Citation: Xiaojing Tian, Zhichun Huang, Qingsong Zhang, Xu Wang, Ning Yang, Nanping Deng. PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230403. doi: 10.3866/PKU.WHXB202304037 shu

PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking

  • Corresponding author: Qingsong Zhang, zqs8011@163.com
  • Received Date: 20 April 2023
    Revised Date: 19 June 2023
    Accepted Date: 23 June 2023
    Available Online: 30 June 2023

    Fund Project: the National Natural Science Foundation of China 52173060Science and Technology Guidance Projects of China National Textile and Apparel Council 2018034Natural Science Foundation of Shandong Province ZR2022ME095Fiber Research Foundation of Tiangong University TGF-21-B5Research Plan of Combining Medicine with Engineering of Tiangong University 2021YGJHLX03

  • Since 2004, poly(N-isopropylacrylamide) (PNIPAm) cross-linked thermo-responsive nanofibers mats have emerged as a responsive material with a phase transition temperature that can be easily controlled. These mats overcome the limitations, such as a high production cost and slow response rate, of huge traditional PNIPAm hydrogels. They also overcome the poor water resistance of PNIPAm non-cross-linked thermo-responsive nanofibers and, thus, have been widely studied. In 2017, continuous PNIPAm thermo-responsive nanofibers in pure aqueous solvents without beads were fabricated, which began the ecological and water-based era of uniform PNIPAm nanofiber production. In this review, we comprehensively analyzed the effects of physical and chemical cross-linking reaction types, cross-linking degree, cross-linking time, and cross-linking molecular weight on the morphological stability and response behavior of PNIPAm thermo-responsive nanofibers mats, providing theoretical support for their future cross-linking treatment. Because of their high specific surface area and porosity, PNIPAm thermo-responsive nanofibers mats are vulnerable to solvent erosion before cross-linking, which damage their morphology and reduce response rates and usage times. Increased water resistance and can be utilized repeatedly, by introducing cross-linking groups to these mats, such as in drug release, cell culture, drivers, and smart switches. Chemical cross-linking are more stable than physical cross-linking and can be divided into crosslinkers, chemical reactive cross-linking, and other cross-linking. The cross-linking networks produced by a cross-linking agent are more robust; however, the resulting nanofibers mats are not applicable to the human body owing to the small, non-degradable harmful molecules, such as formaldehyde and glutaraldehyde (GA). Random 3D networks generated by physical cross-linking are easier to break but relatively safe and pollution-free. The morphological stability and response behavior of PNIPAm thermo-responsive nanofibers mats are affected by the cross-linking. The cross-linking agent content and the cross-linking time are positively correlated with the morphological stability of PNIPAm thermo-responsive nanofibers mats. This is conducive to multiple recycling but has little effect on the response rate. Greener and more reliable cross-linking methods should be investigated to realize and expand the practical applications of PNIPAm thermo-responsive nanofibers mats, with increasing focus on the effect of cross-linking on the mechanical properties of the mats. We hope this review will result in ideas for improving the development and application of PNIPAm thermo-responsive nanofibers mats.
  • 加载中
    1. [1]

      Wang, C.; Flynn, N. T.; Langer, R. Adv. Mater. 2004, 16, 1074. doi: 10.1002/adma.200306516  doi: 10.1002/adma.200306516

    2. [2]

      Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337. doi: 10.1016/s0142-9612(03)00340-5  doi: 10.1016/s0142-9612(03)00340-5

    3. [3]

      Li, Y.; Zhu, J. D.; Cheng, H.; Li, G. Q.; Cho, H. J.; Jiang, M. J.; Gao, Q.; Zhang, X. W. Adv. Mater. Technol. 2021, 6, 2100410. doi: 10.1002/admt.202100410  doi: 10.1002/admt.202100410

    4. [4]

