally, it could act as armor for protecting the inner active site from the adsorption of corrosive Cl. Benefit from this unique structure, the NMC-Co9Se8 catalyst exhibits excellent ORR performance, with an onset potential of 0.904 V and a half-wave potential of 0.860 V in seawater-based electrolytes. The catalyst also affords the lowest Tafel slope (35.5 mV∙dec−1) and the highest kinetics current density of 9.816 mA∙cm−2 at 0.85 V among all investigated samples. Owing to the protective effect of the ultrathin carbon-chainmail-shell on the inner active sites, the NMC-Co9Se8 catalyst retains 91.6% of its initial activity after continuous operation for 50000 s, surpassing the commercial Pt/C catalyst (with a current retention rate of 62.8%). More importantly, the S-ZABs based on the NMC-Co9Se8 catalyst deliver a high maximum power density of 172.4 mW∙cm−2 and a high specific capacity of 643.9 mAh∙g−1, exceeding those of S-ZABs powered by the commercial Pt/C catalyst (151.2 mW∙cm−2 and 548.3 mAh∙g−1). Furthermore, the S-ZABs driven by the NMC-Co9Se8 catalyst demonstrate a discharge stability for up to 150 h and maintain a stable charge-discharge cycle stability over 200 h, demonstrating the practical application performance of the NMC-Co9Se8 catalyst. In practical applications, the S-ZABs driven by the NMC-Co9Se8 catalyst can illuminate a light-emitting diode (LED) with a driving voltage of 2 V for several hours. This work provides new ideas for developing efficient and durable catalysts with high Cl corrosion resistance for applications in seawater-based Zn-air batteries and other energy conversion technologies.
  • 加载中
    1. [1]

      Wang, Y.; Wu, J.; Tang, S.; Yang, J.; Ye, C.; Chen, J.; Lei, Y.; Wang, D. Angew. Chem. Int. Ed. 2023, 62, 202219191. doi: 10.1002/anie.202219191  doi: 10.1002/anie.202219191

    2. [2]

      Yao, H.; Wang, X.; Li, K.; Li, C.; Zhang, C.; Zhou, J.; Cao, Z.; Wang, H.; Gu, M.; Huang, M.; et al. Appl. Catal. B-Environ. 2022, 312, 121378. doi: 10.1016/j.apcatb.2022.121378  doi: 10.1016/j.apcatb.2022.121378

    3. [3]

      Zhou, J.; Han, Z.; Wang, X.; Gai, H.; Chen, Z.; Guo, T.; Hou, X.; Xu, L.; Hu, X.; Huang, M.; et al. Adv. Funct. Mater. 2021, 31, 2102066. doi: 10.1002/adfm.202102066  doi: 10.1002/adfm.202102066

    4. [4]

      Zhu, P.; Xiong, X.; Wang, D. Nano Res. 2022, 15, 5792. doi: 10.1007/s12274-022-4265-y  doi: 10.1007/s12274-022-4265-y

    5. [5]

      Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Yu, J.; Chen, X.; Li, B. Q.; Zhang, Q. Adv. Mater. 2021, 33, 2008606. doi: 10.1002/adma.202008606  doi: 10.1002/adma.202008606

    6. [6]

      Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 19262. doi: 10.1002/anie.202105186  doi: 10.1002/anie.202105186

    7. [7]

      Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Adv. Powder Mater. 2022, 1, 100013. doi: 10.1016/j.apmate.2021.10.004  doi: 10.1016/j.apmate.2021.10.004

    8. [8]

      Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2022, 15, 3082. doi: 10.1007/s12274-021-3966-y  doi: 10.1007/s12274-021-3966-y

    9. [9]

      Xiong, Y.; Li, H.; Liu, C.; Zheng, L.; Liu, C.; Wang, J. O.; Liu, S.; Han, Y.; Gu, L.; Qian, J.; et al. Adv. Mater. 2022, 34, 2110653. doi: 10.1002/adma.202110653  doi: 10.1002/adma.202110653

