Citation: Huimin Liu, Kezhi Li, Xin Zhang, Xuemin Yin, Qiangang Fu, Hejun Li. SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304026 shu

SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors

  • Corresponding author: Xuemin Yin, yinxuemin@nwpu.edu.cn Qiangang Fu, fuqiangang@nwpu.edu.cn
  • Received Date: 14 April 2023
    Revised Date: 23 May 2023
    Accepted Date: 24 May 2023
    Available Online: 12 June 2023

    Fund Project: the National Natural Science Foundation of China 52125203the National Natural Science Foundation of China 52293371the National Natural Science Foundation of China 52202047the National Key R & D Program of China 2021YFA0715803the Natural Science Basic Research Plan in Shaanxi Province 2022JQ-324the China Postdoctoral Science Foundation 2021M702659the Young Talent Fund of Association for Science and Technology in Shaanxi, China 20220435the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University PF2023004

  • As technology and society have continued to develop, the demand for energy storage solutions has increased significantly. Indeed, the development of low-cost, low-carbon, environmentally friendly energy conversion and storage systems is required to address the environmental and ecological problems faced by society. Due to their fast charging and discharging speeds, long cycle life and environmentally friendly characteristics, supercapacitors are widely used in many fields, especially in wind power generation systems, communication and transportation. Among all kinds of electrode materials, silicon carbide (SiC) nanomaterials and SiC-derived carbon (SiC-CDC) materials present long life, high power density, and uncomplicated working mechanisms, which hold significant promise as electrode materials for supercapacitors. So far, various strategies and approaches for controlling the microstructure of SiC nanomaterials and SiC-CDC materials have been developed to achieve further improvement from preparation methods to electrochemical properties. As such, this review systematically introduces the common preparation methods of SiC nanomaterials and SiC-CDC, including the template method, chemical vapor deposition (CVD) method, high temperature halogen etching method and high temperature thermal decomposition process for preparing SiC-CDC. Furthermore, the advantages and disadvantages of different preparation methods are discussed. Additionally, the review covers the progress in employing SiC nanomaterials and SiC-CDC materials as supercapacitor electrode materials in detail. However, despite this progress, the commercial application of SiC nanomaterials and SiC-CDC materials as supercapacitor electrodes has been restricted by some problems, in particular their limited conductivity and poor wettability. More importantly, the low energy density of supercapacitors is still a major problem. Thus, current methods and developmental trends of the strategies to improve electrochemical performance such as "highly conductive carbon material composite", "heteroatomic doping", "pseudocapacitance composites", "multi-stage pore structure design", "chemical activation" are further analyzed with regards to the current challenges. For example, the introduction of heteroatoms and functional group molecules for reactions into SiC and SiC-CDC materials can inhibit the agglomeration of materials (such as particles and nanosheets), improve their conductivity and wettability, and enhance their specific capacitance. Finally, the challenges and opportunities in the application of SiC nanomaterials and their derived carbons in the field of energy storage for supercapacitors are summarized and prospected. As current preparation methods are limited to the laboratory scale, the combination and improvement of different preparation methods and the development of large-scale and low-cost preparation technology are still the directions of the next efforts. This comprehensive review is expected to further advance the research of SiC nanomaterials and SiC-CDC materials.
  • 加载中
    1. [1]

      Armaroli, N.; Balzani, V. Energy Environ. Sci. 2011, 4, 3193. doi: 10.1039/c1ee01249e  doi: 10.1039/c1ee01249e

    2. [2]

      Gonzalez, A.; Goikolea, E.; Andoni Barrena, J.; Mysyk, R. Renew. Sust. Energ. Rev. 2016, 58, 1189. doi: 10.1016/j.rser.2015.12.249  doi: 10.1016/j.rser.2015.12.249

    3. [3]

      Hou, Z. G.; Zhang, X. Q.; Chen, J. W.; Qian, Y. T.; Chen, L. F.; Lee, P. S. Adv. Energy Mater. 2022, 12, 2104053. doi: 10.1002/aenm.202104053  doi: 10.1002/aenm.202104053

    4. [4]

      Lv, J. Q.; Zeng, P.; Abbas, S. C.; Guan, X. F.; Luo, P. H.; Chen, D. G.; Wang, Y. B. J. Mater. Chem. A 2019, 7, 16876. doi: 10.1039/c9ta04421c  doi: 10.1039/c9ta04421c

    5. [5]