      Jiang, S. H.; Chen, Y. M.; Duan, G. G.; Mei, C. T.; Greiner, A.; Agarwal, S. Polym. Chem. 2018, 9, 2685. doi: 10.1039/C8PY00378E  doi: 10.1039/C8PY00378E

    5. [5]

      Luo, C. J.; Stoyanov, S. D.; Stride, E.; Pelan, E.; Edirisinghe, M. Chem. Soc. Rev. 2012, 41, 4708. doi: 10.1039/c2cs35083a  doi: 10.1039/c2cs35083a

    6. [6]

      He, C. L.; Kim, S. W.; Lee, D. S. J. Control. Release 2008, 127, 189. doi: 10.1016/j.jconrel.2008.01.005  doi: 10.1016/j.jconrel.2008.01.005

    7. [7]

      López-Rubio, A.; Lagaron, J. M. Innov. Food Sci. Emerg. Technol. 2012, 13, 200. doi: 10.1016/j.ifset.2011.10.012  doi: 10.1016/j.ifset.2011.10.012

    8. [8]

      Muthiah, P.; Hoppe, S. M.; Boyle, T. G.; Sidmund, W. Macromol. Rapid Commun. 2011, 32, 1716. doi: 10.1002/marc.201100373  doi: 10.1002/marc.201100373

    9. [9]

      Ashraf, S.; Park, H. K.; Park, H.; Lee, S. H. Macromol. Res. 2016, 24, 297. doi: 10.1007/s13233-016-4052-2  doi: 10.1007/s13233-016-4052-2

    10. [10]

      Deka, S. R.; Quarta, A.; Di, C. R.; Riedinger, A.; Cingolani, R.; Pellegrino, T. Nanoscale 2011, 3, 619. doi: 10.1039/c0nr00570c  doi: 10.1039/c0nr00570c

    11. [11]

      Chen, H.; Hsieh, Y. L. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 6331. doi: 10.1002/pola.20461  doi: 10.1002/pola.20461

    12. [12]

      Wang, N.; Zhao, Y.; Jiang, L. Macromol. Rapid Commun. 2008, 29, 485. doi: 10.1002/marc.200700785  doi: 10.1002/marc.200700785

    13. [13]

      Rockwood, D. N.; Chase, D. B.; Akins, R, E.; Rabolt, J. F. Polymer 2008, 49, 4025. doi: 10.1016/j.polymer.2008.06.018  doi: 10.1016/j.polymer.2008.06.018

    14. [14]

      Okuzaki, H.; Kobayashi, K.; Yan, H. Macromolecules 2009, 42, 5916. doi: 10.1021/ma9014356  doi: 10.1021/ma9014356

    15. [15]

      Okuzaki, H.; Kobayashi, K.; Yan, H. Synth. Met. 2009, 159, 2273. doi: 10.1016/j.synthmet.2009.07.046  doi: 10.1016/j.synthmet.2009.07.046

    16. [16]

      Wang, J.; Sutti, A.; Wang, X.; Lin, T. Soft Matter 2011, 7, 4364. doi: 10.1039/c1sm00010a  doi: 10.1039/c1sm00010a

    17. [17]

      Schoolaert, E.; Ryckx, P.; Geltmeyer, J.; Maji, S.; Steenberge, P. H. M. V.; D'hooge, D. R.; Hoogenboom, R.; Clerck, K. D. ACS Appl. Mater. Interfaces 2017, 9, 24100. doi: 10.1021/acsami.7b05074  doi: 10.1021/acsami.7b05074

    18. [18]

      Chen, T. T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Adv. Funct. Mater. 2018, 28, 1800514. doi: 10.1002/adfm.201800514  doi: 10.1002/adfm.201800514

    19. [19]

      Young, R. E.; Graf, J.; Miserocchi, L.; Van Horn, R. M.; Gordon, M. B.; Anderson, C. R.; Sefcik, L. S.; Fujita, S. Plos One 2019, 17, 0219254. doi: 10.1371/journal.pone.0219254  doi: 10.1371/journal.pone.0219254

