Application and Development of Electrochemical Spectroscopy Methods
- Corresponding author: Shi-Sheng Zheng, 1801213268@pku.edu.cn Jian-Feng Li, Li@xmu.edu.cn
Citation:
Yue-Zhou Zhu, Kun Wang, Shi-Sheng Zheng, Hong-Jia Wang, Jin-Chao Dong, Jian-Feng Li. Application and Development of Electrochemical Spectroscopy Methods[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230404.
doi:
10.3866/PKU.WHXB202304040
Bruckenstein, S.; Miller, B. Acc. Chem. Res. 1977, 10, 54. doi: 10.1021/ar50110a004
doi: 10.1021/ar50110a004
Andrieux, C. P.; Hapiot, P.; Saveant, J. M. J. Phys. Chem. 1988, 92, 5992. doi: 10.1021/j100332a031
doi: 10.1021/j100332a031
Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. J. Chem. Educ. 2018, 95, 197. doi: 10.1021/acs.jchemed.7b00361
doi: 10.1021/acs.jchemed.7b00361
Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404. doi: 10.1039/C9SC01545K
doi: 10.1039/C9SC01545K
McKenzie, E. C. R.; Hosseini, S.; Petro, A. G. C.; Rudman, K. K.; Gerroll, B. H. R.; Mubarak, M. S.; Baker, L. A.; Little, R. D. Chem. Rev. 2022, 122, 3292. doi: 10.1021/acs.chemrev.1c00471
doi: 10.1021/acs.chemrev.1c00471
Mattson, J. S.; Smith, C. A. Science 1973, 181, 1055. doi: 10.1126/science.181.4104.1055
doi: 10.1126/science.181.4104.1055
Mattson, J. S.; Jones, T. T. Anal. Chem. 1976, 48, 2164. doi: 10.1021/ac50008a028
doi: 10.1021/ac50008a028
Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 2235. doi: 10.1021/ja00449a034
doi: 10.1021/ja00449a034
Cooley, J.; Lewis, P.; Welch, P. IEEE Trans. Audio Electroacoust. 1967, 15, 76. doi: 10.1109/TAU.1967.1161903
doi: 10.1109/TAU.1967.1161903
Clarke, J. S.; Kuhn, A. T.; Orville-Thomas, W. J.; Stedman, M. J. Electroanal. Chem. Interfacial Electrochem. 1974, 49, 199. doi: 10.1016/S0022-0728(74)80227-5
doi: 10.1016/S0022-0728(74)80227-5
Bewick, A.; Kunimatsu, K. Surf. Sci. 1980, 101, 131. doi: 10.1016/0039-6028(80)90604-4
doi: 10.1016/0039-6028(80)90604-4
Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 481. doi: 10.1016/S0022-0728(83)80228-9
doi: 10.1016/S0022-0728(83)80228-9
Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi: 10.1016/j.nanoen.2016.06.023
doi: 10.1016/j.nanoen.2016.06.023
Li, H.; Jiang, K.; Zou, S. -Z.; Cai, W. -B. Chin. J. Catal. 2022, 43, 2772. doi: 10.1016/S1872-2067(22)64095-6
doi: 10.1016/S1872-2067(22)64095-6
Ma, X. Y.; Zhang, W. Y.; Ye, K.; Jiang, K.; Cai, W. B. Anal. Chem. 2022, 94, 11337. doi: 10.1021/acs.analchem.2c02092
doi: 10.1021/acs.analchem.2c02092
Raman, C. V.; Krishnan, K.S. Nature 1928, 121, 501. doi: 10.1038/121501c0
doi: 10.1038/121501c0
Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D
doi: 10.1039/B616986D
Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 131. doi: 10.1016/S0009-2614(99)01451-7
doi: 10.1016/S0009-2614(99)01451-7
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Nature 2010, 464, 392. doi: 10.1038/nature08907
doi: 10.1038/nature08907
Ling, L.; Yuan, Y. X.; Xu, M. M.; Yao, J. L.; Gu, R. A. J. Electrochem. 2007, 13, 160.
Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protocols 2013, 8, 52. doi: 10.1038/nprot.2012.141
doi: 10.1038/nprot.2012.141
De, R.; Dietzek-Ivanšić, B. Chem. - Eur. J. 2022, 28, e202200407. doi: 10.1002/chem.202200407
doi: 10.1002/chem.202200407
Sun, S. G.; Clavilier, J.; Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147. doi: 10.1016/0022-0728(88)80319-X
doi: 10.1016/0022-0728(88)80319-X
Sun, S. G.; Yang, Y. Y. J. Electroanal. Chem. 1999, 467, 121. doi: 10.1016/S0022-0728(99)00032-7
doi: 10.1016/S0022-0728(99)00032-7
Sun, S. G.; Lin, Y. Electrochim. Acta 1996, 41, 693. doi: 10.1016/0013-4686(95)00358-4
doi: 10.1016/0013-4686(95)00358-4
Sun, S. G.; Lin, Y. Electrochim. Acta 1998, 44, 1153. doi: 10.1016/S0013-4686(98)00218-7
doi: 10.1016/S0013-4686(98)00218-7
Orts, J. M.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 119. doi: 10.1016/0022-0728(90)87424-I
doi: 10.1016/0022-0728(90)87424-I
Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Langmuir 2006, 22, 10457. doi: 10.1021/la0615995
doi: 10.1021/la0615995
Schnaidt, J.; Heinen, M.; Denot, D.; Jusys, Z.; Behm, R. J. J. Electroanal. Chem. 2011, 661, 250. doi: 10.1016/j.jelechem.2011.08.011
doi: 10.1016/j.jelechem.2011.08.011
Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2019, 4, 60. doi: 10.1038/s41560-018-0292-z
doi: 10.1038/s41560-018-0292-z
Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi: 10.1021/jacs.9b12803
doi: 10.1021/jacs.9b12803
Su, M.; Dong, J. -C.; Le, J. -B.; Zhao, Y.; Yang, W. -M.; Yang, Z. -L.; Attard, G.; Liu, G. -K.; Cheng, J.; Wei, Y. -M.; et al. Angew. Chem. Int. Ed. 2020, 59, 23554. doi: 10.1002/anie.202010431
doi: 10.1002/anie.202010431
Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T. ACS Nano 2011, 5, 5662. doi: 10.1021/nn201307g
doi: 10.1021/nn201307g
Wang, X.; Zhong, J. H.; Zhang, M.; Liu, Z.; Wu, D.Y.; Ren, B. Anal. Chem. 2016, 88, 915. doi: 10.1021/acs.analchem.5b03588
doi: 10.1021/acs.analchem.5b03588
Wen, B. Y.; Yi, J.; Wang, Y. H.; Madasamy, K.; Zhang, H.; Kathiresan, M.; Li, J. F.; Tian, Z. Q. Electrochem. Commun. 2016, 72, 131. doi: 10.1016/j.elecom.2016.08.026
doi: 10.1016/j.elecom.2016.08.026
Martín Sabanés, N.; Ohto, T.; Andrienko, D.; Nagata, Y.; Domke, K. F. Angew. Chem. Int. Ed. 2017, 56, 9796. doi: 10.1002/anie.201704460
doi: 10.1002/anie.201704460
Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi: 10.1002/anie.201805464
doi: 10.1002/anie.201805464
Tadjeddine, A.; Peremans, A. J. Electroanal. Chem. 1996, 409, 115. doi: 10.1016/0022-0728(96)04508-1
doi: 10.1016/0022-0728(96)04508-1
Braunschweig, B.; Wieckowski, A. J. Electroanal. Chem. 2014, 716, 136. doi: 10.1016/j.jelechem.2013.10.019
doi: 10.1016/j.jelechem.2013.10.019
Yang, S.; Noguchi, H.; Uosaki, K. J. Phys. Chem. C 2015, 119, 26056. doi: 10.1021/acs.jpcc.5b10086
doi: 10.1021/acs.jpcc.5b10086
Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D. Faraday Discuss. 2009, 141, 423. doi: 10.1039/B805544K
doi: 10.1039/B805544K
Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. 2013, 110, 4200. doi: 10.1073/pnas.1301596110
doi: 10.1073/pnas.1301596110