      Zhao, H. Y.; Dong, W. X.; Deng, Y.; Chen, L. F.; Zhao, C. F.; Zhang, C. L.; Zhou, J.; Qu, Y. F.; Li, Y. S.; Li, D. J.; et al. Interdiscip. Mater. 2022, 1, 537. doi: 10.1002/idm2.12057  doi: 10.1002/idm2.12057

    6. [6]

      Zhang, K. L.; Wang, L.; Cai, W. L.; Chen, L. F.; Wang, D.; Chen, Y. H.; Pan, H. L.; Wang, L. B.; Qian, Y. T. Inorg. Chem. Front. 2019, 6, 955. doi: 10.1039/c9qi00052f  doi: 10.1039/c9qi00052f

    7. [7]

      Acharya, J.; Ko, T. H.; Seo, M. K.; Khil, M. S.; Kim, H. Y.; Kim, B. S. J. Colloid Interface Sci. 2020, 564, 65. doi: 10.1016/j.jcis.2019.12.098  doi: 10.1016/j.jcis.2019.12.098

    8. [8]

      Ojha, G. P.; Pant, B.; Park, S. J.; Park, M.; Kim, H. Y. J. Colloid Interface Sci. 2017, 494, 338. doi: 10.1016/j.jcis.2017.01.100  doi: 10.1016/j.jcis.2017.01.100

    9. [9]

      Acharya, J.; Pant, B.; Ojha, G. P.; Park, M. J. Mater. Chem. A 2022, 10, 7999. doi: 10.1039/d1ta11063b  doi: 10.1039/d1ta11063b

    10. [10]

      Dong, W. X.; Qu, Y. F.; Liu, X.; Chen, L. F. FlatChem 2023, 37, 100467. doi: 10.1016/j.flatc.2022.100467  doi: 10.1016/j.flatc.2022.100467

    11. [11]

      Heuser, S.; Yang, N. J.; Hof, F.; Schulte, A.; Schoenherr, H.; Jiang, X. Small 2018, 14, 1801857. doi: 10.1002/smll.201801857  doi: 10.1002/smll.201801857

    12. [12]

      Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. Renew. Sust. Energ. Rev. 2019, 101, 123. doi: 10.1016/j.rser.2018.10.026  doi: 10.1016/j.rser.2018.10.026

    13. [13]

      Wang, Y. F.; Zhang, L.; Hou, H. Q.; Xu, W. H.; Duan, G. G.; He, S. J.; Liu, K. M.; Jiang, S. H. J. Mater. Sci. 2021, 56, 173. doi: 10.1007/s10853-020-05157-6  doi: 10.1007/s10853-020-05157-6

    14. [14]

      Ojha, G. P.; Kang, G. W.; Kuk, Y. S.; Hwang, Y. E.; Kwon, O. H.; Pant, B.; Acharya, J.; Park, Y. W.; Park, M. Nanomaterials 2023, 13, 150. doi: 10.3390/nano13010150  doi: 10.3390/nano13010150

    15. [15]

      Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Prog. Mater. Sci. 2015, 72, 1. doi: 10.1016/j.pmatsci.2015.01.003  doi: 10.1016/j.pmatsci.2015.01.003

    16. [16]

      Nguyen, T. K., Nguyen; Sadegh, A.; Dao, D. V. Small 2021, 17, 2101775. doi: 10.1002/smll.202101775  doi: 10.1002/smll.202101775

    17. [17]

      Zhou, D.; Seraphin, S. Chem. Phys. Lett. 1994, 222, 233. doi: 10.1016/0009-2614(94)00342-4  doi: 10.1016/0009-2614(94)00342-4

    18. [18]

      Liang, P. P.; Li, H. X.; Wang, G.; Han, J. S.; Yuan, B.; Cao, Y. N.; Zhang, Q. Mater. Lett. 2021, 284, 129014. doi: 10.1016/j.matlet.2020.129014  doi: 10.1016/j.matlet.2020.129014

    19. [19]

      Liu, H. M.; Li, K. Z.; Chen, H.; Liu, B.; Yin, X. M. Ceram. Int. 2022, 48, 34543. doi: 10.1016/j.ceramint.2022.08.038  doi: 10.1016/j.ceramint.2022.08.038

    20. [20]

      Tian, X. K.; Chen, X. Y.; Ma, C. L.; Su, K.; Geng, Q. K.; Zhao, F.; Liu, X. H. Ceram. Int. 2022, 48, 36273. doi: 10.1016/j.ceramint.2022.08.186  doi: 10.1016/j.ceramint.2022.08.186

