Citation: Chen Pu, Daijie Deng, Henan Li, Li Xu. Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304021 shu

Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability

  • Corresponding author: Henan Li, lhn@ujs.edu.cn Li Xu, xulichem@ujs.edu.cn
  • Received Date: 10 April 2023
    Revised Date: 22 May 2023
    Accepted Date: 23 May 2023
    Available Online: 8 June 2023

    Fund Project: the National Natural Science Foundation of China 22178148the National Natural Science Foundation of China 22278193

  • Rechargeable zinc-air batteries (ZABs) have been extensively investigated owing to their high power density and environmental friendliness. However, the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes limit their practical application. Currently, IrO2 and RuO2 are considered the optimal OER electrocatalysts, and Pt/C is the most effective ORR electrocatalyst. However, the practical application of Pt, Ir, and Ru in ZABs is severely limited owing to their low natural abundance and high cost. Therefore, the fabrication of inexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transition-metal alloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they are considered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures can be fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst with Fe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) was designed for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-iron-layered double hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shell structure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitates charge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover, the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but also provided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectively protected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes. The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability of Fe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with a half-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA∙cm−2. Moreover, the catalyst exhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited a higher peak power density (214 mW·cm−2) than the ZABs based on Pt/C+IrO2 (155 mW·cm−2) and Fe0.64Ni0.36/NCNT (89 mW·cm−2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781 mAh·g−1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh·g−1, respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life > 1100 h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the design of novel catalysts for highly stable and efficient ZABs.
  • 加载中
    1. [1]

      Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. ACS Appl. Mater. Interfaces 2021, 13, 40172. doi: 10.1021/acsami.1c08462  doi: 10.1021/acsami.1c08462

    2. [2]

      Wu, M.; Zhang, G.; Wu, M.; Prakash, J.; Sun, S. Energy Storage Mater. 2019, 21, 253. doi: 10.1016/j.ensm.2019.05.018  doi: 10.1016/j.ensm.2019.05.018

    3. [3]

      Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H.; et al. Adv. Mater. 2023, 35, 2210714. doi: 10.1002/adma.202210714  doi: 10.1002/adma.202210714

    4. [4]

      Anand, P.; Wong, M. S.; Fu, Y. P. Energy Storage Mater. 2023, 58, 362. doi: 10.1016/j.ensm.2023.03.033  doi: 10.1016/j.ensm.2023.03.033

    5. [5]

      Deng, D. J.; Ma, H. X.; Wu, S. Q.; Wang, H.; Qian, J. C.; Wu, J. C.; Li, H. M.; Yan, C.; Li, H. N.; Xu, L. Renewables 2023, 1, 362372. doi: 10.31635/renewables.023.202200020  doi: 10.31635/renewables.023.202200020

    6. [6]

      Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. Carbon 2022, 196, 347. doi: 10.1016/j.carbon.2022.04.043  doi: 10.1016/j.carbon.2022.04.043

    7. [7]

      Lee, C.; Shin, K.; Park, Y.; Yun, Y. H.; Doo, G.; Jung, G. H.; Kim, M.; Cho, W.; Kim, C.; Lee, H. M.; et al. Adv. Funct. Mater. 2023, 32, 2301557. doi: 10.1002/adfm.202301557  doi: 10.1002/adfm.202301557

    8. [8]

      Hong, S.; Ham, K.; Hwang, J.; Kang, S.; Seo, M. H.; Choi, Y.; Han, B.; Lee, J.; Cho, K. Adv. Funct. Mater. 2023, 33, 2209543. doi: 10.1002/adfm.202209543  doi: 10.1002/adfm.202209543

    9. [9]

      Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu, J.; Bello, I. T.; Ni, M. Appl. Catal. B 2023, 320, 121992. doi: 10.1016/j.apcatb.2022.121992  doi: 10.1016/j.apcatb.2022.121992

    10. [10]

      Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31, 1802234. doi: 10.1002/adma.201802234  doi: 10.1002/adma.201802234

    11. [11]

      Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.; Zhao, T.; Lin, R.; Wang, K.; et al. Appl. Catal. B 2020, 274, 119086. doi: 10.1016/j.apcatb.2020.119086  doi: 10.1016/j.apcatb.2020.119086

