Citation: Anbang Du, Yuanfan Wang, Zhihong Wei, Dongxu Zhang, Li Li, Weiqing Yang, Qianlu Sun, Lili Zhao, Weigao Xu, Yuxi Tian. Photothermal Microscopy of Graphene Flakes with Different Thicknesses[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230402. doi: 10.3866/PKU.WHXB202304027 shu

Photothermal Microscopy of Graphene Flakes with Different Thicknesses

  • Corresponding author: Zhihong Wei, weizh@nju.edu.cn Weigao Xu, xuwg@nju.edu.cn Yuxi Tian, tyx@nju.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 14 April 2023
    Revised Date: 2 June 2023
    Accepted Date: 6 June 2023
    Available Online: 13 June 2023

    Fund Project: the National Natural Science Foundation of China 22073046the National Natural Science Foundation of China 22173044the National Natural Science Foundation of China 62011530133the National Key R&D Program of China 2020YFA0406104the Fundamental Research Funds for the Central Universities 020514380256the Fundamental Research Funds for the Central Universities 020514380278the State Key Laboratory of Analytical Chemistry for Life Science SKLACL2217the Natural Science Foundation of Jiangsu Province BK20220121Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX22_0096

  • Two-dimensional (2D) layered materials have attracted widespread research interest and have significantly promoted the development of chemistry, material science, and condensed matter physics. Since the emergence of graphene, 2D materials with unique mechanical, thermal, optical, and electrical properties have been developed. In the case of graphene, its extraordinary mechanical strength, carrier mobility, thermal conductivity, and light-absorption over the whole spectral range in UV-Vis and near infrared guarantee a wide range of prospective applications. The electronic structure and properties of graphene flakes are dominated by their thickness, twist angle, and dielectric environment. Tailoring the interlayer interactions of graphene layers can provide additional opportunities for developing optical and electrical nanodevices, resulting in pioneering outcomes, such as the magic-angle graphene. Over the past decade, one of the most active research directions in the field of 2D materials has been the development of novel techniques that can probe the thickness-dependent physical properties of layered materials. In contrast with the intensively studied mechanical, electrical, and optical properties, microscopic investigations of the thermal characteristics of graphene flakes remain to be explored. Photothermal (PT) microscopy is a new all-optical microscopic imaging technique that has gained substantial attention and undergone long-term development in recent years, especially in the fields of nanomaterials and life sciences. The fundamental principle of PT microscopy is to heat the target sample based on the absorption of a heating beam and use a probe beam to indirectly capture information on microscale heat generation and transport. Inspired by several pioneering studies, we conducted a comparative study of the thickness-dependent PT properties of mechanically exfoliated graphene flakes in two different PT media, i.e., air and glycerol. Whereas a nonlinear relationship between the PT intensity and sample thickness was observed in both media, the PT intensities from the two media were distinct. A high-contrast and non-monotonic PT response was observed in glycerol. The PT intensity of monolayer graphene was higher than that of bilayer graphene, and the PT intensities of graphene flakes with 2–4 layers exhibited a good linear relationship with the thickness. We also analyzed the relationship between the PT intensity and heating or probe power, demonstrating that the PT intensity as well as the absorption cross-section of graphene derived from the PT signal vary linearly with the power of both laser beams. Our study provides insights into light absorption and thermal relaxation features of graphene flakes of different thicknesses, which can guide future studies on the thermal properties of layered materials and their heterostructures.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271. doi: 10.1021/nl903868w  doi: 10.1021/nl903868w

    3. [3]

      Wang, X.; Du, K.; Liu, Y. Y. F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; et al. 2D Mater. 2016, 3, 031009. doi: 10.1088/2053-1583/3/3/031009  doi: 10.1088/2053-1583/3/3/031009

    4. [4]

      Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H.; et al. Nature 2017, 546, 270. doi: 10.1038/nature22391  doi: 10.1038/nature22391

    5. [5]

      Li, L. K.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F.; et al. Nat. Nanotechnol. 2017, 12, 21. doi: 10.1038/nnano.2016.171  doi: 10.1038/nnano.2016.171

    6. [6]

      Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91. doi: 10.1038/s41586-019-1226-z  doi: 10.1038/s41586-019-1226-z

    7. [7]

      Fang, S.; Duan, S.; Wang, X.; Chen, S.; Li, L.; Li, H.; Jiang, B.; Liu, C.; Wang, N.; Zhang, L.; et al. Nat. Photon. 2023, 17, 531. doi: 10.1038/s41566-023-01181-5  doi: 10.1038/s41566-023-01181-5

    8. [8]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

    9. [9]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    10. [10]

      Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04235  doi: 10.1038/nature04235

    11. [11]

      Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820. doi: 10.1038/nature08105  doi: 10.1038/nature08105

    12. [12]

      Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.; Rana, F.; Park, J.; Hone, J.; Wang, F.; et al. Science 2017, 358, 907. doi: 10.1126/science.aam9175  doi: 10.1126/science.aam9175

    13. [13]

      Cai, L.; Yu, G. Adv. Mater. 2021, 33, 2004974. doi: 10.1002/adma.202004974  doi: 10.1002/adma.202004974

    14. [14]

      Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583, 821. doi: 10.1038/s41586-020-2393-7  doi: 10.1038/s41586-020-2393-7

    15. [15]

      Lin, M.; Feng, M.; Wu, J.; Ran, F.; Chen, T.; Luo, W.; Wu, H.; Han, W.; Zhang, X.; Liu, X.; et al. Research 2022, 2022, 9819373. doi: 10.34133/2022/9819373  doi: 10.34133/2022/9819373

    16. [16]

      Liu, M.; Wang, L.; Yu, G. Adv. Sci. 2022, 9, 2103170. doi: 10.1002/advs.202103170  doi: 10.1002/advs.202103170

    17. [17]

      Xiao, Y.; Liu, J.; Fu, L. Matter 2020, 3, 1142. doi: 10.1016/j.matt.2020.07.001  doi: 10.1016/j.matt.2020.07.001

    18. [18]

      Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Nat. Mater. 2012, 11, 764. doi: 10.1038/Nmat3386  doi: 10.1038/Nmat3386

    19. [19]

      No, Y. S.; Choi, H. K.; Kim, J. S.; Kim, H.; Yu, Y. J.; Choi, C. G.; Choi, J. S. Sci. Rep. 2018, 8, 571. doi: 10.1038/s41598-017-19084-1  doi: 10.1038/s41598-017-19084-1

    20. [20]

      Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.; Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802. doi: 10.1103/PhysRevLett.98.206802  doi: 10.1103/PhysRevLett.98.206802

    21. [21]

      Lu, X.; Chen, X.; Dubey, S.; Yao, Q.; Li, W.; Wang, X.; Xiong, Q.; Srivastava, A. Nat. Nanotechnol. 2019, 14, 426. doi: 10.1038/s41565-019-0394-1  doi: 10.1038/s41565-019-0394-1

    22. [22]

      Seyler, K. L.; Rivera, P.; Yu, H.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J.; Yao, W.; Xu, X. Nature 2019, 567, 66. doi: 10.1038/s41586-019-0957-1  doi: 10.1038/s41586-019-0957-1

    23. [23]

      Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.; Taniguchi, T.; Kis, A. Nat. Nanotechnol. 2019, 14, 1104. doi: 10.1038/s41565-019-0559-y  doi: 10.1038/s41565-019-0559-y

    24. [24]

      Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Phys. Rev. Lett. 2015, 115, 187002. doi: 10.1103/PhysRevLett.115.187002  doi: 10.1103/PhysRevLett.115.187002

    25. [25]

      Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022, 38, 2101020. doi: 10.3866/PKU.WHXB202101020  doi: 10.3866/PKU.WHXB202101020

    26. [26]

      Chen, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2020, 36, 1904025. doi: 10.3866/PKU.WHXB201904025  doi: 10.3866/PKU.WHXB201904025

    27. [27]

      Bandurin, D. A.; Monch, E.; Kapralov, K.; Phinney, I. Y.; Lindner, K.; Liu, S.; Edgar, J. H.; Dmitriev, I. A.; Jarillo-Herrero, P.; Svintsov, D.; et al. Nat. Phys. 2022, 18, 462. doi: 10.1038/s41567-021-01494-8  doi: 10.1038/s41567-021-01494-8

    28. [28]

      Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod, A. S.; Liu, M. K.; Keilmann, F.; Ozyilmaz, B.; Neto, A. H. C.; et al. Nat. Photon. 2016, 10, 244. doi: 10.1038/Nphoton.2016.45  doi: 10.1038/Nphoton.2016.45

    29. [29]

      Tian, Y.; Tian, H.; Wu, Y. L.; Zhu, L. L.; Tao, L. Q.; Zhang, W.; Shu, Y.; Xie, D.; Yang, Y.; Wei, Z. Y.; et al. Sci. Rep. 2015, 5, 10582. doi: 10.1038/srep10582  doi: 10.1038/srep10582

    30. [30]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    31. [31]

      Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y.; et al. Nature 2021, 597, 660. doi: 10.1038/s41586-021-03867-8  doi: 10.1038/s41586-021-03867-8

    32. [32]

      Kong, Y.; Li, X.; Wang, L.; Zhang, Z.; Feng, X.; Liu, J.; Chen, C.; Tong, L.; Zhang, J. ACS Nano 2022, 16, 11338. doi: 10.1021/acsnano.2c04984  doi: 10.1021/acsnano.2c04984

