Citation: Jia Wang, Qing Qin, Zhe Wang, Xuhao Zhao, Yunfei Chen, Liqiang Hou, Shangguo Liu, Xien Liu. P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304044 shu

P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions

  • Corresponding author: Qing Qin, qinqing@qust.edu.cn Xien Liu, liuxien@qust.edu.cn
  • Received Date: 24 April 2023
    Revised Date: 13 June 2023
    Accepted Date: 14 June 2023
    Available Online: 27 June 2023

    Fund Project: the Taishan Scholar Program of Shandong Province ts201712045the Taishan Scholar Program of Shandong Province tsqn202211162the National Natural Science Foundation of China 22102079the Natural Science Foundation of Shandong Province ZR2021YQ10

  • The development of efficient synthetic routes for ammonia (NH3) production is the cornerstone of the modern industrial processes and human survival. Owing to the chemical inertness of nitrogen, the current ammonia industry suffers from high energy consumption and high CO2 emission. Electrochemical nitrogen reduction reaction (NRR) provides a promising alternative to the energy-intensive Haber-Bosch (HB) process, enabling green and sustainable NH3 production. However, a low NH3 yield and limited energy conversion efficiency due to the chemical inertness of N2 and competitive hydrogen evolution reaction (HER) are still critical challenges in artificial nitrogen fixation using the electrochemical NRR. Herein, we report a hole-enriched P-doped carbon (PC)-supported Zn3(PO4)2/Zn2P2O7 nanocomposite (h-PC/Zn3(PO4)2/Zn2P2O7) for efficient electrocatalytic conversion of N2 to NH3 in both acidic and neutral media. Remarkably, the unique hierarchical porous structure of the h-PC/Zn3(PO4)2/Zn2P2O7 catalyst improves the surface roughness and facilitates the diffusion of N2 within the catalyst layer, thereby prolonging the residence time of N2 and improving the utilization of active sites. The uniform distribution of multiple components modulates the electronic structure of the active sites and optimizes the adsorption behavior of various reaction intermediates, enhancing the intrinsic activity of the catalyst. Benefiting from the porous structure and multicomponent active sites, including the Zn species and PC, the h-PC/Zn3(PO4)2/Zn2P2O7 achieves an excellent NRR performance with an NH3 yield rate of 38.7 ± 1.2 μg∙h−1∙mgcat−1 and Faradaic efficiency (FE) of 19.8% ± 0.9% at −0.2 V vs. reversible hydrogen electrode (RHE) in 0.1 mol∙L−1 HCl electrolyte. Moreover, it delivers a high NH3 yield rate of 17.1 ± 0.8 μg∙h−1∙mgcat−1 with an FE of 15.9% ± 0.6% at −0.2 V vs. RHE in 0.1 mol∙L−1 Na2SO4 solution, which is superior to those of PC/Zn3P2, C/ZnO, and many other non-noble-metal-based electrocatalysts. Ex situ X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were conducted to monitor the changes in the composition and structure of h-PC/Zn3(PO4)2/Zn2P2O7 after being used in NRR. In particular, a new signal of N appeared in the XPS profile after NRR, confirming the occurrence of NRR. This work provides a new strategy for synchronously constructing mass transfer channels and coupling different active sites to synergistically enhance the NRR activity and selectivity of a catalyst, which is of great significance in progressing the industrialization of green ammonia production.
  • 加载中
    1. [1]

      Yao, D.; Tang, C.; Wang, P.; Cheng, H.; Jin, H.; Ding, L.; Qiao, S. Chem. Eng. Sci. 2022, 257, 117735. doi: 10.1016/j.ces.2022.117735  doi: 10.1016/j.ces.2022.117735

    2. [2]

      Zhou, S.; Jang, H.; Qin, Q.; Hou, L.; Kim, M. G.; Liu, S.; Liu, X.; Cho, J. Angew. Chem. Int. Ed. 2022, 61, e202212196. doi: 10.1002/anie.202212196  doi: 10.1002/anie.202212196

    3. [3]

      Zhang, Y.; Jang, H.; Ge, X.; Zhang, W.; Li, Z.; Hou, L.; Zhai, L.; Wei, X.; Wang, Z.; Kim, M. G.; et al. Adv. Energy Mater. 2022, 12, 2202695. doi: 10.1002/aenm.202202695  doi: 10.1002/aenm.202202695

    4. [4]

      Tang, T.; Wang, Z.; Guan, J. Acta Phys. -Chim. Sin. 2023, 39, 2208033.  doi: 10.3866/PKU.WHXB202208033

    5. [5]

      Wang, A.; Chen, J.; Zhang, P.; Tang, S.; Feng, Z.; Yao, T.; Li, C. Acta Phy. -Chim. Sin. 2023, 39, 2301023.  doi: 10.3866/PKU.WHXB202301023