    21. [21]

      Li, W. F.; Huang, Q. F.; Guo, H. S.; Hou, Y. G. Ceram. Int. 2018, 44, 4500. doi: 10.1016/j.ceramint.2017.12.015  doi: 10.1016/j.ceramint.2017.12.015

    22. [22]

      Song, Y. C.; Li, B. J. Mater. Sci. Eng. 2004, 22, 341.  doi: 10.3969/j.issn.1673-2812.2004.03.007

    23. [23]

      Zeraati, M.; Tahmasebi, K.; Irannejad, A. J. Nanostruct. 2020, 10, 660. doi: 10.22052/jns.2020.03.019  doi: 10.22052/jns.2020.03.019

    24. [24]

      Zhang, B.; Li, J. B.; Sun, J. J. Carbon Tech. 2000, No. 4, 50.  doi: 10.3969/j.issn.1001-3741.2000.04.014

    25. [25]

      Zhang, M. J. Phys. Chem. Solids 2017, 103, 1. doi: 10.1016/j.jpcs.2016.11.026  doi: 10.1016/j.jpcs.2016.11.026

    26. [26]

      Xi, G. C.; Peng, Y. Y.; Wan, S. M.; Li, T. W.; Yu, W. C.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 20102. doi: 10.1021/jp0462153  doi: 10.1021/jp0462153

    27. [27]

      Dong, C.; Zou, G. F.; Liu, E.; Xi, B. J.; Huang, T.; Qian, Y. T. J. Am. Ceram. Soc. 2007, 90, 653. doi: 10.1111/j.1551-2916.2006.01439.x  doi: 10.1111/j.1551-2916.2006.01439.x

    28. [28]

      Li, Y. B.; Xie, S. S.; Zou, X. P.; Tang, D. S.; Liu, Z. Q.; Zhou, W. Y.; Wang, G. J. Cryst. Growth 2001, 223, 125. doi: 10.1016/s0022-0248(01)00597-8  doi: 10.1016/s0022-0248(01)00597-8

    29. [29]

      Wu, X. F.; Ling, Y. M. J. Chin. Silic. Soc. 2006, 34, 1283.  doi: 10.3321/j.issn:0454-5648.2006.10.024

    30. [30]

      Chiu, S. C.; Huang, C. W.; Li, Y. Y. J. Phys. Chem. C 2007, 111, 10294. doi: 10.1021/jp0687192  doi: 10.1021/jp0687192

    31. [31]

      Kita, K. i.; Narisawa, M.; Nakahira, A.; Mabuchi, H.; Sugimoto, M.; Yoshikawa, M. J. Mater. Sci. 2010, 45, 3397. doi: 10.1007/s10853-010-4346-2  doi: 10.1007/s10853-010-4346-2

    32. [32]

      Wang, L.; Wei, G. G.; Gao, F. M.; Li, C. M.; Yang, W. Y. Nanoscale 2015, 7, 7585. doi: 10.1039/c5nr00952a  doi: 10.1039/c5nr00952a

    33. [33]

      Tang, M.; Yu, Z. J.; Yu, Y. X.; Zhang, L. T.; Chen, L. F. J. Mater. Sci. 2009, 44, 1633. doi: 10.1007/s10853-009-3246-9  doi: 10.1007/s10853-009-3246-9

    34. [34]

      Chen, J. J.; Liao, X.; Wang, M. M.; Liu, Z. X.; Zhang, J. D.; Ding, L. J.; Gao, L.; Li, Y. Nanoscale 2015, 7, 6374. doi: 10.1039/c5nr00776c  doi: 10.1039/c5nr00776c

    35. [35]

      Wang, J. K.; Zhang, Y. Z.; Li, S. S.; Ge, S. T.; Song, J. B.; Zhang, H. J. Chin. J. Mater. Res. 2018, 32, 767.  doi: 10.11901/1005.3093.2017.533

    36. [36]

      Li, D.; Xia, Y. N. Nano Lett. 2004, 4, 933. doi: 10.1021/nl049590f  doi: 10.1021/nl049590f

    37. [37]

      Liu, H. A.; Balkus Jr, K. J. Mater. Lett. 2009, 63, 2361. doi: 10.1016/j.matlet.2009.08.009  doi: 10.1016/j.matlet.2009.08.009

    38. [38]