    33. [33]

      Zhang, Y.; Lv, Q.; Wang, H.; Zhao, S.; Xiong, Q.; Lv, R.; Zhang, X. Science 2022, 378, 169. doi: 10.1126/science.abq0883  doi: 10.1126/science.abq0883

    34. [34]

      Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. Nature 2022, 610, 61. doi: 10.1038/s41586-022-05134-w  doi: 10.1038/s41586-022-05134-w

    35. [35]

      Ergoktas, M. S.; Soleymani, S.; Kakenov, N.; Wang, K. Y.; Smith, T. B.; Bakan, G.; Balci, S.; Principi, A.; Novoselov, K. S.; Ozdemir, S. K.; et al. Science 2022, 376, 184. doi: 10.1126/science.abn6528  doi: 10.1126/science.abn6528

    36. [36]

      Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M. ACS Nano 2020, 14, 16414. doi: 10.1021/acsnano.0c07638  doi: 10.1021/acsnano.0c07638

    37. [37]

      Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010, 330, 353. doi: 10.1126/science.1195475  doi: 10.1126/science.1195475

    38. [38]

      Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. J. Phys. Chem. Lett. 2022, 13, 9618. doi: 10.1021/acs.jpclett.2c02228  doi: 10.1021/acs.jpclett.2c02228

    39. [39]

      Xu, W.; Liu, W.; Schmidt, J. F.; Zhao, W.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W.; Seletskiy, D. V.; Xiong, Q. Nature 2017, 541, 62. doi: 10.1038/nature20601  doi: 10.1038/nature20601

    40. [40]

      Li, H.; Li, H.; Wang, X.; Nie, Y.; Liu, C.; Dai, Y.; Ling, J.; Ding, M.; Ling, X.; Xie, D.; et al. Nano Lett. 2021, 21, 6773. doi: 10.1021/acs.nanolett.1c01356  doi: 10.1021/acs.nanolett.1c01356

    41. [41]

      Yang, W.; Li, M.; Xie, M.; Nie, Y.; Du, A.; Tian, Y. Rev. Sci. Instrum. 2021, 92, 083701. doi: 10.1063/5.0048239  doi: 10.1063/5.0048239

    42. [42]

      Yang, W.; Li, M.; Xie, M.; Tian, Y. J. Phys. Chem. Lett. 2023, 14, 3506. doi: 10.1021/acs.jpclett.3c00491  doi: 10.1021/acs.jpclett.3c00491

    43. [43]

      Li, H.; Wu, J. M. T.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Zhang, Q. H.; Zhang, H. ACS Nano 2013, 7, 10344. doi: 10.1021/nn4047474  doi: 10.1021/nn4047474

    44. [44]

      Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a  doi: 10.1021/nl061702a

    45. [45]

      Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.; Shen, Z.; Thong, J. T. L. Small 2010, 6, 195. doi: 10.1002/smll.200901173  doi: 10.1002/smll.200901173

    46. [46]

      Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401  doi: 10.1103/PhysRevLett.97.187401

    47. [47]

      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010, 4, 611. doi: 10.1038/Nphoton.2010.186  doi: 10.1038/Nphoton.2010.186

    48. [48]

      Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A. R. H.; Gundlach, D. J.; Nguyen, N. V. Carbon 2016, 99, 348. doi: 10.1016/j.carbon.2015.12.007  doi: 10.1016/j.carbon.2015.12.007

    49. [49]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    50. [50]

      Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Chem. Sci. 2010, 1, 343. doi: 10.1039/c0sc00210k  doi: 10.1039/c0sc00210k

    51. [51]

      Ding, T.; Hou, L.; Meer, H. V. D.; Alivisatos, A. P.; Orrit, M. J. Phys. Chem. Lett. 2016, 7, 2524. doi: 10.1021/acs.jpclett.6b00964  doi: 10.1021/acs.jpclett.6b00964

    52. [52]

      Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/Nmat2753  doi: 10.1038/Nmat2753

    53. [53]

      Li, H.; Ying, H.; Chen, X.; Nika, D. L.; Cocemasov, A. I.; Cai, W.; Balandin, A. A.; Chen, S. Nanoscale 2014, 6, 13402. doi: 10.1039/c4nr04455j  doi: 10.1039/c4nr04455j

    54. [54]

      Gao, J.; Si, C.; Yang, Y. R.; Cao, B. Y.; Wang, X. D. ECS J. Solid State Sci. Technol. 2020, 9, 093005. doi: 10.1149/2162-8777/aba7fb  doi: 10.1149/2162-8777/aba7fb

    55. [55]

      Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J. Appl. Phys. Lett. 2011, 99, 233101. doi: 10.1063/1.3665184  doi: 10.1063/1.3665184

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    18. [18]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    19. [19]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(0)
  • Abstract views(214)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return