    6. [6]

      Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys. -Chim. Sin. 2023, 39, 2208030.  doi: 10.3866/PKU.WHXB202208030

    7. [7]

      Chen, S.; Liu, X.; Xiong, J.; Mi, L.; Li, Y. Mater. Today Nano 2022, 18, 100202. doi: 10.1016/j.mtnano.2022.100202  doi: 10.1016/j.mtnano.2022.100202

    8. [8]

      Wang, Z.; Chen, J.; Song, E.; Wang, N.; Dong, J.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C.; Liu, J.; et al. Nat. Commun. 2021, 12, 5960. doi: 10.1038/s41467-021026256-1  doi: 10.1038/s41467-021026256-1

    9. [9]

      Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; et al. Chem. Rev. 2020, 120, 12217. doi: 10.1021/acs.chemrev.0c00594  doi: 10.1021/acs.chemrev.0c00594

    10. [10]

      Wang, T.; Guo, Z.; Zhang, X.; Li, Q.; Yu, A.; Wu, C.; Sun, C. J. Mater. Sci. Technol. 2023, 140, 121. doi: 10.1016/j.jmst.2022.07.063  doi: 10.1016/j.jmst.2022.07.063

    11. [11]

      Chen, Y.; Chen, C.; Cao, X.; Wang, Z.; Zhang, N.; Liu, T. Acta Phys. -Chim. Sin. 2023, 39, 2210053.  doi: 10.3866/PKU.WHXB202212053

    12. [12]

      Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, 1800191. doi: 10.1002/adma.201800191  doi: 10.1002/adma.201800191

    13. [13]

      Li, Y.; Wang, Z.; Ji, H.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. Chin. J. Catal. 2023, 44, 50. doi: 10.1016/S1872-067(22)64148-2  doi: 10.1016/S1872-067(22)64148-2

    14. [14]

      Wang, J.; Li, G.; Wei, T.; Zhou, S.; Ji, X.; Liu, X. Nanoscale 2021, 13, 3036. doi: 10.1039/d0nr07885a  doi: 10.1039/d0nr07885a

    15. [15]

      Zheng, X.; Liu, Y.; Yao, Y. Chem. Eng. J. 2021, 426, 130754. doi: 10.1016/j.cej.2021.130745  doi: 10.1016/j.cej.2021.130745

    16. [16]

      Hao, Y.; Guo, Y.; Chen, L.; Shu, M.; Wang, X.; Bu, T.; Gao, W.; Zhang, N.; Su, X.; Zhou, J.; et al. Nat. Catal. 2019, 2, 448. doi: 10.1038/s41929-019-0241-7  doi: 10.1038/s41929-019-0241-7

    17. [17]

      Liu, P.; Shi, K.; Chen, W.; Gao, R.; Liu, Z.; Hao, H.; Wang, Y. Appl. Catal. B 2021, 287, 119956. doi: 10.1016/j.apcatb.2021.119956  doi: 10.1016/j.apcatb.2021.119956

    18. [18]

      Gu, J.; Hsu, C.; Bai, L.; Chen, H.; Hu, X. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    19. [19]

      Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Nat. Catal. 2018, 1, 490. doi: 10.1038/s41929-018-0092-7  doi: 10.1038/s41929-018-0092-7

    20. [20]

      Macleod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559. doi: 10.1038/NCHEM.1620  doi: 10.1038/NCHEM.1620

    21. [21]

      Zhao, X.; Hu, G.; Chen, G.; Zhang, H.; Zhang, S.; Wang, H. Adv. Mater. 2021, 33, 2007650. doi: 10.1002/adma.202007650  doi: 10.1002/adma.202007650

    22. [22]

      Liang, W.; Qin, W.; Li, D.; Wang, Y.; Guo, W.; Bi, Y.; Sun, Y.; Jiang, L. Appl. Catal. B 2022, 301, 120808. doi: 10.1016/j.apcatb.2021.120808  doi: 10.1016/j.apcatb.2021.120808

    23. [23]

      Jiang, Z.; Hu, Y.; Huang, J.; Chen, S. Chin. J. Catal. 2022, 43, 2881. doi: 10.1016/S1872-2067(22)64128-7  doi: 10.1016/S1872-2067(22)64128-7

    24. [24]

      Xu, S.; Ding, Y.; Du, J.; Zhu, Y.; Liu, G.; Wen, Z.; Liu, X.; Shi, Y.; Gao, H.; Sun, L.; et al. ACS Catal. 2022, 12, 5502. doi: 10.1021/acscatal.2c00188  doi: 10.1021/acscatal.2c00188

    25. [25]