      Wei, J.; Li, X. T.; Wang, Y.; Chen, B.; Zhang, M. J.; Qin, C. M. J. Am. Ceram. Soc. 2020, 103, 6187. doi: 10.1111/jace.17396  doi: 10.1111/jace.17396

    39. [39]

      Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Appl. Phys. Lett. 2012, 101, 131906. doi: 10.1063/1.4755778  doi: 10.1063/1.4755778

    40. [40]

      Zhu, J.; Liu, Z.; Wu, X. L.; Xu, L. L.; Zhang, W. C.; Chu, P. K. Nanotechnology 2007, 18, 365603. doi: 10.1088/0957-4484/18/36/365603  doi: 10.1088/0957-4484/18/36/365603

    41. [41]

      Xiong, H. W.; Zhao, L. Z.; Chen, H. H.; Wang, X. F.; Zhou, K. C.; Zhang, D. J. Alloys Compd. 2019, 809, 151824. doi: 10.1016/j.jallcom.2019.151824  doi: 10.1016/j.jallcom.2019.151824

    42. [42]

      Xiong, H. W.; Chen, H. H.; Zhao, L. Z.; Huang, Y. J.; Zhou, K. C.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 2648. doi: 10.1016/j.jeurceramsoc.2019.02.045  doi: 10.1016/j.jeurceramsoc.2019.02.045

    43. [43]

      Yu, Y. Y.; Guan, Y. F.; Cong, Y.; Yuan, X. L.; Li, X. K.; Zhang, J. Chin. J. Inorg. Chem. 2017, 33, 853.  doi: 10.11862/cj1c.2017.085

    44. [44]

      Batisse, N.; Guerin, K.; Dubois, M.; Hamwi, A.; Spinelle, L.; Tomasella, E. Thin Solid Films 2010, 518, 6746. doi: 10.1016/j.tsf.2010.05.120  doi: 10.1016/j.tsf.2010.05.120

    45. [45]

      Kraft, T.; Nickel, K. G.; Gogotsi, Y. G. J. Mater. Sci. 1998, 33, 4357. doi: 10.1023/a:1004480814477  doi: 10.1023/a:1004480814477

    46. [46]

      Xi, J. Q.; Liu, C.; Morgan, D.; Szlufarska, I. Acta Mater. 2021, 209, 116803. doi: 10.1016/j.actamat.2021.116803  doi: 10.1016/j.actamat.2021.116803

    47. [47]

      Badami, D. V. Carbon 1965, 3, 53. doi: 10.1016/0008-6223(65)90027-8  doi: 10.1016/0008-6223(65)90027-8

    48. [48]

      Cheng, W. Q.; Xiong, Y. L.; Ding, L. J.; Li, H. L.; Yang, J. H.; Zhu, M. M.; Chen, J. J.; Zhang, G. J. J. Cryst. Growth 2022, 599, 126903. doi: 10.1016/j.jcrysgro.2022.126903  doi: 10.1016/j.jcrysgro.2022.126903

    49. [49]

      Fujisawa, K.; Lei, Y.; de Tomas, C.; Suarez Martinez, I.; Zhou, C.; Lin, Y. C.; Subramanian, S.; Elias, A. L.; Fujishige, M.; Takeuchi, K.; et al. Carbon 2019, 142, 78. doi: 10.1016/j.carbon.2018.10.032  doi: 10.1016/j.carbon.2018.10.032

    50. [50]

      Pan, H.; Zang, J. B.; Dong, L.; Li, X. H.; Wang, Y. H.; Wang, Y. J. Electrochem. Commun. 2013, 37, 40. doi: 10.1016/j.elecom.2013.10.014  doi: 10.1016/j.elecom.2013.10.014

    51. [51]

      Pan, H.; Zang, J. B.; Li, X. H.; Wang, Y. H. Carbon 2014, 69, 630. doi: 10.1016/j.carbon.2013.12.022  doi: 10.1016/j.carbon.2013.12.022

    52. [52]

      Zou, X. L.; Ji, L.; Hsu, H. Y.; Zheng, K.; Pang, Z. Y.; Lu, X. G. J. Mater. Chem. A 2018, 6, 12724. doi: 10.1039/c8ta03922d  doi: 10.1039/c8ta03922d

    53. [53]

      Fu, Q. G.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J. P.; Wang, J.; Hou, X. H.; Riedel, R.; Li, H. J. J. Mater. Sci. Technol. 2022, 96, 31. doi: 10.1016/j.jmst.2021.03.076  doi: 10.1016/j.jmst.2021.03.076