    12. [12]

      Liu, W.; Zhang, J.; Bai, Z.; Jiang, G.; Li, M.; Feng, K.; Yang, L.; Ding, Y.; Yu, T.; Chen, Z.; et al. Adv. Funct. Mater. 2018, 28, 1706675. doi: 10.1002/adfm.201706675  doi: 10.1002/adfm.201706675

    13. [13]

      Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S. ACS Energy Lett. 2021, 6, 1153. doi: 10.1021/acsenergylett.1c00037  doi: 10.1021/acsenergylett.1c00037

    14. [14]

      Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354. doi: 10.1039/D0CS00415D  doi: 10.1039/D0CS00415D

    15. [15]

      Xiong, Q.; Zheng, J.; Liu, B.; Liu, Y.; Li, H.; Yang, M. Appl. Catal. B 2023, 321, 122067. doi: 10.1016/j.apcatb.2022.122067  doi: 10.1016/j.apcatb.2022.122067

    16. [16]

      Ma, Y.; Chen, W.; Jiang, Z.; Tian, X.; Wang, X.; Chen, G.; Jiang, Z. -J. J. Mater. Chem. A 2022, 10, 12616. doi: 10.1039/D2TA03110H  doi: 10.1039/D2TA03110H

    17. [17]

      Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H. Appl. Catal. B 2022, 315, 121501. doi: 10.1016/j.apcatb.2022.121501  doi: 10.1016/j.apcatb.2022.121501

    18. [18]

      Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Adv. Funct. Mater. 2020, 30, 1910274. doi: 10.1002/adfm.201910274  doi: 10.1002/adfm.201910274

    19. [19]

      Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X. Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544  doi: 10.1002/aenm.201700544

    20. [20]

      Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang, Z. S. Chem. Eng. J. 2022, 429, 132174. doi: 10.1016/j.cej.2021.132174  doi: 10.1016/j.cej.2021.132174

    21. [21]

      Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.; Jeong, C.; Kang, J.; Li, O. L. J. Colloid Interface Sci 2021, 582, 977. doi: 10.1016/j.jcis.2020.08.101  doi: 10.1016/j.jcis.2020.08.101

    22. [22]

      Sheng, K.; Yi, Q.; Chen, A. L.; Wang, Y.; Yan, Y.; Nie, H.; Zhou, X. ACS Appl. Mater. Interfaces 2021, 13, 45394. doi: 10.1021/acsami.1c10671  doi: 10.1021/acsami.1c10671

    23. [23]

      Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. Appl. Catal. B 2022, 316, 121687. doi: 10.1016/j.apcatb.2022.121687  doi: 10.1016/j.apcatb.2022.121687

    24. [24]

      He, X.; Tian, Y.; Huang, Z.; Xu, L.; Wu, J.; Qian, J.; Zhang, J.; Li, H. J. Mater. Chem. A 2021, 9, 2301. doi: 10.1039/D0TA10370E  doi: 10.1039/D0TA10370E

    25. [25]

      Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem. A 2021, 9, 7750. doi: 10.1039/D1TA01014J  doi: 10.1039/D1TA01014J

    26. [26]

      Ban, J.; Xu, H.; Cao, G.; Fan, Y.; Pang, W. K.; Shao, G.; Hu, J. Adv. Funct. Mater. 2023, 33, 2300623. doi: 10.1002/adfm.202300623  doi: 10.1002/adfm.202300623

    27. [27]

      Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005  doi: 10.1016/j.ensm.2017.11.005

    28. [28]

      Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28, 1805641. doi: 10.1002/adfm.201805641  doi: 10.1002/adfm.201805641

    29. [29]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    30. [30]

      Kang, J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Tan, X. Y.; Liu, S. M.; Wang, S.B. Chem. Eng. J. 2019, 362, 251. doi: 10.1016/j.cej.2019.01.035.  doi: 10.1016/j.cej.2019.01.035

    31. [31]

      Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Adv. Mater. 2022, 34, 2105410. doi: 10.1002/adma.202105410  doi: 10.1002/adma.202105410

    32. [32]

