Citation: Yue-Zhou Zhu, Kun Wang, Shi-Sheng Zheng, Hong-Jia Wang, Jin-Chao Dong, Jian-Feng Li. Application and Development of Electrochemical Spectroscopy Methods[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304040 shu

Application and Development of Electrochemical Spectroscopy Methods

  • Corresponding author: Shi-Sheng Zheng, 1801213268@pku.edu.cn Jian-Feng Li, Li@xmu.edu.cn
  • Received Date: 24 April 2023
    Revised Date: 19 May 2023
    Accepted Date: 22 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Key Research and Development Program of China 2020YFB1505800the National Natural Science Foundation of China 21925404the National Natural Science Foundation of China 22075099the National Natural Science Foundation of China 21991151

  • The theoretical and experimental technologies used for electrochemical characterization methods, which are essential for determining surface structures and elucidating electrochemical reaction mechanisms, have been significantly improved after more than two centuries of development. Traditional chemical methods like cyclic voltammetry (CV) can provide the exact electrochemical reaction rate in different potential ranges, which is beneficial for identifying the electrochemical performance of electrocatalytic materials. However, traditional chemical methods alone are often inadequate when it comes to achieving a deep understanding of reaction mechanisms. In this regard, spectroscopic methods, which are powerful tools to identify the active sites and intermediate species during electrochemical reactions, are widely applied to elucidate the electrochemical mechanism at a molecular or even atomic level. In this review, three molecular-vibration-spectroscopy-based electrochemical characterization technologies, viz., infrared (IR) spectroscopy, surface-enhanced Raman spectroscopy (SERS), and sum frequency generation (SFG) spectroscopy, are comprehensively reviewed and discussed. IR, SERS, and SFG are all non-destructive spectroscopic techniques with ultra-high surface sensitivity and are indispensable when detecting surface species during electrochemical reactions. Consequently, researchers have strived to combine these spectroscopic techniques with basic electrochemical instruments. In fundamental electrochemical research, detecting electrochemical reactions in model single-crystal systems and determining the structure of interfacial water molecules have been two major research topics in recent years. Single-crystal surfaces are important in fundamental electrochemical research because of their defined atom arrays and energy states, serving as model systems to help bridge experimental results and theoretical calculations. Meanwhile, the structure of interfacial water influences most electrochemical reaction processes, and as such, probing interfacial water structures is a challenging but valuable target in fundamental electrochemical research. Additionally, the application of electrochemical spectroscopic methods to analyze fuel cells has become important, and this review covers recent SERS studies of oxygen reduction reactions (ORR) and hydrogen oxidation reactions (HOR) in hydrogen fuel cells. Concurrently, electrochemical IR and SFG studies on the electrooxidation of small organic molecules are discussed. Finally, owing to the significance of lithium-ion batteries, studies of electrochemical spectroscopic methods on solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) are becoming increasingly important and are introduced here. In conclusion, recent advances and the future developments of electrochemical spectroscopy methods are summarized in this review article.
  • 加载中
    1. [1]

      Bruckenstein, S.; Miller, B. Acc. Chem. Res. 1977, 10, 54. doi: 10.1021/ar50110a004  doi: 10.1021/ar50110a004

    2. [2]

      Andrieux, C. P.; Hapiot, P.; Saveant, J. M. J. Phys. Chem. 1988, 92, 5992. doi: 10.1021/j100332a031  doi: 10.1021/j100332a031

    3. [3]

      Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. J. Chem. Educ. 2018, 95, 197. doi: 10.1021/acs.jchemed.7b00361  doi: 10.1021/acs.jchemed.7b00361

    4. [4]

      Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404. doi: 10.1039/C9SC01545K  doi: 10.1039/C9SC01545K

    5. [5]

      McKenzie, E. C. R.; Hosseini, S.; Petro, A. G. C.; Rudman, K. K.; Gerroll, B. H. R.; Mubarak, M. S.; Baker, L. A.; Little, R. D. Chem. Rev. 2022, 122, 3292. doi: 10.1021/acs.chemrev.1c00471  doi: 10.1021/acs.chemrev.1c00471

    6. [6]

      Mattson, J. S.; Smith, C. A. Science 1973, 181, 1055. doi: 10.1126/science.181.4104.1055  doi: 10.1126/science.181.4104.1055