    54. [54]

      Yin, X. M.; Han, L. Y.; Liu, H. M.; Li, N.; Song, Q.; Fu, Q. G.; Zhang, Y. L.; Li, H. J. Adv. Funct. Mater. 2022, 32, 2204965. doi: 10.1002/adfm.202204965  doi: 10.1002/adfm.202204965

    55. [55]

      Sarno, M.; Galvagno, S.; Piscitelli, R.; Portofino, S.; Ciambelli, P. Ind. Eng. Chem. Res. 2016, 55, 6025. doi: 10.1021/acs.iecr.6b00737  doi: 10.1021/acs.iecr.6b00737

    56. [56]

      Yang, B. C.; Sun, R. X.; Li, X. J.; Ma, M. D.; Zhang, X. R.; Wang, Z. X.; Yi, W. C.; Zhang, Z.; Yang, R. L.; Sun, H. R.; et al. J. Mater. Sci. 2021, 56, 16068. doi: 10.1007/s10853-021-06318-x  doi: 10.1007/s10853-021-06318-x

    57. [57]

      Hou, J. H.; Fang, L.; Wang, X. Z.; Gao, H.; Wang, G. X. Chem. Commun. 2022, 58, 12455. doi: 10.1039/d2cc04723c  doi: 10.1039/d2cc04723c

    58. [58]

      Zhang, Z. H.; Tan, J.; Cheng, L. S.; Yang, W. M. Ceram. Int. 2021, 47, 24652. doi: 10.1016/j.ceramint.2021.05.187  doi: 10.1016/j.ceramint.2021.05.187

    59. [59]

      Zhao, Y. X.; Kang, W. M.; Li, L.; Yan, G. L.; Wang, X. Q.; Zhuang, X. P.; Cheng, B. W. Electrochim. Acta 2016, 207, 257. doi: 10.1016/j.electacta.2016.05.003  doi: 10.1016/j.electacta.2016.05.003

    60. [60]

      Li, W. J.; Liu, Q.; Fang, Z.; Wang, L.; Chen, S. L.; Gao, F. M.; Ji, Y.; Yang, W. Y.; Fang, X. S. Adv. Energy Mater. 2019, 9, 1900073. doi: 10.1002/aenm.201900073  doi: 10.1002/aenm.201900073

    61. [61]

      Chen, Y. Q.; Zhang, X. N.; Xie, Z. P. ACS Nano 2015, 9, 8054. doi: 10.1021/acsnano.5b01784  doi: 10.1021/acsnano.5b01784

    62. [62]

      Li, X. X.; Liu, Q.; Chen, S. L.; Li, W. J.; Liang, Z.; Fang, Z.; Yang, W. Y.; Tian, Y.; Yang, Y. Energy Storage Mater. 2020, 27, 261. doi: 10.1016/j.ensm.2020.02.009  doi: 10.1016/j.ensm.2020.02.009

    63. [63]

      Gu, L.; Wang, Y. W.; Fang, Y. J.; Lu, R.; Sha, J. J. Power Sources 2013, 243, 648. doi: 10.1016/j.jpowsour.2013.06.050  doi: 10.1016/j.jpowsour.2013.06.050

    64. [64]

      Li, X. X.; Li, W. J.; Liu, Q.; Chen, S. L.; Wang, L.; Gao, F. M.; Shao, G.; Tian, Y.; Lin, Z. F.; et al. Adv. Funct. Mater. 2021, 31, 2008901. doi: 10.1002/adfm.202008901  doi: 10.1002/adfm.202008901

    65. [65]

      Chang, C. H.; Hsia, B.; Alper, J. P.; Wang, S.; Luna, L. E.; Carraro, C.; Lu, S. Y.; Maboudian, R. ACS Appl. Mater. Interfaces 2015, 7, 26658. doi: 10.1021/acsami.5b08423  doi: 10.1021/acsami.5b08423

    66. [66]

      Li, X. X.; Chen, J. J.; Chen, S. L.; Li, W. J.; Yang, J. H.; Hu, F.; Wei, Q. L.; Zhao, X. S.; Zhang, X. F.; Yang, W. Y. J. Mater. Chem. A 2022, 10, 15708. doi: 10.1039/d2ta03866h  doi: 10.1039/d2ta03866h

    67. [67]

