Citation: Yajuan Xing, Hui Xue, Jing Sun, Niankun Guo, Tianshan Song, Jiawen Sun, Yi-Ru Hao, Qin Wang. Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304046 shu

Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity

  • Corresponding author: Hui Xue, hxue@imu.edu.cn Qin Wang, hxue@imu.edu.cn
  • Received Date: 25 April 2023
    Revised Date: 13 June 2023
    Accepted Date: 15 June 2023
    Available Online: 29 June 2023

    Fund Project: the National Natural Science Foundation of China 22269015Natural Science Foundation of Inner Mongolia Autonomous Region of China 2021ZD11

  • Owing to the increasingly serious environmental problems, there is an urgent need for clean energy with a high energy density and low carbon emissions. As such, electrocatalytic water decomposition has attracted significant interest as an efficient hydrogen production method. The electrolysis of water has two important half-reactions: the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Among these two reactions, OER is considered to be the crucial and rate-determining step due to its slower kinetic process and higher overpotential compared to HER. Although noble metal oxides such as IrO2 and RuO2 have excellent OER properties under alkaline conditions, their high cost and scarcity limit their commercial application. Therefore, it is of significant interest to develop alternative OER electrodes with excellent catalytic activity, extremely low overpotential, high durability, and low cost. Ni2P has attracted interest as an electrocatalyst and has improved activity after combination with a cocatalyst. The improved activity is due to heterojunction formation changing the electronic structure and charge transport at the active site. To this end, a novel highly efficient Cu3P/Ni2P heterojunction catalyst has been successfully constructed, in which Cu3P functions solely as a cocatalyst to enhance the electrocatalytic activity by regulating the electron transfer and surface reconstruction of Ni2P. Consequently, Cu3P/Ni2P exhibits superior OER activity and has an ultra-low overpotential of 213 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 62 mV·dec−1 in 1 mol·L−1 KOH. Additionally, this peculiar self-supporting electrode possesses excellent electrochemical stability and long-term durability at a current density of 10 mA·cm−2 in an alkaline medium. Through a combination of experimental results and theoretical calculations, it has been shown that the Cu3P cocatalyst effectively tailors the electronic structure of the Ni center. This results in charge redistribution and a lower reaction energy barrier, thereby significantly improving the OER catalytic activity. In addition, the abundant grain boundaries and lattice distortions induced by the Cu3P cocatalyst promote surface reconstruction to form Ni5O(OH)9, providing an efficient active site for OER. This work constructed a novel heterojunction electrocatalyst by introducing a cocatalyst, offering an avenue for the optimization of the electrocatalytic performance of transition metal phosphide.
  • 加载中
    1. [1]

      Zhang, Y. -C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J. -J. Adv. Sci. 2019, 6, 1900053. doi: 10.1002/advs.201900053  doi: 10.1002/advs.201900053

    2. [2]

      Xu, Y. F.; Yang, H. W.; Chang, X. X.; Xu, B. J. Acta Phys. -Chim. Sin. 2023, 39 (4), 2210025.  doi: 10.3866/PKU.WHXB202210025

    3. [3]

      De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506  doi: 10.1126/science.aav3506

    4. [4]

      Morales-Guio, C. G.; Stern, L. -A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/C3CS60468C  doi: 10.1039/C3CS60468C

    5. [5]

      Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2007054.  doi: 10.3866/PKU.WHXB202007054

    6. [6]

      Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 19085. doi: 10.1002/anie.202107123  doi: 10.1002/anie.202107123

    7. [7]

      Sun, M.; Müllen, K.; Yin, M. Chem. Soc. Rev. 2016, 45, 1513. doi: 10.1039/C5CS00754B  doi: 10.1039/C5CS00754B

    8. [8]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. -Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    9. [9]

      Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Chem. Soc. Rev. 2021, 50, 12338. doi: 10.1039/D1CS00590A  doi: 10.1039/D1CS00590A

    10. [10]