Osawa, M.; Ataka, K. -I.; Yoshii, K.; Yotsuyanagi, T. J. Electron. Spectrosc. Relat. Phenom. 1993, 64–65, 371. doi: 10.1016/0368-2048(93)80099-8
doi: 10.1016/0368-2048(93)80099-8
Ataka, K. -I.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664. doi: 10.1021/jp953636z
doi: 10.1021/jp953636z
Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D. Electrochim. Acta 2004, 49, 1233. doi: 10.1016/j.electacta.2003.06.002
doi: 10.1016/j.electacta.2003.06.002
Osawa, M. Advances in Electrochemical Science and Engineering; Alkire, R. C., Kolb, D. M., Lipkowski, J., Ross, P. N., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 269–314. doi:
Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. J. Phys. Chem. C 2008, 112, 4248. doi: 10.1021/jp710386g
doi: 10.1021/jp710386g
Garcia-Araez, N.; Rodriguez, P.; Navarro, V.; Bakker, H. J.; Koper, M. T. M. J. Phys. Chem. C 2011, 115, 21249. doi: 10.1021/jp206539a
doi: 10.1021/jp206539a
Gardner, A. M.; Saeed, K. H.; Cowan, A. J. Phys. Chem. Chem. Phys. 2019, 21, 12067. doi: 10.1039/C9CP02225B
doi: 10.1039/C9CP02225B
Wang, Y. H.; Li, S.; Zhou, R. Y.; Zheng, S.; Zhang, Y. J.; Dong, J. C.; Yang, Z. L.; Pan, F.; Tian, Z. Q.; Li, J. F. Nat. Protocols 2023, 18, 883. doi: 10.1038/s41596-022-00782-8
doi: 10.1038/s41596-022-00782-8
Zhang, Y. J.; Su, Z. F.; Li, J. F.; Lipkowski, J. J. Phys. Chem. C 2020, 124, 13240. doi: 10.1021/acs.jpcc.0c03453
doi: 10.1021/acs.jpcc.0c03453
Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi: 10.1038/s41563-019-0356-x
doi: 10.1038/s41563-019-0356-x
Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600, 81. doi: 10.1038/s41586-021-04068-z
doi: 10.1038/s41586-021-04068-z
Du, Q.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1994, 72, 238. doi: 10.1103/PhysRevLett.72.238
doi: 10.1103/PhysRevLett.72.238
Becraft, K. A.; Moore, F. G.; Richmond, G. L. Phys. Chem. Chem. Phys. 2004, 6, 1880. doi: 10.1039/B313513F
doi: 10.1039/B313513F
Schultz, Z. D.; Shaw, S. K.; Gewirth, A. A. J. Am. Chem. Soc. 2005, 127, 15916. doi: 10.1021/ja0543393
doi: 10.1021/ja0543393
Noguchi, H.; Okada, T.; Uosaki, K. Faraday Discuss. 2009, 140, 125. doi: 10.1039/B803640C
doi: 10.1039/B803640C
Tong, Y.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Angew. Chem. Int. Ed. 2017, 56, 4211. doi: 10.1002/anie.201612183
doi: 10.1002/anie.201612183
McGuire, J. A.; Shen, Y. R. Science 2006, 313, 1945. doi: 10.1126/science.1131536
doi: 10.1126/science.1131536
Nihonyanagi, S.; Kusaka, R.; Inoue, K. I.; Adhikari, A.; Yamaguchi, S.; Tahara, T. J. Chem. Phys. 2015, 143, 124707. doi: 10.1063/1.4931485
doi: 10.1063/1.4931485
Singh, P. C.; Inoue, K. I.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Angew. Chem. Int. Ed. 2016, 55, 10621. doi: 10.1002/anie.201603676
doi: 10.1002/anie.201603676
Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Chem. Rev. 2017, 117, 10665. doi: 10.1021/acs.chemrev.6b00728
doi: 10.1021/acs.chemrev.6b00728
Eftekhari-Bafrooei, A.; Borguet, E. J. Phys. Chem. Lett. 2011, 2, 1353. doi: 10.1021/jz200194e
doi: 10.1021/jz200194e
Zhang, Y. J.; Zhu, Y. Z.; Li, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052.
