Citation: Huasen Lu, Shixu Song, Qisen Jia, Guangbo Liu, Luhua Jiang. Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230403. doi: 10.3866/PKU.WHXB202304035 shu

Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting

  • Corresponding author: Luhua Jiang, luhuajiang@qust.edu.cn
  • Received Date: 20 April 2023
    Revised Date: 21 May 2023
    Accepted Date: 23 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Natural Science Foundation of China 22179067the National Natural Science Foundation of China 22279069the Natural Science Foundation of Shandong Province ZR2022ZD10

  • Owing to the growing consumption of non-renewable resources and increased environmental pollution, significant attention has been directed toward developing renewable and environmentally friendly energy sources. Hydrogen has emerged as a clean energy carrier and is considered an ideal chemical for power generation via fuel cells. Using renewable energy to power hydrogen production is an attractive prospect, and hydrogen production through photoelectrochemical water splitting is considered a promising area of interest; consequently, significant research is being conducted on rationally designed photoelectrodes. Generally, a photocathode for hydrogen evolution must have a conduction band that is more negative than the reduction potential of hydrogen. Numerous photocathode materials have been developed based on this premise; these include p-Si, InP, and GaN. Compared with other photocathode materials, Cu-based compounds are advantageous owing to their low preparation costs and diverse chemical states. For example, Cu2O is a non-toxic p-type metal oxide semiconductor material with an appropriate band structure for water splitting and a direct band gap of 1.9–2.2 eV. Furthermore, the production of Cu2O is facile, and the required materials are abundant; thus, it has attracted significant interest as a material for photocathodes. However, Cu2O suffers from rapid recombination of photogenerated carriers and severe photo-corrosion, leading to unsatisfactory efficiency and poor stability. Intrinsically, the poor photo-stability of Cu2O can be attributed to the location of the redox potential of Cu2O within its bandgap, owing to which photoelectrons tend to preferentially reduce Cu2O to Cu rather than reduce water to reduction. Therefore, Cu2O itself is not an ideal hydrogen evolution catalyst. Thus, co-catalysts are necessary to improve its hydrogen evolution activity and photostability. In addition to co-catalysts, combining Cu2O with tailored n-type semiconductors to generate built-in electric fields of p-n junctions has attracted extensive attention owing to its ability of increasing the separation of photogenerated carriers. Similarly, applying a hole transfer layer on the substrate can promote photocarrier separation. Furthermore, considering that water is indispensable for Cu2O reduction, one effective approach to improve the stability of Cu2O is the addition of a protective/passivation layer to isolate Cu2O from water in aqueous electrolytes. In this review, we provide a brief overview of the mechanism of photoelectrochemical water splitting and the band structure of Cu2O; preparation methods of Cu2O photocathodes; strategies to improve the efficiency and stability of Cu2O photocathodes, including the construction of p-n junctions, integration with co-catalysts, and modifications using hole transport layers; advanced photoelectrochemical characterization techniques; and a discussion regarding the direction of future photocathode research.
  • 加载中
    1. [1]

      Grossmann, W. D.; Grossmann, I.; Steininger, K. W. Renew. Sust. Energ. Rev. 2014, 32, 983. doi: 10.1016/j.rser.2014.01.003  doi: 10.1016/j.rser.2014.01.003

    2. [2]

      Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    3. [3]

      Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425  doi: 10.1126/science.280.5362.425

    4. [4]

      Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11 (7), 3026. doi: 10.1021/nl201766h  doi: 10.1021/nl201766h

    5. [5]

      Hisatomi, T.; Domen, K. Faraday Discuss. 2017, 198 (0), 11. doi: 10.1039/C6FD00221H  doi: 10.1039/C6FD00221H

    6. [6]

      Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; et al. Energy Environ. Sci. 2013, 6 (7), 1983. doi: 10.1039/C3EE40831K  doi: 10.1039/C3EE40831K

    7. [7]

      Huang, Q.; Ye, Z.; Xiao, X. J. Mater. Chem. A 2015, 3 (31), 15824. doi: 10.1039/C5TA03594E  doi: 10.1039/C5TA03594E

    8. [8]