    20. [20]

      Sun, F.; Ren, H. T.; Li, T. T.; Huang, S-Y.; Zhang, Y.; Lou, C-W.; Lin, J-H. Environ. Res. 2020, 186, 109494. doi: 10.1016/j.envres.2020.109494  doi: 10.1016/j.envres.2020.109494

    21. [21]

      Li, J.; Wang, B-X.; Cheng, D-H.; Liu, Z-M.; Lv, L-H.; Guo J.; Lu, Y-H. Coatings 2021, 11, 632. doi: 10.3390/coatings11060632  doi: 10.3390/coatings11060632

    22. [22]

      Pascoalino, L. A.; Silva, B. A. T. T.; Souza, R. L. D.; Curti, P. S. Materia 2022, 27, 13181. doi: 10.1590/s1517-707620220002.1381  doi: 10.1590/s1517-707620220002.1381

    23. [23]

      Kim, S.; Choi, H. ACS Sustain. Chem. Eng. 2019, 7, 19870. doi: 10.1021/acssuschemeng.9b05273  doi: 10.1021/acssuschemeng.9b05273

    24. [24]

      Xu, Y. H.; Ajji, A.; Heuzey, M-C. Sens. Actuator A-Phys. 2023, 349, 114016. doi: 10.1016/j.sna.2022.114016  doi: 10.1016/j.sna.2022.114016

    25. [25]

      Yu, Z. Q.; Tang, D. Y.; Lv, H. T.; Feng, Q.; Zhang, Q. N.; Jiang, E. Y.; Wang, Q. D. Colloid Surf. A-Phys. Chem. Eng. Asp. 2015, 471, 117. doi: 10.1016/j.colsurfa.2015.02.023  doi: 10.1016/j.colsurfa.2015.02.023

    26. [26]

      Song, F.; Wang, X. L.; Wang, Y. Z. Colloid Surf. B-Biointerfaces 2011, 88, 749. doi: 10.1016/j.colsurfb.2011.08.015  doi: 10.1016/j.colsurfb.2011.08.015

    27. [27]

      Chuang, W.; Chiu, W.; Tai, H. J. J. Mater. Chem. 2012, 22, 20311. doi: 10.1039/C2JM33601D  doi: 10.1039/C2JM33601D

    28. [28]

      Bhattarai, N.; Zhang, M. Q. Nanotechnology 2007, 18, 455601. doi: 10.1088/0957-4484/18/45/455601  doi: 10.1088/0957-4484/18/45/455601

    29. [29]

      Leitner, A.; Joachimiak, L. A.; Unverdorben, P.; Walzthoeni, T.; Frydman, J.; Forster, F. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9455. doi: 10.1073/pnas.1320298111  doi: 10.1073/pnas.1320298111

    30. [30]

      Wang, Y.; Luo, C.; Yang, G.; Wei, X. Macromol. Biosci. 2016, 16, 1598. doi: 10.1002/mabi.201600123  doi: 10.1002/mabi.201600123

    31. [31]

      Kumbaraci, V.; Talinli, N.; Yagci, Y. Macromol. Rapid Commun. 2010, 28, 72. doi: 10.1002/marc.200600653  doi: 10.1002/marc.200600653

    32. [32]

      Hennink, W. E.; Van Nostrum, C. F. Adv. Drug Deliv. Rev. 2012, 64, 223. doi: 10.1016/j.addr.2012.09.009  doi: 10.1016/j.addr.2012.09.009

    33. [33]

      Morandim-Giannetti, A. D.; Wecchi, P. D.; Silvério, P. D. J. Therm. Anal. Calorim. 2019, 138, 3635. doi: 10.1007/s10973-019-08571-4  doi: 10.1007/s10973-019-08571-4

    34. [34]

      Osada, Y.; Matsuda, A. Nature 1995, 376, 219. doi: 10.1038/376219a0  doi: 10.1038/376219a0

    35. [35]