doi: 10.3866/PKU.WHXB202004052
Zhuang, L. Acta Phys. -Chim. Sin. 2021, 37, 2101003.
doi: 10.3866/PKU.WHXB202101003
Li, J. L.; Li, Y. F.; Liu, Z. P. J. Electrochem. 2022, 28, 2108511. [
doi: 10.13208/j.electrochem.210851
Samjeské, G.; Miki, A.; Ye, S.; Yamakata, A.; Mukouyama, Y.; Okamoto, H.; Osawa, M. J. Phys. Chem. B 2005, 109, 23509. doi: 10.1021/jp055220j
doi: 10.1021/jp055220j
Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem. Int. Ed. 2006, 45, 981. doi: 10.1002/anie.200502172
doi: 10.1002/anie.200502172
Grozovski, V.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M. ChemPhysChem 2011, 12, 1641. doi: 10.1002/cphc.201100257
doi: 10.1002/cphc.201100257
Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C. ACS Catal. 2012, 2, 728. doi: 10.1021/cs200661z
doi: 10.1021/cs200661z
Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S. Phys. Chem. Chem. Phys. 2011, 13, 9725. doi: 10.1039/C0CP01728K
doi: 10.1039/C0CP01728K
Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. ACS Catal. 2014, 4, 798. doi: 10.1021/cs401198t
doi: 10.1021/cs401198t
Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047
Liang, J. S.; Liu, X.; Li, Q. Acta Phys. -Chim. Sin. 2021, 37, 2010072.
doi: 10.3866/PKU.WHXB202010072
Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi: 10.1002/anie.201908907
doi: 10.1002/anie.201908907
Sun, Y. L.; A, Y. L.; Yue, M. F.; Chen, H. Q.; Ze, H.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; Fang, P. P.; Li, J. F. Anal. Chem. 2022, 94, 4779. doi: 10.1021/acs.analchem.1c05566
doi: 10.1021/acs.analchem.1c05566
Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2021, 143, 1318. doi: 10.1021/jacs.0c12755
doi: 10.1021/jacs.0c12755
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313
doi: 10.1038/nmat3313
Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60, 5708. doi: 10.1002/anie.202015571
doi: 10.1002/anie.202015571
Lin, X. M.; Wang, X. T.; Deng, Y. L.; Chen, X.; Chen, H. N.; Radjenovic, P. M.; Zhang, X. G.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; et al. Nano Lett. 2022, 22, 5544. doi: 10.1021/acs.nanolett.2c01744
doi: 10.1021/acs.nanolett.2c01744
Dong, J. N.; Qian, Z. X.; Xu, P.; Yue, M. F.; Zhou, R. Y.; Wang, Y. J.; Nan, Z. A.; Huang, S.; Dong, Q.; Li, J. F.; et al. Chem. Sci. 2022, 13, 5639. doi: 10.1039/D2SC01043G
doi: 10.1039/D2SC01043G
Peng, C. K.; Lin, Y. C.; Chiang, C. L.; Qian, Z. X.; Huang, Y. C.; Dong, C. L.; Li, J. F.; Chen, C. T.; Hu, Z. W.; Chen, S. Y.; et al. Nat. Commun. 2023, 14, 529. doi: 10.1038/s41467-023-36317-2
doi: 10.1038/s41467-023-36317-2
Chen, J.; Liu, G.; Zhu, Y. Z.; Su, M.; Yin, P.; Wu, X. J.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 7161. doi: 10.1021/jacs.0c01649
doi: 10.1021/jacs.0c01649
Chen, H. Q.; Ze, H.; Yue, M. F.; Wei, D. Y.; A, Y. L.; Wu, Y. F.; Dong, J. C.; Zhang, Y. J.; Zhang, H.; Tian, Z. Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117834. doi: 10.1002/anie.202117834
doi: 10.1002/anie.202117834