      Zhuang, H.; Yang, N. J.; Zhang, L.; Fuchs, R.; Jiang, X. ACS Appl. Mater. Interfaces 2015, 7, 10886. doi: 10.1021/acsami.5b02024  doi: 10.1021/acsami.5b02024

    68. [68]

      Chen, Q. Q.; Jiang, Y.; Wang, Y.; Li, H.; Yu, C. P.; Cui, J. W.; Qin, Y. Q.; Sun, J.; Yan, J.; Zheng, H. M.; et al. Inorg. Chem. Commun. 2019, 106, 174. doi: 10.1016/j.inoche.2019.06.009  doi: 10.1016/j.inoche.2019.06.009

    69. [69]

      Kim, M.; Oh, I.; Kim, J. Chem. Eng. J. 2016, 289, 170. doi: 10.1016/j.cej.2015.12.087  doi: 10.1016/j.cej.2015.12.087

    70. [70]

      Liu, S.; Wang, E. H.; Liu, S. C.; Guo, C. Y.; Wang, H. L.; Yang, T.; Hou, X. M. J. Mater. Sci. Technol. 2022, 110, 178. doi: 10.1016/j.jmst.2021.09.012  doi: 10.1016/j.jmst.2021.09.012

    71. [71]

      Sun, Q. Y.; Tu, R.; Xu, Q. F.; Zhang, C. F.; Li, J.; Ohmori, H. S.; Kosinova, M.; Basu, B.; Yan, J. S.; Li, S.; et al. J. Power Sources 2019, 444, 227308. doi: 10.1016/j.jpowsour.2019.227308  doi: 10.1016/j.jpowsour.2019.227308

    72. [72]

      Abbas, S. C.; Lin, C. M.; Hua, Z. F.; Deng, Q. D.; Huang, H.; Ni, Y. H.; Cao, S. L.; Ma, X. J. Chem. Eng. J. 2022, 433, 133738. doi: 10.1016/j.cej.2021.133738  doi: 10.1016/j.cej.2021.133738

    73. [73]

      Xia, M. Y.; Ning, J.; Feng, X.; Guo, H. B.; Wang, D.; Zhang, J. C.; Hao, Y. Chem. Eng. J. 2022, 428, 131114. doi: 10.1016/j.cej.2021.131114  doi: 10.1016/j.cej.2021.131114

    74. [74]

      Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. J. Mater. Chem. A 2021, 9, 1970. doi: 10.1039/d0ta09655e  doi: 10.1039/d0ta09655e

    75. [75]

      Chen, J. H.; Zhang, Y. J.; Hou, X. M.; Su, L.; Fan, H. L.; Chou, K. C. RSC Adv. 2016, 6, 19626. doi: 10.1039/c5ra27291b  doi: 10.1039/c5ra27291b

    76. [76]

      Kim, M.; Kim, J. Nanotechnology 2017, 28, 195401. doi: 10.1088/1361-6528/aa6812  doi: 10.1088/1361-6528/aa6812

    77. [77]

      Chen, Y. Q.; Zhang, X. N.; Xue, W. J.; Xie, Z. P. ACS Appl. Mater. Interfaces 2020, 12, 32514. doi: 10.1021/acsami.0c04825  doi: 10.1021/acsami.0c04825

    78. [78]

      Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Mater. Sci. Technol. 2021, 81, 162. doi: 10.1016/j.jmst.2020.10.085  doi: 10.1016/j.jmst.2020.10.085

    79. [79]

      Yin, X. M.; Li, H. J.; Han, L. Y.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2020, 577, 481. doi: 10.1016/j.jcis.2020.05.101  doi: 10.1016/j.jcis.2020.05.101

    80. [80]

      Yin, X. M.; Li, H. J.; Yuan, R. M.; Lu, J. H. J. Colloid Interface Sci. 2021, 586, 219. doi: 10.1016/j.jcis.2020.10.086  doi: 10.1016/j.jcis.2020.10.086

    81. [81]

      Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. ACS Sustainable Chem. Eng. 2016, 4, 3598. doi: 10.1021/acssuschemeng.6b00697  doi: 10.1021/acssuschemeng.6b00697

    82. [82]

      Meng, A.; Yang, Z.; Li, Z. J.; Yuan, X. C.; Zhao, J. J. Alloys Compd. 2018, 746, 93. doi: 10.1016/j.jallcom.2018.02.280  doi: 10.1016/j.jallcom.2018.02.280