    7. [7]

      Mattson, J. S.; Jones, T. T. Anal. Chem. 1976, 48, 2164. doi: 10.1021/ac50008a028  doi: 10.1021/ac50008a028

    8. [8]

      Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 2235. doi: 10.1021/ja00449a034  doi: 10.1021/ja00449a034

    9. [9]

      Cooley, J.; Lewis, P.; Welch, P. IEEE Trans. Audio Electroacoust. 1967, 15, 76. doi: 10.1109/TAU.1967.1161903  doi: 10.1109/TAU.1967.1161903

    10. [10]

      Clarke, J. S.; Kuhn, A. T.; Orville-Thomas, W. J.; Stedman, M. J. Electroanal. Chem. Interfacial Electrochem. 1974, 49, 199. doi: 10.1016/S0022-0728(74)80227-5  doi: 10.1016/S0022-0728(74)80227-5

    11. [11]

      Bewick, A.; Kunimatsu, K. Surf. Sci. 1980, 101, 131. doi: 10.1016/0039-6028(80)90604-4  doi: 10.1016/0039-6028(80)90604-4

    12. [12]

      Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 481. doi: 10.1016/S0022-0728(83)80228-9  doi: 10.1016/S0022-0728(83)80228-9

    13. [13]

      Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi: 10.1016/j.nanoen.2016.06.023  doi: 10.1016/j.nanoen.2016.06.023

    14. [14]

      Li, H.; Jiang, K.; Zou, S. -Z.; Cai, W. -B. Chin. J. Catal. 2022, 43, 2772. doi: 10.1016/S1872-2067(22)64095-6  doi: 10.1016/S1872-2067(22)64095-6

    15. [15]

      Ma, X. Y.; Zhang, W. Y.; Ye, K.; Jiang, K.; Cai, W. B. Anal. Chem. 2022, 94, 11337. doi: 10.1021/acs.analchem.2c02092  doi: 10.1021/acs.analchem.2c02092

    16. [16]

      Raman, C. V.; Krishnan, K.S. Nature 1928, 121, 501. doi: 10.1038/121501c0  doi: 10.1038/121501c0

    17. [17]

      Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D  doi: 10.1039/B616986D

    18. [18]

      Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 131. doi: 10.1016/S0009-2614(99)01451-7  doi: 10.1016/S0009-2614(99)01451-7

    19. [19]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Nature 2010, 464, 392. doi: 10.1038/nature08907  doi: 10.1038/nature08907

    20. [20]

      Ling, L.; Yuan, Y. X.; Xu, M. M.; Yao, J. L.; Gu, R. A. J. Electrochem. 2007, 13, 160.

    21. [21]

      Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protocols 2013, 8, 52. doi: 10.1038/nprot.2012.141  doi: 10.1038/nprot.2012.141

    22. [22]

      De, R.; Dietzek-Ivanšić, B. Chem. - Eur. J. 2022, 28, e202200407. doi: 10.1002/chem.202200407  doi: 10.1002/chem.202200407

    23. [23]

      Sun, S. G.; Clavilier, J.; Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147. doi: 10.1016/0022-0728(88)80319-X  doi: 10.1016/0022-0728(88)80319-X

    24. [24]

      Sun, S. G.; Yang, Y. Y. J. Electroanal. Chem. 1999, 467, 121. doi: 10.1016/S0022-0728(99)00032-7  doi: 10.1016/S0022-0728(99)00032-7

    25. [25]

      Sun, S. G.; Lin, Y. Electrochim. Acta 1996, 41, 693. doi: 10.1016/0013-4686(95)00358-4  doi: 10.1016/0013-4686(95)00358-4

    26. [26]

      Sun, S. G.; Lin, Y. Electrochim. Acta 1998, 44, 1153. doi: 10.1016/S0013-4686(98)00218-7  doi: 10.1016/S0013-4686(98)00218-7

    27. [27]

      Orts, J. M.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 119. doi: 10.1016/0022-0728(90)87424-I  doi: 10.1016/0022-0728(90)87424-I

    28. [28]

      Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Langmuir 2006, 22, 10457. doi: 10.1021/la0615995  doi: 10.1021/la0615995

    29. [29]