    10. [10]

      Zhang, C.; Wang, X.; Song, K.; Chen, K.; Dai, S.; Wang, H.; Huang, M. Nano Res. 2023, 16, 1. doi: 10.1007/s12274-023-5578-1  doi: 10.1007/s12274-023-5578-1

    11. [11]

      Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y. Chem. Sci. 2019, 10, 8924. doi: 10.1039/c9sc04221k  doi: 10.1039/c9sc04221k

    12. [12]

      Wang, T.; Wu, J.; Liu, Y.; Cui, X.; Ding, P.; Deng, J.; Zha, C.; Coy, E.; Li, Y. Energy Storage Mater. 2019, 16, 24. doi: 10.1016/j.ensm.2018.04.020  doi: 10.1016/j.ensm.2018.04.020

    13. [13]

      Cui, B.; Shi, Y.; Li, G.; Chen, Y.; Chen, W.; Deng, Y.; Hu, W. Acta Phys. -Chim. Sin. 2021, 38, 2106010.  doi: 10.3866/PKU.WHXB202106010

    14. [14]

      Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi: 10.1021/jacs.2c13886  doi: 10.1021/jacs.2c13886

    15. [15]

      Pan, Y.; Li, M.; Mi, W.; Wang, M.; Li, J.; Zhao, Y.; Ma, X.; Wang, B.; Zhu, W.; Cui, Z.; et al. Nano Res. 2022, 15, 7976. doi: 10.1007/s12274-022-4502-4  doi: 10.1007/s12274-022-4502-4

    16. [16]

      Yu, Y.; Xia, F.; Wang, C.; Wu, J.; Fu, X.; Ma, D.; Lin, B.; Wang, J.; Yue, Q.; Kang, Y. Nano Res. 2022, 15, 7868. doi: 10.1007/s12274-022-4432-1  doi: 10.1007/s12274-022-4432-1

    17. [17]

      Li, W. H.; Yang, J.; Wang, D. Angew. Chem. Int. Ed. 2022, 61, 202213318. doi: 10.1002/anie.202213318  doi: 10.1002/anie.202213318

    18. [18]

      Cai, C.; Liu, K.; Zhu, Y.; Li, P.; Wang, Q.; Liu, B.; Chen, S.; Li, H.; Zhu, L.; Li, H.; et al. Angew. Chem. Int. Ed. 2022, 61, 202113664. doi: 10.1002/anie.202113664  doi: 10.1002/anie.202113664

    19. [19]

      Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; et al. Nature 2019, 574, 81. doi: 10.1038/s41586-019-1603-7  doi: 10.1038/s41586-019-1603-7

    20. [20]

      Zhou, M.; Guo, J.; Zhao, B.; Li, C.; Zhang, L.; Fang, J. J. Am. Chem. Soc. 2021, 143, 15891. doi: 10.1021/jacs.1c08644  doi: 10.1021/jacs.1c08644

    21. [21]

      Liu, Z.; Du, Y.; Yu, R.; Zheng, M.; Hu, R.; Wu, J.; Xia, Y.; Zhuang, Z.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, 202212653. doi: 10.1002/anie.202212653  doi: 10.1002/anie.202212653

    22. [22]

      Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi: 10.1039/d0ee01617a  doi: 10.1039/d0ee01617a

    23. [23]

      Yu, J.; Zhao, C. X.; Liu, J. N.; Li, B. Q.; Tang, C.; Zhang, Q. Green Chem. Eng. 2020, 1, 117. doi: 10.1016/j.gce.2020.09.013  doi: 10.1016/j.gce.2020.09.013

    24. [24]

      Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Energy Environ. Sci. 2016, 9, 123. doi: 10.1039/c5ee03316k  doi: 10.1039/c5ee03316k

    25. [25]

      Xiao, Y.; Pei, Y.; Hu, Y.; Ma, R.; Wang, D.; Wang, J. Acta Phys. -Chim. Sin. 2020, 37, 2009051.  doi: 10.3866/PKU.WHXB202009051