      Bagal, I. V.; Chodankar, N. R.; Hassan, M. A.; Waseem, A.; Johar, M. A.; Kim, D. -H.; Ryu, S. -W. Int. J. Hydrog. Energy 2019, 44 (39), 21351. doi: 10.1016/j.ijhydene.2019.06.184  doi: 10.1016/j.ijhydene.2019.06.184

    9. [9]

      de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc. 2000, 147 (2), 486. doi: 10.1149/1.1393221  doi: 10.1149/1.1393221

    10. [10]

      Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. J. Mater. Res. 2010, 25 (1), 3. doi: 10.1557/JMR.2010.0020  doi: 10.1557/JMR.2010.0020

    11. [11]

      Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10 (6), 456. doi: 10.1038/nmat3017  doi: 10.1038/nmat3017

    12. [12]

      Toe, C. Y.; Scott, J.; Amal, R.; Ng, Y. H. J. Photochem. Photobiol. C 2019, 40, 191. doi: 10.1016/j.jphotochemrev.2018.10.001  doi: 10.1016/j.jphotochemrev.2018.10.001

    13. [13]

      Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32 (1), 33. doi: 10.1016/j.progsolidstchem.2004.08.001  doi: 10.1016/j.progsolidstchem.2004.08.001

    14. [14]

      Tench, D.; Warren, L. F. J. Electrochem. Soc. 1983, 130 (4), 869. doi: 10.1149/1.2119838  doi: 10.1149/1.2119838

    15. [15]

      Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater. 2003, 15 (10), 822. doi: 10.1002/adma.200304840  doi: 10.1002/adma.200304840

    16. [16]

      Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Phys. Rev. B 2007, 75 (12), 125420. doi: 10.1103/PhysRevB.75.125420  doi: 10.1103/PhysRevB.75.125420

    17. [17]

      Aveline, A.; Bonilla, I. R. Sol. Energy Mater. 1981, 5 (2), 211. doi: 10.1016/0165-1633(81)90033-2  doi: 10.1016/0165-1633(81)90033-2

    18. [18]

      Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. J. Vac. Sci. Technol. A 1990, 8 (3), 1403. doi: 10.1116/1.576890  doi: 10.1116/1.576890

    19. [19]

      Qin, C.; Chen, X.; Liang, R.; Jiang, N.; Zheng, Z.; Ye, Z.; Zhu, L. ACS Appl. Energy Mater. 2022, 5 (11), 14410. doi: 10.1021/acsaem.2c02974  doi: 10.1021/acsaem.2c02974

    20. [20]

      Eisermann, S.; Kronenberger, A.; Laufer, A.; Bieber, J.; Haas, G.; Lautenschläger, S.; Homm, G.; Klar, P. J.; Meyer, B. K. Phys. Status Solidi A-Appl. Mat. 2012, 209 (3), 531. doi: 10.1002/pssa.201127493  doi: 10.1002/pssa.201127493

    21. [21]

      Jeong, S.; Aydil, E. S. J. Vac. Sci. Technol. A 2010, 28 (6), 1338. doi: 10.1116/1.3491036  doi: 10.1116/1.3491036

    22. [22]

      Das, C.; Ananthoju, B.; Dhara, A. K.; Aslam, M.; Sarkar, S. K.; Balasubramaniam, K. R. Adv. Mater. Interfaces 2017, 4 (17), 1700271. doi: 10.1002/admi.201700271  doi: 10.1002/admi.201700271

    23. [23]

      Liu, H.; Nguyen, V. H.; Roussel, H.; Gélard, I.; Rapenne, L.; Deschanvres, J. -L.; Jiménez, C.; Muñoz-Rojas, D. Adv. Mater. Interfaces 2019, 6 (3), 1801364. doi: 10.1002/admi.201801364  doi: 10.1002/admi.201801364

    24. [24]

      Güneri, E.; Aker, D.; Henry, J.; Billur, C. A.; Saatçi, B. Phase Transitions 2022, 95 (10), 679. doi: 10.1080/01411594.2022.2104161  doi: 10.1080/01411594.2022.2104161

    25. [25]

      Aref, A. A.; Xiong, L.; Yan, N.; Abdulkarem, A. M.; Yu, Y. Mater. Chem. Phys. 2011, 127 (3), 433. doi: 10.1016/j.matchemphys.2011.02.029  doi: 10.1016/j.matchemphys.2011.02.029