      Li, R.; Li, Y.; Yang, P.; Ren, P.; Wang, D.; Lu, X.; Xu, R.; Li, Y.; Xue, J.; Zhang, J.; et al. Appl. Catal. B 2022, 318, 121834. doi: 10.1016/j.apcatb.2022.121834  doi: 10.1016/j.apcatb.2022.121834

    11. [11]

      Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi: 10.1021/ja0540019  doi: 10.1021/ja0540019

    12. [12]

      Liu, X.; Huang, J.; Li, T.; Chen, W.; Chen, G.; Han, L.; Ostrikov, K. J. Mater. Chem. A 2022, 10, 13448. doi: 10.1039/D2TA03181G  doi: 10.1039/D2TA03181G

    13. [13]

      Sun, T.; Zhang, S.; Xu, L.; Wang, D.; Li, Y. Chem. Commun. 2018, 54, 12101. doi: 10.1039/C8CC06566G  doi: 10.1039/C8CC06566G

    14. [14]

      Hu, X.; Luo, G.; Guo, X.; Zhao, Q.; Wang, R.; Huang, G.; Jiang, B.; Xu, C.; Pan, F. Sci. Bull. 2021, 66, 708. doi: 10.1016/j.scib.2020.11.009  doi: 10.1016/j.scib.2020.11.009

    15. [15]

      Jiang, X.; Yue, X.; Li, Y.; Wei, X.; Zheng, Q.; Xie, F.; Lin, D.; Qu, G. Chem. Eng. J. 2021, 426, 130718. doi: 10.1016/j.cej.2021.130718  doi: 10.1016/j.cej.2021.130718

    16. [16]

      Li, A.; Zhang, L.; Wang, F.; Zhang, L.; Li, L.; Chen, H.; Wei, Z. Appl. Catal. B 2022, 310, 121353. doi: 10.1016/j.apcatb.2022.121353  doi: 10.1016/j.apcatb.2022.121353

    17. [17]

      Zhang, K.; Zhang, Z.; Shen, H.; Tang, Y.; Liang, Z.; Zou, R. Sci. China Mater. 2022, 65, 1522. doi: 10.1007/s40843-021-1947-8  doi: 10.1007/s40843-021-1947-8

    18. [18]

      Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Adv. Mater. 2019, 31, 1900430. doi: 10.1002/adma.201900430  doi: 10.1002/adma.201900430

    19. [19]

      Wang, L.; Song, L.; Yang, Z.; Chang, Y. -M.; Hu, F.; Li, L.; Li, L.; Chen, H. -Y.; Peng, S. Adv. Funct. Mater. 2023, 33, 2210322. doi: 10.1002/adfm.202210322  doi: 10.1002/adfm.202210322

    20. [20]

      Tang, Y. -J.; Zou, Y.; Zhu, D. J. Mater. Chem. A 2022, 10, 12438. doi: 10.1039/D2TA02620A  doi: 10.1039/D2TA02620A

    21. [21]

      Wang, H. -Y.; Ren, J. -T.; Wang, L.; Sun, M. -L.; Yang, H. -M.; Lv, X. -W.; Yuan, Z. -Y. J. Energy Chem. 2022, 75, 66. doi: 10.1016/j.jechem.2022.08.019  doi: 10.1016/j.jechem.2022.08.019

    22. [22]

      Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2022, 15, 1730. doi: 10.1007/s12274-021-3794-0  doi: 10.1007/s12274-021-3794-0

    23. [23]

      Chen, T.; Li, B.; Song, K.; Wang, C.; Ding, J.; Liu, E.; Chen, B.; He, F. J. Mater. Chem. A 2022, 10, 22750. doi: 10.1039/D2TA04879E  doi: 10.1039/D2TA04879E

    24. [24]

      Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S. -Z. Acc. Chem. Res. 2017, 50, 915. doi: 10.1021/acs.accounts.6b00635  doi: 10.1021/acs.accounts.6b00635

    25. [25]

      Li, C.; Yuan, Q.; Ni, B.; He, T.; Zhang, S.; Long, Y.; Gu, L.; Wang, X. Nat. Commun. 2018, 9, 3702. doi: 10.1038/s41467-018-06043-1  doi: 10.1038/s41467-018-06043-1