      Chen, L. N.; Kuo, C. C.; Chiu, Y. C.; Chen, W. C. RSC Adv. 2014, 4, 45345. doi: 10.1039/C4RA07422J  doi: 10.1039/C4RA07422J

    36. [36]

      Li, J.; Zhu, J. X.; Jia, L.; Ma, Y. L.; Wu, H. J. RSC Adv. 2020, 10, 323. doi: 10.1039/C9RA08832F  doi: 10.1039/C9RA08832F

    37. [37]

      Liu, Y. H.; Meng, F. L.; Zheng, S. X. Macromol. Rapid Commun. 2005, 26, 920. doi: 10.1002/marc.200500062  doi: 10.1002/marc.200500062

    38. [38]

      Slemming-Adamsen, P.; Song, J.; Dong, M.; Besenbacher, F.; Chen, M. L. Macromol. Mater. Eng. 2015, 300, 1226. doi: 10.1002/mame.201500160  doi: 10.1002/mame.201500160

    39. [39]

      Yin, T. H.; Lavoie, S. R.; Qu, S, X.; Suo, Z. G. Cell Rep. Phys. Sci. 2021, 6, 100463. doi: 10.1016/j.xcrp.2021.100463  doi: 10.1016/j.xcrp.2021.100463

    40. [40]

      Kotsuchibashi, Y.; Ebara, M.; Idota, N.; Narain, R.; Aoyagi, T. Polym. Chem. 2012, 3, 1150. doi: 10.1039/C2PY20333B  doi: 10.1039/C2PY20333B

    41. [41]

      Kuijpers, A. J.; Engbers, G. H.; Krijgsveld, J.; Zaat, S. A.; Dankert, J.; Feijen, J. J. Biomater. Sci. Polym. Ed. 2000, 11, 225. doi: 10.1163/156856200743670  doi: 10.1163/156856200743670

    42. [42]

      Christensen, S. K.; Chiappelli, M. C.; Hayward, R. C. Macromolecules 2012, 45, 5237. doi: 10.1021/ma300784d  doi: 10.1021/ma300784d

    43. [43]

      Carbone, N. D.; Ene, M.; Lancaster, J. R.; Koberstein, J. T. Macromolecules 2013, 46, 5434. doi: 10.1021/ma4007347  doi: 10.1021/ma4007347

    44. [44]

      He, W.; Tang, A. B.; Luo, C. M.; Ma, Q. K.; Li, Z. Z. Insul. Mater. 2011, 44, 67. doi: 10.16790/j.cnki.1009-9239.im.2011.01.015  doi: 10.16790/j.cnki.1009-9239.im.2011.01.015

    45. [45]

      Gauthier, M. A.; Gibson, M. I.; Klok, H. -A. Angew. Chem. Int. Ed. 2009, 48, 48. doi: 10.1002/anie.200801951  doi: 10.1002/anie.200801951

    46. [46]

      Bao, B. K.; Liu, T.; Lin, Q. N.; Zhu, L. Y. Acta Polym. Sin. 2021, 52, 646. doi: 10.11777/j.issn1000-3304.2021.21047  doi: 10.11777/j.issn1000-3304.2021.21047

    47. [47]

      Zhu, X. F.; Lu, P.; Chen, W.; Dong, J. A. Polymer 2010, 51, 3054. doi: 10.1016/j.polymer.2010.05.006  doi: 10.1016/j.polymer.2010.05.006

    48. [48]

      Wang, C.; Venditti, R. A. ACS Sustainable Chem. Eng. 2015, 3, 1839. doi: 10.1021/acssuschemeng.5b00416  doi: 10.1021/acssuschemeng.5b00416

    49. [49]

      Higuchi, H.; Yamashita, T.; Horie, K.; Mita, I. Chem. Mater. 1991, 3, 188. doi: 10.1021/cm00013a038  doi: 10.1021/cm00013a038

    50. [50]