    26. [26]

      Zang, Y.; Liu, T.; Wei, P.; Li, H.; Wang, Q.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2022, 134, 202209629. doi: 10.1002/anie.202209629  doi: 10.1002/anie.202209629

    27. [27]

      Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, 202205946. doi: 10.1002/anie.202205946  doi: 10.1002/anie.202205946

    28. [28]

      Kim, S.; Ji, S.; Yang, H.; Son, H.; Choi, H.; Kang, J.; Li, O. L. Appl. Catal. B-Environ. 2022, 310, 121361. doi: 10.1016/j.apcatb.2022.121361  doi: 10.1016/j.apcatb.2022.121361

    29. [29]

      Suh, D. H.; Park, S. K.; Nakhanivej, P.; Kim, Y.; Hwang, S. M.; Park, H. S. J. Power Sources 2017, 372, 31. doi: 10.1016/j.jpowsour.2017.10.056  doi: 10.1016/j.jpowsour.2017.10.056

    30. [30]

      Ren, W.; Wang, Y.; Zhang, Z.; Tan, Q.; Zhong, Z.; Su, F. J. Mater. Chem. A 2016, 4, 552. doi: 10.1039/C5TA07487H  doi: 10.1039/C5TA07487H

    31. [31]

      Huang, S.; Zhao, Z.; Wei, Z.; Wang, M.; Chen, Y.; Wang, X.; Shao, F.; Zhong, X.; Li, X.; Wang, J. Green Chem. 2022, 24, 6945. doi: 10.1039/D2GC02161G  doi: 10.1039/D2GC02161G

    32. [32]

      Jiang, X.; Yan, X.; Hu, X.; Feng, R.; Li, T.; Wang, L. Sep. Purif. Technol. 2022, 297, 121400. doi: 10.1016/j.seppur.2022.121400  doi: 10.1016/j.seppur.2022.121400

    33. [33]

      Du, C.; Li, P.; Zhuang, Z.; Fang, Z.; He, S.; Feng, L.; Chen, W. Coord. Chem. Rev. 2022, 466, 214604. doi: 10.1016/j.ccr.2022.214604  doi: 10.1016/j.ccr.2022.214604

    34. [34]

      Jhong, H. P.; Chang, S. T.; Huang, H. C.; Wang, K. C.; Lee, J. F.; Yasuzawa, M.; Wang, C. Catal. Sci. Technol. 2019, 9, 3426. doi: 10.1039/C9CY00854C  doi: 10.1039/C9CY00854C

    35. [35]

      Li, K.; Cheng, R.; Xue, Q.; Meng, P.; Zhao, T.; Jiang, M.; Guo, M.; Li, H.; Fu, C. Chem. Eng. J. 2022, 450, 137991. doi: 10.1016/j.cej.2022.137991  doi: 10.1016/j.cej.2022.137991

    36. [36]

      Nekooi, P.; Akbari, M.; Amini, M. K. Int. J. Hydrog. Energy 2010, 35, 6392. doi: 10.1016/j.ijhydene.2010.03.134  doi: 10.1016/j.ijhydene.2010.03.134

    37. [37]

      Meng, T.; Qin, J.; Wang, S.; Zhao, D.; Mao, B.; Cao, M. J. Mater. Chem. A 2017, 5, 7001. doi: 10.1039/c7ta01453h  doi: 10.1039/c7ta01453h

    38. [38]

      Wu, R.; Xue, Y.; Liu, B.; Zhou, K.; Wei, J.; Chan, S. H. J. Power Sources 2016, 330, 132. doi: 10.1016/j.jpowsour.2016.09.001  doi: 10.1016/j.jpowsour.2016.09.001

    39. [39]

      Chen, K.; Wang, X.; Zhang, C.; Xu, R.; Wang, H.; Chu, L.; Huang, M. Mater. Today Energy 2022, 30, 101150. doi: 10.1016/j.mtener.2022.101150  doi: 10.1016/j.mtener.2022.101150