      Schnaidt, J.; Heinen, M.; Denot, D.; Jusys, Z.; Behm, R. J. J. Electroanal. Chem. 2011, 661, 250. doi: 10.1016/j.jelechem.2011.08.011  doi: 10.1016/j.jelechem.2011.08.011

    30. [30]

      Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2019, 4, 60. doi: 10.1038/s41560-018-0292-z  doi: 10.1038/s41560-018-0292-z

    31. [31]

      Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi: 10.1021/jacs.9b12803  doi: 10.1021/jacs.9b12803

    32. [32]

      Su, M.; Dong, J. -C.; Le, J. -B.; Zhao, Y.; Yang, W. -M.; Yang, Z. -L.; Attard, G.; Liu, G. -K.; Cheng, J.; Wei, Y. -M.; et al. Angew. Chem. Int. Ed. 2020, 59, 23554. doi: 10.1002/anie.202010431  doi: 10.1002/anie.202010431

    33. [33]

      Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T. ACS Nano 2011, 5, 5662. doi: 10.1021/nn201307g  doi: 10.1021/nn201307g

    34. [34]

      Wang, X.; Zhong, J. H.; Zhang, M.; Liu, Z.; Wu, D.Y.; Ren, B. Anal. Chem. 2016, 88, 915. doi: 10.1021/acs.analchem.5b03588  doi: 10.1021/acs.analchem.5b03588

    35. [35]

      Wen, B. Y.; Yi, J.; Wang, Y. H.; Madasamy, K.; Zhang, H.; Kathiresan, M.; Li, J. F.; Tian, Z. Q. Electrochem. Commun. 2016, 72, 131. doi: 10.1016/j.elecom.2016.08.026  doi: 10.1016/j.elecom.2016.08.026

    36. [36]

      Martín Sabanés, N.; Ohto, T.; Andrienko, D.; Nagata, Y.; Domke, K. F. Angew. Chem. Int. Ed. 2017, 56, 9796. doi: 10.1002/anie.201704460  doi: 10.1002/anie.201704460

    37. [37]

      Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi: 10.1002/anie.201805464  doi: 10.1002/anie.201805464

    38. [38]

      Tadjeddine, A.; Peremans, A. J. Electroanal. Chem. 1996, 409, 115. doi: 10.1016/0022-0728(96)04508-1  doi: 10.1016/0022-0728(96)04508-1

    39. [39]

      Braunschweig, B.; Wieckowski, A. J. Electroanal. Chem. 2014, 716, 136. doi: 10.1016/j.jelechem.2013.10.019  doi: 10.1016/j.jelechem.2013.10.019

    40. [40]

      Yang, S.; Noguchi, H.; Uosaki, K. J. Phys. Chem. C 2015, 119, 26056. doi: 10.1021/acs.jpcc.5b10086  doi: 10.1021/acs.jpcc.5b10086

    41. [41]

      Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D. Faraday Discuss. 2009, 141, 423. doi: 10.1039/B805544K  doi: 10.1039/B805544K

    42. [42]

      Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. 2013, 110, 4200. doi: 10.1073/pnas.1301596110  doi: 10.1073/pnas.1301596110

    43. [43]

      Osawa, M.; Ataka, K. -I.; Yoshii, K.; Yotsuyanagi, T. J. Electron. Spectrosc. Relat. Phenom. 1993, 64–65, 371. doi: 10.1016/0368-2048(93)80099-8  doi: 10.1016/0368-2048(93)80099-8

    44. [44]

      Ataka, K. -I.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664. doi: 10.1021/jp953636z  doi: 10.1021/jp953636z

    45. [45]

      Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D. Electrochim. Acta 2004, 49, 1233. doi: 10.1016/j.electacta.2003.06.002  doi: 10.1016/j.electacta.2003.06.002

    46. [46]

      Osawa, M. Advances in Electrochemical Science and Engineering; Alkire, R. C., Kolb, D. M., Lipkowski, J., Ross, P. N., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 269–314. doi: 10.1002/9783527616817.ch8

    47. [47]

      Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. J. Phys. Chem. C 2008, 112, 4248. doi: 10.1021/jp710386g  doi: 10.1021/jp710386g

    48. [48]

      Garcia-Araez, N.; Rodriguez, P.; Navarro, V.; Bakker, H. J.; Koper, M. T. M. J. Phys. Chem. C 2011, 115, 21249. doi: 10.1021/jp206539a  doi: 10.1021/jp206539a