      Yao, D.; Tang, C.; Li, L.; Xia, B.; Vasileff, A.; Jin, H.; Zhang, Y.; Qiao, S. Adv. Energy Mater. 2020, 10, 202001289. doi: 10.1002/aenm.202001289  doi: 10.1002/aenm.202001289

    26. [26]

      Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Carbon Energy 2023, 5, e305. doi: 10.1002/cey2.305  doi: 10.1002/cey2.305

    27. [27]

      Khalil, I. E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. Adv. Funct. Mater. 2021, 31, 2010052. doi: 10.1002/adfm.202010052  doi: 10.1002/adfm.202010052

    28. [28]

      Wan, Y.; Xu, J.; Lv, R. Mater. Today 2019, 27, 69. doi: 10.1016/j.mattod.2019.03.002  doi: 10.1016/j.mattod.2019.03.002

    29. [29]

      Zhao, R.; Chen, Y.; Xiang, H.; Guan, Y.; Yang, C.; Zhang, Q.; Li, Y.; Cong, Y.; Li, X. ACS Appl. Mater. Interfaces 2023, 15, 6797. doi: 10.1021/acsami.2c19911  doi: 10.1021/acsami.2c19911

    30. [30]

      Liu, C.; Tian, A.; Li, Q.; Wang, T.; Qin, G.; Li, S.; Sun, C. Adv. Funct. Mater. 2022, 33, 2210759. doi: 10.1002/adfm.202210759  doi: 10.1002/adfm.202210759

    31. [31]

      Zhao, R.; Chi, X.; Wang, X.; Zhao, L.; Zhou, Y.; Xiong, Y.; Yao, S.; Wang, S.; Wang, D.; Fu, Z.; et al. J. Mater. Chem. A 2022, 10, 10219. doi: 10.1039/d2ta00765g  doi: 10.1039/d2ta00765g

    32. [32]

      Zhang, L.; Xie, X. Y.; Wang, H.; Ji, L.; Zhang, Y.; Chen, H.; Li, T.; Luo, Y.; Cui, G.; Sun, X. Chem. Commun. 2019, 55, 4627. doi: 10.1039/c9cc00936a  doi: 10.1039/c9cc00936a

    33. [33]

      Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S. Adv. Mater. 2019, 31, e1902709. doi: 10.1002/adma.201902709  doi: 10.1002/adma.201902709

    34. [34]

      Liu, X.; Jang, H.; Li, P.; Wang, J.; Qin, Q.; Kim, M. G.; Li, G.; Cho, J. Angew. Chem. Int. Ed. 2019, 58, 13329. doi: 10.1002/anie.201906521  doi: 10.1002/anie.201906521

    35. [35]

      Yang, Y.; Zhang, L.; Hu, Z.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R.; Qiu, K.; Mao, J.; Ling, T.; et al. Angew. Chem. Int. Ed. 2020, 59, 4525. doi: 10.1002/anie.201915001  doi: 10.1002/anie.201915001

    36. [36]

      Shan, J.; Ye, C.; Chen, S.; Sun, T.; Jiao, Y.; Liu, L.; Zhu, C.; Song, L.; Han, Y.; Jaroniec, M.; et al. J. Am. Chem. Soc. 2021, 143, 5201. doi: 10.1021/jacs.1c01525  doi: 10.1021/jacs.1c01525

    37. [37]

      Wang, J.; Wei, J.; An, C.; Tang, H.; Deng, Q.; Li, J. Chem. Commun. 2022, 58, 10907. doi: 10.1039/D2CC03630D  doi: 10.1039/D2CC03630D

    38. [38]

      Qin, T.; Li, F.; Liu, X.; Yuan, J.; Jiang, R.; Sun, Y.; Zheng, H.; O'Mullane, A. P. Chem. Eng. J. 2022, 429, 132199. doi: 10.1016/j.cej.2021.132199  doi: 10.1016/j.cej.2021.132199

    39. [39]

      Wang, S.; Jang, H.; Wang, J.; Wu, Z.; Liu, X.; Cho, J. ChemSusChem 2019, 12, 830. doi: 10.1002/cssc.201802909  doi: 10.1002/cssc.201802909

    40. [40]

      Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S. H.; et al. J. Am. Chem. Soc. 2021, 143, 19417. doi: 10.1021/jacs.1c08050  doi: 10.1021/jacs.1c08050

    41. [41]

      Duan, J;Chen, S.;Ortiz-Ledon, C.;Jaroniec, M.;Qiao, S. Angew. Chem. Int. Ed. 2020, 59, 8181. doi:10.1002/anie.201914967  doi: 10.1002/anie.201914967

  • 加载中
    1. [1]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    7. [7]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(1)
  • Abstract views(758)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return