    26. [26]

      Liu, M.; Xue, D. J. Phys. Chem. C 2008, 112 (16), 6346. doi: 10.1021/jp800803s  doi: 10.1021/jp800803s

    27. [27]

      Luo, C.; Xue, D. Langmuir 2006, 22 (24), 9914. doi: 10.1021/la062193v  doi: 10.1021/la062193v

    28. [28]

      Xiong, L.; Yu, H.; Yang, G.; Qiu, M.; Chen, J.; Yu, Y. Thin Solid Films 2010, 518 (23), 6738. doi: 10.1016/j.tsf.2010.05.117  doi: 10.1016/j.tsf.2010.05.117

    29. [29]

      Luo, J.; Steier, L.; Son, M. -K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Nano Lett. 2016, 16 (3), 1848. doi: 10.1021/acs.nanolett.5b04929  doi: 10.1021/acs.nanolett.5b04929

    30. [30]

      Jiang, D.; Zhang, Y.; Li, X. Chin. J. Catal. 2019, 40 (1), 105. doi: 10.1016/S1872-2067(18)63164-X  doi: 10.1016/S1872-2067(18)63164-X

    31. [31]

      Zhang, Z.; Song, R.; Cao, T.; Huang, W. J. Energy Chem. 2016, 25 (6), 1086. doi: 10.1016/j.jechem.2016.09.012  doi: 10.1016/j.jechem.2016.09.012

    32. [32]

      Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. J. Appl. Phys. 2014, 115 (7), 073505. doi: 10.1063/1.4865957  doi: 10.1063/1.4865957

    33. [33]

      Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51 (3), 305. doi: 10.1016/S0927-0248(97)00233-X  doi: 10.1016/S0927-0248(97)00233-X

    34. [34]

      Visibile, A.; Wang, R. B.; Vertova, A.; Rondinini, S.; Minguzzi, A.; Ahlberg, E.; Busch, M. Chem. Mater. 2019, 31 (13), 4787. doi: 10.1021/acs.chemmater.9b01122  doi: 10.1021/acs.chemmater.9b01122

    35. [35]

      Nolan, M.; Elliott, S. D. Chem. Mater. 2008, 20 (17), 5522. doi: 10.1021/cm703395k  doi: 10.1021/cm703395k

    36. [36]

      Tseng, C. C.; Hsieh, J. H.; Liu, S. J.; Wu, W. Thin Solid Films 2009, 518 (5), 1407. doi: 10.1016/j.tsf.2009.09.116  doi: 10.1016/j.tsf.2009.09.116

    37. [37]

      Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Xin, Y. J. Mater. Chem. A 2018, 6 (41), 20393. doi: 10.1039/C8TA07503D  doi: 10.1039/C8TA07503D

    38. [38]

      Li, X.; Liu, B.; Chen, Y.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Nanotechnology 2018, 29 (50), 505603. doi: 10.1088/1361-6528/aae569  doi: 10.1088/1361-6528/aae569

    39. [39]

      Shinde, P. S.; Fontenot, P. R.; Donahue, J. P.; Waters, J. L.; Kung, P.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. J. Mater. Chem. A 2018, 6 (20), 9569. doi: 10.1039/C8TA01771A  doi: 10.1039/C8TA01771A

    40. [40]

      Würfel, U.; Cuevas, A.; Würfel, P. IEEE J. Photovoltaics 2015, 5 (1), 461. doi: 10.1109/JPHOTOV.2014.2363550  doi: 10.1109/JPHOTOV.2014.2363550

    41. [41]

      Yang, W. -Y.; Rhee, S. -W. Appl. Phys. Lett. 2007, 91 (23), 232907. doi: 10.1063/1.2822403  doi: 10.1063/1.2822403

    42. [42]

      Zhou, M.; Guo, Z.; Liu, Z. Appl. Catal. B 2020, 260, 118213. doi: 10.1016/j.apcatb.2019.118213  doi: 10.1016/j.apcatb.2019.118213

    43. [43]

      Wei, Y.; Chang, X.; Wang, T.; Li, C.; Gong, J. Small 2017, 13 (39), 1702007. doi: 10.1002/smll.201702007  doi: 10.1002/smll.201702007