    26. [26]

      Zhang, Y. -C.; Han, C.; Gao, J.; Pan, L.; Wu, J.; Zhu, X. -D.; Zou, J. -J. ACS Catal. 2021, 11, 12485. doi: 10.1021/acscatal.1c03260  doi: 10.1021/acscatal.1c03260

    27. [27]

      Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. Adv. Mater. 2016, 28, 8712. doi: 10.1002/adma.201603075  doi: 10.1002/adma.201603075

    28. [28]

      Zhao, W. -Y.; Ni, B.; Yuan, Q.; He, P. -L.; Gong, Y.; Gu, L.; Wang, X. Adv. Energy Mater. 2017, 7, 1601593. doi: 10.1002/aenm.201601593  doi: 10.1002/aenm.201601593

    29. [29]

      Shi, Y.; Ma, Z. -R.; Xiao, Y. -Y.; Yin, Y. -C.; Huang, W. -M.; Huang, Z. -C.; Zheng, Y. -Z.; Mu, F. -Y.; Huang, R.; Shi, G. -Y.; et al. Nat. Commun. 2021, 12, 3021. doi: 10.1038/s41467-021-23306-6  doi: 10.1038/s41467-021-23306-6

    30. [30]

      Xu, S. R.; Wu, Q.; Lu, B. -A.; Tang, T.; Zhang, J. -N.; Hu, J. -S. Acta Phys. -Chim. Sin. 2023, 39, 2209001.  doi: 10.3866/PKU.WHXB202209001

    31. [31]

      Xu, X.; He, Y.; Huang, W.; Cao, A.; Kang, L.; Liu, J. ACS Appl. Mater. Interfaces 2022, 14, 17520. doi: 10.1021/acsami.2c02418  doi: 10.1021/acsami.2c02418

    32. [32]

      Han, B.; Du, X.; Li, J.; Wang, H.; Liu, G.; Li, J. Appl. Surf. Sci. 2022, 604, 154617. doi: 10.1016/j.apsusc.2022.154617  doi: 10.1016/j.apsusc.2022.154617

    33. [33]

      Han, Q.; Luo, Y.; Li, J.; Du, X.; Sun, S.; Wang, Y.; Liu, G.; Chen, Z. Appl. Catal. B 2022, 304, 120937. doi: 10.1016/j.apcatb.2021.120937  doi: 10.1016/j.apcatb.2021.120937

    34. [34]

      Hou, C. -C.; Chen, Q. -Q.; Wang, C. -J.; Liang, F.; Lin, Z.; Fu, W. -F.; Chen, Y. ACS Appl. Mater. Interfaces 2016, 8, 23037. doi: 10.1021/acsami.6b06251  doi: 10.1021/acsami.6b06251

    35. [35]

      Wang, H.; Zhou, T.; Li, P.; Cao, Z.; Xi, W.; Zhao, Y.; Ding, Y. ACS Sustain. Chem. Eng. 2018, 6, 380. doi: 10.1021/acssuschemeng.7b02654  doi: 10.1021/acssuschemeng.7b02654

    36. [36]

      Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Nat. Energy 2020, 5, 222. doi: 10.1038/s41560-020-0576-y  doi: 10.1038/s41560-020-0576-y

    37. [37]

      Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Nano Res. 2022, 15, 2935. doi: 10.1007/s12274-021-3915-9  doi: 10.1007/s12274-021-3915-9

    38. [38]

      Zhang, X.; Wu, A.; Wang, D.; Jiao, Y.; Yan, H.; Jin, C.; Xie, Y.; Tian, C. Appl. Catal. B 2023, 328, 122474. doi: 10.1016/j.apcatb.2023.122474  doi: 10.1016/j.apcatb.2023.122474

    39. [39]

      Li, D.; Zhou, C.; Xing, Y.; Shi, X.; Ma, W.; Li, L.; Jiang, D.; Shi, W. Chem. Commun. 2021, 57, 8158. doi: 10.1039/D1CC00535A  doi: 10.1039/D1CC00535A

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    17. [17]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return