    83. [83]

      Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A.; Li, Q. D. J. Power Sources 2016, 332, 355. doi: 10.1016/j.jpowsour.2016.09.128  doi: 10.1016/j.jpowsour.2016.09.128

    84. [84]

      Hamzan, N. B.; bin Ramly, M. M.; bin Omar, M. F.; Nakajima, H.; Tunmee, S.; Rahman, S. A.; Goh, B. T. Thin Solid Films 2020, 716, 138430. doi: 10.1016/j.tsf.2020.138430  doi: 10.1016/j.tsf.2020.138430

    85. [85]

      Hamzan, N. B.; bin Ramly, M. M.; Huang, N. M.; Rahman, S. A.; Goh, B. T. Mater. Charact. 2017, 132, 187. doi: 10.1016/j.matchar.2017.08.005  doi: 10.1016/j.matchar.2017.08.005

    86. [86]

      Wang, R. Y.; Li, W. J.; Jiang, L.; Liu, Q.; Wang, L.; Tang, B.; Yang, W. Y. Electrochim. Acta 2022, 406, 139867. doi: 10.1016/j.electacta.2022.139867  doi: 10.1016/j.electacta.2022.139867

    87. [87]

      Liu, W. N.; Li, X. X.; Li, W. J.; Ye, Y. M.; Wang, H.; Su, P. P.; Yang, W. Y.; Yang, Y. J. Energy Chem. 2022, 66, 30. doi: 10.1016/j.jechem.2021.07.007  doi: 10.1016/j.jechem.2021.07.007

    88. [88]

      Gu, W. T.; Yushin, G. Wiley Interdiscip. Rev. Energy Environ 2014, 3, 424. doi: 10.1002/wene.102  doi: 10.1002/wene.102

    89. [89]

      Castro Gutierrez, J.; Celzard, A.; Fierro, V. Front. Mater. 2020, 7, 217. doi: 10.3389/fmats.2020.00217  doi: 10.3389/fmats.2020.00217

    90. [90]

      Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. J. Power Sources 2006, 158, 765. doi: 10.1016/j.jpowsour.2005.09.008  doi: 10.1016/j.jpowsour.2005.09.008

    91. [91]

      Rufino, B.; Mazerat, S.; Couvrat, M.; Lorrette, C.; Maskrot, H.; Pailler, R. Carbon 2011, 49, 3073. doi: 10.1016/j.carbon.2011.03.029  doi: 10.1016/j.carbon.2011.03.029

    92. [92]

      Liu, H. Q.; Zhou, F.; Shi, X. Y.; Shi, Q.; Wu, Z. S. Acta Phys. -Chim. Sin. 2022, 38, 2204017.  doi: 10.3866/PKU.WHXB202204017

    93. [93]

      Young, C.; Lin, J. J.; Wang, J.; Ding, B.; Zhang, X. G.; Alshehri, S. M.; Ahamad, T.; Salunkhe, R. R.; Hossain, S. A.; Khan, J. H.; et al. Chem. Eur. J. 2018, 24, 6127. doi: 10.1002/chem.201705465  doi: 10.1002/chem.201705465

    94. [94]

      Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J. P.; Fischer, C.; Yushin, G.; Kaskel, S. Carbon 2017, 113, 283. doi: 10.1016/j.carbon.2016.11.050  doi: 10.1016/j.carbon.2016.11.050

    95. [95]

      Portet, C.; Yushin, G.; Gogotsi, Y. J. Electrochem. Soc. 2008, 155, A531. doi: 10.1149/1.2918304  doi: 10.1149/1.2918304

    96. [96]

      Kim, M.; Oh, I.; Kim, J. J. Power Sources 2016, 307, 715. doi: 10.1016/j.jpowsour.2016.01.038  doi: 10.1016/j.jpowsour.2016.01.038

    97. [97]

      Fiset, E.; Bae, J. S.; Rufford, T. E.; Bhatia, S.; Lu, G. Q.; Hulicova-Jurcakova, D. J. Solid State Electrochem. 2014, 18, 703. doi: 10.1007/s10008-013-2306-x  doi: 10.1007/s10008-013-2306-x

    98. [98]

      Meier, A.; Weinberger, M.; Pinkert, K.; Oschatz, M.; Paasch, S.; Giebeler, L.; Althues, H.; Brunner, E.; Eckert, J.; Kaskel, S. Microporous Mesoporous Mater. 2014, 188, 140. doi: 10.1016/j.micromeso.2013.12.022  doi: 10.1016/j.micromeso.2013.12.022