    44. [44]

      Pan, L.; Liu, Y.; Yao, L.; Dan, R.; Sivula, K.; Grätzel, M.; Hagfeldt, A. Nat. Commun. 2020, 11 (1), 318. doi: 10.1038/s41467-019-13987-5  doi: 10.1038/s41467-019-13987-5

    45. [45]

      Liu, G.; Lu, H.; Xu, Y.; Quan, Q.; Lv, H.; Cui, X.; Chen, J.; Jiang, L.; Behm, R. J. Chem. Eng. J. 2023, 455, 140875. doi: 10.1016/j.cej.2022.140875  doi: 10.1016/j.cej.2022.140875

    46. [46]

      Gou, L.; Murphy, C. J. Nano Lett. 2003, 3 (2), 231. doi: 10.1021/nl0258776  doi: 10.1021/nl0258776

    47. [47]

      Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem. Commun. 2003, No. 15, 1884. doi: 10.1039/B304505F  doi: 10.1039/B304505F

    48. [48]

      Kim, M. H.; Lim, B.; Lee, E. P.; Xia, Y. J. Mater. Chem. 2008, 18 (34), 4069. doi: 10.1039/B805913F  doi: 10.1039/B805913F

    49. [49]

      Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater. 2007, 17 (18), 3773. doi: 10.1002/adfm.200700356  doi: 10.1002/adfm.200700356

    50. [50]

      Lin, C. -Y.; Lai, Y. -H.; Mersch, D.; Reisner, E. Chem. Sci. 2012, 3 (12), 3482. doi: 10.1039/C2SC20874A  doi: 10.1039/C2SC20874A

    51. [51]

      Zhang, Z.; Dua, R.; Zhang, L.; Zhu, H.; Zhang, H.; Wang, P. ACS Nano 2013, 7 (2), 1709. doi: 10.1021/nn3057092  doi: 10.1021/nn3057092

    52. [52]

      Lai, T. -H.; Tsao, C. -W.; Fang, M. -J.; Wu, J. -Y.; Chang, Y. -P.; Chiu, Y. -H.; Hsieh, P. -Y.; Kuo, M. -Y.; Chang, K. -D.; Hsu, Y. -J. ACS Appl. Mater. Interfaces 2022, 14 (36), 40771. doi: 10.1021/acsami.2c07145  doi: 10.1021/acsami.2c07145

    53. [53]

      Pande, K. P.; Hsu, Y. S.; Borrego, J. M.; Ghandhi, S. K. Appl. Phys. Lett. 1978, 33 (8), 717. doi: 10.1063/1.90513  doi: 10.1063/1.90513

    54. [54]

      George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100 (31), 13121. doi: 10.1021/jp9536763  doi: 10.1021/jp9536763

    55. [55]

      Li, Y.; Zhong, X.; Luo, K.; Shao, Z. J. Mater. Chem. A 2019, 7 (26), 15593. doi: 10.1039/C9TA04822G  doi: 10.1039/C9TA04822G

    56. [56]

      Li, J.; Li, W.; Deng, G.; Qin, Y.; Wang, H.; Wang, Y.; Xue, S. Ionics 2023, 29 (2), 685. doi: 10.1007/s11581-022-04827-6  doi: 10.1007/s11581-022-04827-6

    57. [57]

      Yilmaz, M.; Handoko, A. D.; Parkin, I. P.; Sankar, G. J. Catal. 2020, 389, 483. doi: 10.1016/j.jcat.2020.06.021  doi: 10.1016/j.jcat.2020.06.021

    58. [58]

      Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022, 610 (7931), 296. doi: 10.1038/s41586-022-05183-1  doi: 10.1038/s41586-022-05183-1

    59. [59]

      Borgwardt, M.; Omelchenko, S. T.; Favaro, M.; Plate, P.; Höhn, C.; Abou-Ras, D.; Schwarzburg, K.; van de Krol, R.; Atwater, H. A.; Lewis, N. S.; et al. Nat. Commun. 2019, 10 (1), 2106. doi: 10.1038/s41467-019-10143-x  doi: 10.1038/s41467-019-10143-x

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    15. [15]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    16. [16]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

Metrics
  • PDF Downloads(0)
  • Abstract views(238)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return