      Wang, P.; Li, H. T.; Cao, Y. J.; Yu, H. G. Acta Phys. -Chim. Sin. 2021, 37, 2008047. doi: 10.3866/PKU.WHXB202008047  doi: 10.3866/PKU.WHXB202008047

    51. [51]

      Parvate, S.; Mahanwar, P. J. Dispersion Sci. Technol. 2019, 40, 519. doi: 10.1080/01932691.2018.1472012  doi: 10.1080/01932691.2018.1472012

    52. [52]

      Graisuwan, W.; Puthong, S.; Zhao, H.; Kiatkamjornwong, S.; Theato, P.; Hoven, V. P. Biomacromolecules 2017, 18, 3714. doi: 10.1021/acs.biomac.7b00382  doi: 10.1021/acs.biomac.7b00382

    53. [53]

      Krishnan, S.; Klein, A.; El-Aasser, M. S.; Sudol, E. D. Macromolecules 2003, 36, 3511. doi: 10.1081/PRE-120024419  doi: 10.1081/PRE-120024419

    54. [54]

      Eberhardt, M.; Theato, P. Macromol. Rapid Commun. 2005, 26, 1488. doi: 10.1002/marc.200500390  doi: 10.1002/marc.200500390

    55. [55]

      Theato, P. J. Polym. Sci. Part A: Polym. Chem. 2008, 4, 6677. doi: 10.1002/pola.22994  doi: 10.1002/pola.22994

    56. [56]

      Pawar, M. D.; Rathna, G. V. N.; Agrawal, S. Mater. Sci. Eng. C 2015, 48, 126. doi: 10.1016/j.msec.2014.11.037  doi: 10.1016/j.msec.2014.11.037

    57. [57]

      Rathna, G. V. N.; Li, J.; Gunasekaran, S. Polym. Int. 2004, 53, 1994. doi: 10.1002/pi.1611  doi: 10.1002/pi.1611

    58. [58]

      Chang, J. W.; Wang, C. Y.; Huang, T. D.; Guo, T. F.; Wen, T. C. Adv. Mater. 2011, 23, 4077. doi: 10.1002/adma.201102124  doi: 10.1002/adma.201102124

    59. [59]

      Liu, S.J.; Kau, Y. C.; Chou, C. Y.; Chen, J. K.; Wu, R. C.; Yeh, W. L. J. Membr. Sci. 2010, 355, 53. doi: 10.1016/j.memsci.2010.03.012  doi: 10.1016/j.memsci.2010.03.012

    60. [60]

      Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63, 2223. doi: 10.1016/S0266-3538(03)00178-7  doi: 10.1016/S0266-3538(03)00178-7

    61. [61]

      Yoo, H. S.; Kim, T. G.; Park, T. G. Adv. Drug Deliv. Rev. 2009, 61, 1033. doi: 10.1016/j.addr.2009.07.007  doi: 10.1016/j.addr.2009.07.007

    62. [62]

      Suzuki, K.; Tanaka, H.; Ebara, M.; Uto, K.; Matsuoka, H.; Nishimoto, S. Acta Biomater 2017, 53, 250. doi: 10.1016/j.actbio.2017.02.004  doi: 10.1016/j.actbio.2017.02.004

    63. [63]

      Shi, Q.; Hou, J. W.; Xu, X. D.; Gao, J.; Li, C. M. Adv. Mater. Interfaces 2016, 3, 1500652. doi: 10.1002/admi.201500652  doi: 10.1002/admi.201500652

    64. [64]

      Xu, Y.; Ajji, A.; Heuzey, M-C. Polymer 2019, 183, 121880. doi: 10.1016/j.polymer.2019.121880  doi: 10.1016/j.polymer.2019.121880

    65. [65]

      Mu, Q. F. Thermo-responsive Gels Nanofibers Mats and Mechanism of Structural Evolution of Colloidal Electrospinning Fibers. Master Dissertation, TianGong University, Tianjin, 2018.