    49. [49]

      Gardner, A. M.; Saeed, K. H.; Cowan, A. J. Phys. Chem. Chem. Phys. 2019, 21, 12067. doi: 10.1039/C9CP02225B  doi: 10.1039/C9CP02225B

    50. [50]

      Wang, Y. H.; Li, S.; Zhou, R. Y.; Zheng, S.; Zhang, Y. J.; Dong, J. C.; Yang, Z. L.; Pan, F.; Tian, Z. Q.; Li, J. F. Nat. Protocols 2023, 18, 883. doi: 10.1038/s41596-022-00782-8  doi: 10.1038/s41596-022-00782-8

    51. [51]

      Zhang, Y. J.; Su, Z. F.; Li, J. F.; Lipkowski, J. J. Phys. Chem. C 2020, 124, 13240. doi: 10.1021/acs.jpcc.0c03453  doi: 10.1021/acs.jpcc.0c03453

    52. [52]

      Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi: 10.1038/s41563-019-0356-x  doi: 10.1038/s41563-019-0356-x

    53. [53]

      Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600, 81. doi: 10.1038/s41586-021-04068-z  doi: 10.1038/s41586-021-04068-z

    54. [54]

      Du, Q.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1994, 72, 238. doi: 10.1103/PhysRevLett.72.238  doi: 10.1103/PhysRevLett.72.238

    55. [55]

      Becraft, K. A.; Moore, F. G.; Richmond, G. L. Phys. Chem. Chem. Phys. 2004, 6, 1880. doi: 10.1039/B313513F  doi: 10.1039/B313513F

    56. [56]

      Schultz, Z. D.; Shaw, S. K.; Gewirth, A. A. J. Am. Chem. Soc. 2005, 127, 15916. doi: 10.1021/ja0543393  doi: 10.1021/ja0543393

    57. [57]

      Noguchi, H.; Okada, T.; Uosaki, K. Faraday Discuss. 2009, 140, 125. doi: 10.1039/B803640C  doi: 10.1039/B803640C

    58. [58]

      Tong, Y.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Angew. Chem. Int. Ed. 2017, 56, 4211. doi: 10.1002/anie.201612183  doi: 10.1002/anie.201612183

    59. [59]

      McGuire, J. A.; Shen, Y. R. Science 2006, 313, 1945. doi: 10.1126/science.1131536  doi: 10.1126/science.1131536

    60. [60]

      Nihonyanagi, S.; Kusaka, R.; Inoue, K. I.; Adhikari, A.; Yamaguchi, S.; Tahara, T. J. Chem. Phys. 2015, 143, 124707. doi: 10.1063/1.4931485  doi: 10.1063/1.4931485

    61. [61]

      Singh, P. C.; Inoue, K. I.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Angew. Chem. Int. Ed. 2016, 55, 10621. doi: 10.1002/anie.201603676  doi: 10.1002/anie.201603676

    62. [62]

      Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Chem. Rev. 2017, 117, 10665. doi: 10.1021/acs.chemrev.6b00728  doi: 10.1021/acs.chemrev.6b00728

    63. [63]

      Eftekhari-Bafrooei, A.; Borguet, E. J. Phys. Chem. Lett. 2011, 2, 1353. doi: 10.1021/jz200194e  doi: 10.1021/jz200194e

    64. [64]

      Zhang, Y. J.; Zhu, Y. Z.; Li, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052.  doi: 10.3866/PKU.WHXB202004052

    65. [65]

      Zhuang, L. Acta Phys. -Chim. Sin. 2021, 37, 2101003.  doi: 10.3866/PKU.WHXB202101003

    66. [66]

      Li, J. L.; Li, Y. F.; Liu, Z. P. J. Electrochem. 2022, 28, 2108511. [  doi: 10.13208/j.electrochem.210851

    67. [67]

      Samjeské, G.; Miki, A.; Ye, S.; Yamakata, A.; Mukouyama, Y.; Okamoto, H.; Osawa, M. J. Phys. Chem. B 2005, 109, 23509. doi: 10.1021/jp055220j  doi: 10.1021/jp055220j

    68. [68]

      Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem. Int. Ed. 2006, 45, 981. doi: 10.1002/anie.200502172  doi: 10.1002/anie.200502172