Li, J.; Wang, S.; Yue, M. F.; Xing, S. M.; Zhang, Y. J.; Dong, J. C.; Zhang, H.; Chen, Z.; Li, J. F. ACS Catal. 2023, 13, 849. doi: 10.1021/acscatal.2c05802
doi: 10.1021/acscatal.2c05802
Peremans, A.; Tadjeddine, A. Phys. Rev. Lett. 1994, 73, 3010. doi: 10.1103/PhysRevLett.73.3010
doi: 10.1103/PhysRevLett.73.3010
Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Behrens, R. L.; Dlott, D. D.; Wieckowski, A. J. Catal. 2011, 278, 181. doi: 10.1016/j.jcat.2010.11.018
doi: 10.1016/j.jcat.2010.11.018
Liu, Y.; Yu, W.; Raciti, D.; Gracias, D. H.; Wang, C. J. Phys. Chem. C 2019, 123, 426. doi: 10.1021/acs.jpcc.8b08547
doi: 10.1021/acs.jpcc.8b08547
Tong, Y.; Cai, K.; Wolf, M.; Campen, R. K. Catal. Today 2016, 260, 66. doi: 10.1016/j.cattod.2015.08.015
doi: 10.1016/j.cattod.2015.08.015
Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi: 10.1002/cphc.201700736
doi: 10.1002/cphc.201700736
Neri, G.; Donaldson, P. M.; Cowan, A. J. J. Am. Chem. Soc. 2017, 139, 13791. doi: 10.1021/jacs.7b06898
doi: 10.1021/jacs.7b06898
Huang-fu, Z. C.; Song, Q. T.; He, Y. H.; Wang, J. J.; Ye, J. Y.; Zhou, Z. Y.; Sun, S. G.; Wang, Z. H. Phys. Chem. Chem. Phys. 2019, 21, 25047. doi: 10.1039/C9CP04346B
doi: 10.1039/C9CP04346B
Cheng H.; Du, H. Y.; Yang, Y. J. Electrochem. 2004, 10, 303.
Li, W. J.; Zheng, J. Y.; Gu, L.; Li, H. J. Electrochem. 2015, 21, 99.
doi: 10.13208/j.electrochem.141054
Gao, F.; Tian, X. D.; Lin, J. S.; Dong, J. C.; Lin, X. M.; Li, J. F. Nano Res. 2023, 16, 4855. doi: 10.1007/s12274-021-4044-1
doi: 10.1007/s12274-021-4044-1
Li, J. T.; Chen, S. R.; Fan, X. Y.; Huang, L.; Sun, S. G. Langmuir 2007, 23, 13174. doi: 10.1021/la701168x
doi: 10.1021/la701168x
Li, J. T.; Chen, S. R.; Ke, F. S.; Wei, G. Z.; Huang, L.; Sun, S. G. J. Electroanal. Chem. 2010, 649, 171. doi: 10.1016/j.jelechem.2010.03.032
doi: 10.1016/j.jelechem.2010.03.032
Yang , J.; Solomatin, N.; Kraytsberg, A.; Ein-Eli , Y. ChemistrySelect 2016, 1, 572. doi: 10.1002/slct.201600119
doi: 10.1002/slct.201600119
Li, X.; Qiao, Y.; Guo, S.; Jiang, K.; Ishida, M.; Zhou, H. Adv. Mater. 2019, 31, 1807825. doi: 10.1002/adma.201807825
doi: 10.1002/adma.201807825
Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. Nat. Energy 2021, 6, 653. doi: 10.1038/s41560-021-00839-0
doi: 10.1038/s41560-021-00839-0
Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179
doi: 10.1021/acs.nanolett.9b00179
Horowitz, Y.; Han, H. L.; Ralston, W. T.; de Araujo, J. R.; Kreidler, E.; Brooks, C.; Somorjai, G. A. Adv. Energy Mater. 2017, 7, 1602060. doi: 10.1002/aenm.201602060
doi: 10.1002/aenm.201602060
Horowitz, Y.; Han, H. L.; Soto, F. A.; Ralston, W. T.; Balbuena, P. B.; Somorjai, G. A. Nano Lett. 2018, 18, 1145. doi: 10.1021/acs.nanolett.7b04688
doi: 10.1021/acs.nanolett.7b04688
Ge, A.; Zhou, D.; Inoue, K. I.; Chen, Y.; Ye, S. J. Phys. Chem. C 2020, 124, 17538. doi: 10.1021/acs.jpcc.0c06390
doi: 10.1021/acs.jpcc.0c06390
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
Xin Hua , Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1