    66. [66]

      Jia, S. Y.; Tang, D. Y.; Peng, J.; Sun, Z. J.; Yang, X. Carbohydr. Polym. 2019, 208, 486. doi: 10.1016/j.carbpol.2018.12.075  doi: 10.1016/j.carbpol.2018.12.075

    67. [67]

      Harada, A.; Takashima, Y.; Nakahata, M. Acc. Chem Res. 2014, 47, 2128. doi: 10.1021/ar500109h  doi: 10.1021/ar500109h

    68. [68]

      Jia, S. Y.; Tang, D. Y.; Sun, Z. J. Chem. Eng. J. 2020, 390, 142272. doi: 10.1016/j.cej.2020.124472  doi: 10.1016/j.cej.2020.124472

    69. [69]

      Wu, J. X.; Zhang, J.; Kang, Y. L.; Wu, G. ACS Sustain. Chem. Eng. 2018, 6, 1753. doi: 10.1021/acssuschemeng.7b03102  doi: 10.1021/acssuschemeng.7b03102

    70. [70]

      Arroub, K.; Gessner, L.; Fischer, T.; Mathur, S. Adv. Eng. Mater. 2021, 23, 2100221. doi: 10.1002/adem.202100221  doi: 10.1002/adem.202100221

    71. [71]

      Li, J. M.; Wang, D.; Zhang, J. J.; Zhang, N.; Chen, Y.; Wang, Z. N. Desalination 2023, 555, 116544. doi: 10.1016/j.desal.2023.116544  doi: 10.1016/j.desal.2023.116544

    72. [72]

      Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Adv. Funct. Mater. 2015, 25, 2980. doi: 10.1002/adfm.201500420  doi: 10.1002/adfm.201500420

    73. [73]

      Zhang, C. L.; Cao, F. H.; Wang, J. L.; Yu, Z. L.; Ge, J.; Lu, Y.; Wang, Z. H.; Yu, S. H. ACS Appl. Mater. Interfaces 2017, 9, 24857. doi: 10.1021/acsami.7b05223  doi: 10.1021/acsami.7b05223

    74. [74]

      Jiang, S. H.; Liu, F. Y.; Lerch, A.; Lonov, L. Adv. Mater. 2015, 27, 4865. doi: 10.1002/adma.201502133  doi: 10.1002/adma.201502133

    75. [75]

      Mu, Q. F.; Zhang, Q. S.; Yu, W.; Su, M. L.; Cai, Z. Y.; Cui, K. P.; Ye, Y. N.; Liu X. Y.; Deng, L. L.; Chen, B. J.; et al. ACS Appl. Mater. Interfaces 2020, 12, 33152. doi: 10.1021/acsami.0c06164  doi: 10.1021/acsami.0c06164

    76. [76]

      Kim, Y. I.; Ebara, M.; Aoyagi, T. Sci. Technol. Adv. Mater. 2012, 13, 064203. doi: 10.1088/1468-6996/13/6/064203  doi: 10.1088/1468-6996/13/6/064203

    77. [77]

      Wei, Z. M.; Zhao, W.; Wang, Y. M.; Wang, X. J.; Long, S. R. Colloid Surf. B-Biointerfaces 2019, 182, 110347. doi: 10.1016/j.colsurfb.2019.110347  doi: 10.1016/j.colsurfb.2019.110347

    78. [78]

      Lin, T. C.; Lin, F. H.; Lin, J. C. Acta Biomater 2012, 8, 2704. doi: 10.1016/j.actbio.2012.03.045  doi: 10.1016/j.actbio.2012.03.045

    79. [79]

      Hosseini-Alvand, E.; Khorasani, M-T. J. Mater. Chem. B 2023, 11, 890. doi: 10.1039/D2TB02179J  doi: 10.1039/D2TB02179J

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    7. [7]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    8. [8]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    15. [15]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    16. [16]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    19. [19]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    20. [20]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(4)
  • Abstract views(821)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return