    69. [69]

      Grozovski, V.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M. ChemPhysChem 2011, 12, 1641. doi: 10.1002/cphc.201100257  doi: 10.1002/cphc.201100257

    70. [70]

      Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C. ACS Catal. 2012, 2, 728. doi: 10.1021/cs200661z  doi: 10.1021/cs200661z

    71. [71]

      Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S. Phys. Chem. Chem. Phys. 2011, 13, 9725. doi: 10.1039/C0CP01728K  doi: 10.1039/C0CP01728K

    72. [72]

      Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. ACS Catal. 2014, 4, 798. doi: 10.1021/cs401198t  doi: 10.1021/cs401198t

    73. [73]

      Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.  doi: 10.3866/PKU.WHXB202003047

    74. [74]

      Liang, J. S.; Liu, X.; Li, Q. Acta Phys. -Chim. Sin. 2021, 37, 2010072.  doi: 10.3866/PKU.WHXB202010072

    75. [75]

      Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi: 10.1002/anie.201908907  doi: 10.1002/anie.201908907

    76. [76]

      Sun, Y. L.; A, Y. L.; Yue, M. F.; Chen, H. Q.; Ze, H.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; Fang, P. P.; Li, J. F. Anal. Chem. 2022, 94, 4779. doi: 10.1021/acs.analchem.1c05566  doi: 10.1021/acs.analchem.1c05566

    77. [77]

      Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2021, 143, 1318. doi: 10.1021/jacs.0c12755  doi: 10.1021/jacs.0c12755

    78. [78]

      Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313  doi: 10.1038/nmat3313

    79. [79]

      Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60, 5708. doi: 10.1002/anie.202015571  doi: 10.1002/anie.202015571

    80. [80]

      Lin, X. M.; Wang, X. T.; Deng, Y. L.; Chen, X.; Chen, H. N.; Radjenovic, P. M.; Zhang, X. G.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; et al. Nano Lett. 2022, 22, 5544. doi: 10.1021/acs.nanolett.2c01744  doi: 10.1021/acs.nanolett.2c01744

    81. [81]

      Dong, J. N.; Qian, Z. X.; Xu, P.; Yue, M. F.; Zhou, R. Y.; Wang, Y. J.; Nan, Z. A.; Huang, S.; Dong, Q.; Li, J. F.; et al. Chem. Sci. 2022, 13, 5639. doi: 10.1039/D2SC01043G  doi: 10.1039/D2SC01043G

    82. [82]

      Peng, C. K.; Lin, Y. C.; Chiang, C. L.; Qian, Z. X.; Huang, Y. C.; Dong, C. L.; Li, J. F.; Chen, C. T.; Hu, Z. W.; Chen, S. Y.; et al. Nat. Commun. 2023, 14, 529. doi: 10.1038/s41467-023-36317-2  doi: 10.1038/s41467-023-36317-2

    83. [83]

      Chen, J.; Liu, G.; Zhu, Y. Z.; Su, M.; Yin, P.; Wu, X. J.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 7161. doi: 10.1021/jacs.0c01649  doi: 10.1021/jacs.0c01649

    84. [84]

      Chen, H. Q.; Ze, H.; Yue, M. F.; Wei, D. Y.; A, Y. L.; Wu, Y. F.; Dong, J. C.; Zhang, Y. J.; Zhang, H.; Tian, Z. Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117834. doi: 10.1002/anie.202117834  doi: 10.1002/anie.202117834

    85. [85]

      Li, J.; Wang, S.; Yue, M. F.; Xing, S. M.; Zhang, Y. J.; Dong, J. C.; Zhang, H.; Chen, Z.; Li, J. F. ACS Catal. 2023, 13, 849. doi: 10.1021/acscatal.2c05802  doi: 10.1021/acscatal.2c05802

    86. [86]

      Peremans, A.; Tadjeddine, A. Phys. Rev. Lett. 1994, 73, 3010. doi: 10.1103/PhysRevLett.73.3010  doi: 10.1103/PhysRevLett.73.3010

    87. [87]

      Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Behrens, R. L.; Dlott, D. D.; Wieckowski, A. J. Catal. 2011, 278, 181. doi: 10.1016/j.jcat.2010.11.018  doi: 10.1016/j.jcat.2010.11.018