    99. [99]

      Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.; Yushin, G. ACS Nano 2010, 4, 1337. doi: 10.1021/nn901825y  doi: 10.1021/nn901825y

    100. [100]

      Ma, C.; Fan, Q. C.; Dirican, M.; Subjalearndee, N.; Cheng, H.; Li, J. J.; Song, Y.; Shi, J. L.; Zhang, X. W. Appl. Surf. Sci. 2021, 545, 148933. doi: 10.1016/j.apsusc.2021.148933  doi: 10.1016/j.apsusc.2021.148933

    101. [101]

      Tee, E.; Tallo, I.; Kurig, H.; Thomberg, T.; Jaenes, A.; Lust, E. Electrochim. Acta 2015, 161, 364. doi: 10.1016/j.electacta.2015.02.106  doi: 10.1016/j.electacta.2015.02.106

    102. [102]

      Tee, E.; Tallo, I.; Thomberg, T.; Janes, A.; Lust, E. J. Electrochem. Soc. 2016, 163, A1317. doi: 10.1149/2.0931607jes  doi: 10.1149/2.0931607jes

    103. [103]

      Yan, P. T.; Xu, J.; Wu, C.; Gu, Y.; Zhang, X. S.; Zhang, R. J.; Song, Y. B. Electrochim. Acta 2016, 189, 16. doi: 10.1016/j.electacta.2015.12.022  doi: 10.1016/j.electacta.2015.12.022

    104. [104]

      Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Science 2015, 350, 1508. doi: 10.1126/science.aab3798  doi: 10.1126/science.aab3798

    105. [105]

      Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Electrochim. Acta 2015, 176, 982. doi: 10.1016/j.electacta.2015.07.094  doi: 10.1016/j.electacta.2015.07.094

    106. [106]

      Pinkert, K.; Oschatz, M.; Borchardt, L.; Klose, M.; Zier, M.; Nickel, W.; Giebeler, L.; Oswald, S.; Kaskel, S.; Eckert, J. ACS Appl. Mater. Interfaces 2014, 6, 2922. doi: 10.1021/am4055029  doi: 10.1021/am4055029

    107. [107]

      Liu, F.; Gutes, A.; Carraro, C.; Chu, J.; Maboudian, R. In Graphitization of n-type Polycrystalline Silicon Carbide and Its Application for Micro-Supercapacitors, 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 05-09 June 2011; IEEE: Beijing, China, 2011; p 1879.

    108. [108]

      Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B.; Boeckl, J. J.; Takshi, A.; Motta, N.; Saddow, S. E.; et al. Nanotechnology 2015, 26, 434005. doi: 10.1088/0957-4484/26/43/434005  doi: 10.1088/0957-4484/26/43/434005

    109. [109]

      Yan, P. T.; Xu, J.; Zhang, X. S.; Wu, C.; Gu, Y.; Zhang, R. J. Int. J. Hydrog. Energy 2016, 41, 14820. doi: 10.1016/j.ijhydene.2016.07.045  doi: 10.1016/j.ijhydene.2016.07.045

    110. [110]

      Alhabeb, M.; Beidaghi, M.; Van Aken, K. L.; Dyatkin, B.; Gogotsi, Y. Carbon 2017, 118, 642. doi: 10.1016/j.carbon.2017.03.094  doi: 10.1016/j.carbon.2017.03.094

    111. [111]

      Zeiger, M.; Ariyanto, T.; Kruener, B.; Peter, N. J.; Fleischmann, S.; Etzold, B. J. M.; Presser, V. J. Mater. Chem. A 2016, 4, 18899. doi: 10.1039/c6ta08900c  doi: 10.1039/c6ta08900c

    112. [112]

      Pang, Z. Y.; Li, G. S.; Zou, X. L.; Sun, C. T.; Hu, C. H.; Tang, W.; Ji, L.; Hsu, H. Y.; Xu, Q.; Lu, X. G. J. Energy Chem. 2021, 56, 512. doi: 10.1016/j.jechem.2020.08.042  doi: 10.1016/j.jechem.2020.08.042

  • 加载中
    1. [1]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    2. [2]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    5. [5]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    6. [6]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    8. [8]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    15. [15]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    17. [17]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    19. [19]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    20. [20]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

Metrics
  • PDF Downloads(0)
  • Abstract views(271)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return