    40. [40]

      Yuan, Q.; Zhao, J.; Mok, D. H.; Zheng, Z.; Ye, Y.; Liang, C.; Zhou, L.; Back, S.; Jiang, K. Nano Lett. 2022, 22, 1257. doi: 10.1021/acs.nanolett.1c04420  doi: 10.1021/acs.nanolett.1c04420

    41. [41]

      Jin, H.; Xu, Z.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Nat. Commun. 2023, 14, 1518. doi: 10.1038/s41467-023-37268-4  doi: 10.1038/s41467-023-37268-4

    42. [42]

      Deng, J.; Ren, P.; Deng, D.; Bao, X. Angew. Chem. Int. Ed. 2015, 54, 2100. doi: 10.1002/anie.201409524  doi: 10.1002/anie.201409524

    43. [43]

      Song, X. R.; Wang, X.; Yu, S. X.; Cao, J.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Adv. Mater. 2015, 27, 3285. doi: 10.1002/adma.201405634  doi: 10.1002/adma.201405634

    44. [44]

      Wang, X.; Kong, D.; Huang, Z. X.; Wang, Y.; Yang, H. Y. Small 2017, 13. 1603980. doi: 10.1002/smll.201603980  doi: 10.1002/smll.201603980

    45. [45]

      Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D.; et al. Nat. Chem. 2021, 13, 887. doi: 10.1038/s41557-021-00734-x  doi: 10.1038/s41557-021-00734-x

    46. [46]

      Hu, H.; Zhang, J.; Guan, B.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 9514. doi: 10.1002/anie.201603852  doi: 10.1002/anie.201603852

    47. [47]

      Hou, L.; Sun, X.; Guo, L.; Meng, X.; Wei, J.; Yuan, C. Energy Technol. 2019, 8, 1901319. doi: 10.1002/ente.201901319  doi: 10.1002/ente.201901319

    48. [48]

      Zhou, X.; Gao, J.; Hu, Y.; Jin, Z.; Hu, K.; Reddy, K. M.; Yuan, Q.; Lin, X.; Qiu, H. J. Nano Lett. 2022, 22, 3392. doi: 10.1021/acs.nanolett.2c00658  doi: 10.1021/acs.nanolett.2c00658

    49. [49]

      Ba, E. C. T.; Dumont, M. R.; Martins, P. S.; da Silva Pinheiro, B.; da Cruz, M. P. M.; Barbosa, J. W. Diam. Relat. Mat. 2022, 122, 108818. doi: 10.1016/j.diamond.2021.108818  doi: 10.1016/j.diamond.2021.108818

    50. [50]

      Song, J.; Chen, Y.; Huang, H.; Wang, J.; Huang, S. C.; Liao, Y. F.; Fetohi, A. E.; Hu, F.; Chen, H. Y.; Li, L.; et al. Adv. Sci. 2022, 9, 2104522. doi: 10.1002/advs.202104522  doi: 10.1002/advs.202104522

    51. [51]

      Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. ACS Nano 2022, 16, 15994. doi: 10.1021/acsnano.2c03565  doi: 10.1021/acsnano.2c03565

    52. [52]

      Wang, J.; Li, H.; Liu, S.; Hu, Y.; Zhang, J.; Xia, M.; Hou, Y.; Tse, J.; Zhang, J.; Zhao, Y. Angew. Chem. Int. Ed. 2021, 60, 181. doi: 10.1002/anie.202009991  doi: 10.1002/anie.202009991

    53. [53]

      Wang, X.; Zhou, X.; Li, C.; Yao, H.; Zhang, C.; Zhou, J.; Xu, R.; Chu, L.; Wang, H.; Gu, M.; et al. Adv. Mater. 2022, 34, 2204021. doi: 10.1002/adma.202204021  doi: 10.1002/adma.202204021

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    12. [12]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(3)
  • Abstract views(813)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return