    88. [88]

      Liu, Y.; Yu, W.; Raciti, D.; Gracias, D. H.; Wang, C. J. Phys. Chem. C 2019, 123, 426. doi: 10.1021/acs.jpcc.8b08547  doi: 10.1021/acs.jpcc.8b08547

    89. [89]

      Tong, Y.; Cai, K.; Wolf, M.; Campen, R. K. Catal. Today 2016, 260, 66. doi: 10.1016/j.cattod.2015.08.015  doi: 10.1016/j.cattod.2015.08.015

    90. [90]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi: 10.1002/cphc.201700736  doi: 10.1002/cphc.201700736

    91. [91]

      Neri, G.; Donaldson, P. M.; Cowan, A. J. J. Am. Chem. Soc. 2017, 139, 13791. doi: 10.1021/jacs.7b06898  doi: 10.1021/jacs.7b06898

    92. [92]

      Huang-fu, Z. C.; Song, Q. T.; He, Y. H.; Wang, J. J.; Ye, J. Y.; Zhou, Z. Y.; Sun, S. G.; Wang, Z. H. Phys. Chem. Chem. Phys. 2019, 21, 25047. doi: 10.1039/C9CP04346B  doi: 10.1039/C9CP04346B

    93. [93]

      Cheng H.; Du, H. Y.; Yang, Y. J. Electrochem. 2004, 10, 303.

    94. [94]

      Li, W. J.; Zheng, J. Y.; Gu, L.; Li, H. J. Electrochem. 2015, 21, 99.  doi: 10.13208/j.electrochem.141054

    95. [95]

      Gao, F.; Tian, X. D.; Lin, J. S.; Dong, J. C.; Lin, X. M.; Li, J. F. Nano Res. 2023, 16, 4855. doi: 10.1007/s12274-021-4044-1  doi: 10.1007/s12274-021-4044-1

    96. [96]

      Li, J. T.; Chen, S. R.; Fan, X. Y.; Huang, L.; Sun, S. G. Langmuir 2007, 23, 13174. doi: 10.1021/la701168x  doi: 10.1021/la701168x

    97. [97]

      Li, J. T.; Chen, S. R.; Ke, F. S.; Wei, G. Z.; Huang, L.; Sun, S. G. J. Electroanal. Chem. 2010, 649, 171. doi: 10.1016/j.jelechem.2010.03.032  doi: 10.1016/j.jelechem.2010.03.032

    98. [98]

      Yang , J.; Solomatin, N.; Kraytsberg, A.; Ein-Eli , Y. ChemistrySelect 2016, 1, 572. doi: 10.1002/slct.201600119  doi: 10.1002/slct.201600119

    99. [99]

      Li, X.; Qiao, Y.; Guo, S.; Jiang, K.; Ishida, M.; Zhou, H. Adv. Mater. 2019, 31, 1807825. doi: 10.1002/adma.201807825  doi: 10.1002/adma.201807825

    100. [100]

      Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. Nat. Energy 2021, 6, 653. doi: 10.1038/s41560-021-00839-0  doi: 10.1038/s41560-021-00839-0

    101. [101]

      Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179  doi: 10.1021/acs.nanolett.9b00179

    102. [102]

      Horowitz, Y.; Han, H. L.; Ralston, W. T.; de Araujo, J. R.; Kreidler, E.; Brooks, C.; Somorjai, G. A. Adv. Energy Mater. 2017, 7, 1602060. doi: 10.1002/aenm.201602060  doi: 10.1002/aenm.201602060

    103. [103]

      Horowitz, Y.; Han, H. L.; Soto, F. A.; Ralston, W. T.; Balbuena, P. B.; Somorjai, G. A. Nano Lett. 2018, 18, 1145. doi: 10.1021/acs.nanolett.7b04688  doi: 10.1021/acs.nanolett.7b04688

    104. [104]

      Ge, A.; Zhou, D.; Inoue, K. I.; Chen, Y.; Ye, S. J. Phys. Chem. C 2020, 124, 17538. doi: 10.1021/acs.jpcc.0c06390  doi: 10.1021/acs.jpcc.0c06390

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    11. [11]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    12. [12]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    13. [13]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    14. [14]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    17. [17]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(6)
  • Abstract views(761)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return