      Zhao, B.; Wu, Y.; Han, L.; Xia, Z.; Wang, Q.; Chang, S.; Liu, B.; Wang, G.; Shang, Y.; Cao, A. Energy Storage Mater. 2022, 50, 344. doi: 10.1016/j.ensm.2022.05.029  doi: 10.1016/j.ensm.2022.05.029

    33. [33]

      Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C.; Roth, E. P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023. doi: 10.1039/c1ee01786a  doi: 10.1039/c1ee01786a

    34. [34]

      Wang, J.; Shu, R.; Chai, J.; Rao, S. G.; Le Febvrier, A.; Wu, H.; Zhu, Y.; Yao, C.; Luo, L.; Li, W.; et al. Mater. Des. 2022, 219, 110749. doi: 10.1016/j.matdes.2022.110749  doi: 10.1016/j.matdes.2022.110749

    35. [35]

      Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.; Dai, L.; Liu, H. Adv. Sci 2019, 6, 1801829. doi: 10.1002/advs.201801829  doi: 10.1002/advs.201801829

    36. [36]

      Kuttiyiel, K. A.; Sasaki, K.; Chen, W. F.; Su, D.; Adzic, R. R. J. Mater. Chem. A 2014, 2, 591. doi: 10.1039/C3TA14301E  doi: 10.1039/C3TA14301E

    37. [37]

      Deng, D.; Qian, J.; Liu, X.; Li, H.; Su, D.; Li, H.; Li, H.; Xu, L. Adv. Funct. Materials 2022, 32, 2203471. doi: 10.1002/adfm.202203471  doi: 10.1002/adfm.202203471

    38. [38]

      Deng, D.; Wu, S.; Li, H.; Li, H.; Xu, L. Small 2023, 19, 2205469. doi: 10.1002/smll.202205469  doi: 10.1002/smll.202205469

    39. [39]

      López-Callejas, R.; Valencia-Alvarado, R.; Muñoz-Castro, A. E.; Godoy-Cabrera, O. G.; Barocio, S. R.; Chávez-Alarcón, E. Vacuum 2004, 76, 287. doi: 10.1016/j.vacuum.2004.07.060  doi: 10.1016/j.vacuum.2004.07.060

    40. [40]

      Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. J. Energy Chem. 2014, 23, 324. doi: 10.1016/S2095-4956(14)60154-6  doi: 10.1016/S2095-4956(14)60154-6

    41. [41]

      Chen, M.; Lu, S.; Fu, X.; Luo, J. Adv. Sci. 2020, 7, 1903777. doi: 10.1002/advs.201903777  doi: 10.1002/advs.201903777

    42. [42]

      Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. Nano Energy 2019, 61, 86. doi: 10.1016/j.nanoen.2019.04.031  doi: 10.1016/j.nanoen.2019.04.031

    43. [43]

      Park, J.; Yoon, K. Y.; Kwak, M. J.; Lee, J. E.; Kang, J.; Jang, J. H. ACS Appl. Mater. Interfaces 2021, 13, 54906. doi: 10.1021/acsami.1c13872  doi: 10.1021/acsami.1c13872

    44. [44]

      Xu, L.; Wu, S.; He, X.; Wang, H.; Deng, D.; Wu, J.; Li, H. Chem. Eng. J. 2022, 437, 135291. doi: 10.1016/j.cej.2022.135291  doi: 10.1016/j.cej.2022.135291

    45. [45]

      Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443. doi: 10.1021/acscatal.9b03716  doi: 10.1021/acscatal.9b03716

    46. [46]

      Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1970332. doi: 10.1002/adfm.201970332  doi: 10.1002/adfm.201970332

    47. [47]

      Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Nano Energy 2018, 52, 307. doi: 10.1016/j.nanoen.2018.08.003  doi: 10.1016/j.nanoen.2018.08.003

    48. [48]

      Tang, H.; Yang, D.; Lu, M.; Kong, S.; Hou, Y.; Liu, D.; Liu, D.; Yan, S.; Chen, Z.; Yu, T.; et al. J. Mater. Chem. A 2021, 9, 25435. doi: 10.1039/D1TA07561F  doi: 10.1039/D1TA07561F

  • 加载中
    1. [1]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    9. [9]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(0)
  • Abstract views(246)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return