
Citation: Chen Pu, Daijie Deng, Henan Li, Li Xu. Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability[J]. Acta Physico-Chimica Sinica, 2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304021

氮掺杂碳纳米管包覆Fe0.64Ni0.36@Fe3NiN核壳结构用于高稳定锌-空气电池
English
Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability

-
-
[1]
Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. ACS Appl. Mater. Interfaces 2021, 13, 40172. doi: 10.1021/acsami.1c08462
-
[2]
Wu, M.; Zhang, G.; Wu, M.; Prakash, J.; Sun, S. Energy Storage Mater. 2019, 21, 253. doi: 10.1016/j.ensm.2019.05.018
-
[3]
Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H.; et al. Adv. Mater. 2023, 35, 2210714. doi: 10.1002/adma.202210714
-
[4]
Anand, P.; Wong, M. S.; Fu, Y. P. Energy Storage Mater. 2023, 58, 362. doi: 10.1016/j.ensm.2023.03.033
-
[5]
Deng, D. J.; Ma, H. X.; Wu, S. Q.; Wang, H.; Qian, J. C.; Wu, J. C.; Li, H. M.; Yan, C.; Li, H. N.; Xu, L. Renewables 2023, 1, 362372. doi: 10.31635/renewables.023.202200020
-
[6]
Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. Carbon 2022, 196, 347. doi: 10.1016/j.carbon.2022.04.043
-
[7]
Lee, C.; Shin, K.; Park, Y.; Yun, Y. H.; Doo, G.; Jung, G. H.; Kim, M.; Cho, W.; Kim, C.; Lee, H. M.; et al. Adv. Funct. Mater. 2023, 32, 2301557. doi: 10.1002/adfm.202301557
-
[8]
Hong, S.; Ham, K.; Hwang, J.; Kang, S.; Seo, M. H.; Choi, Y.; Han, B.; Lee, J.; Cho, K. Adv. Funct. Mater. 2023, 33, 2209543. doi: 10.1002/adfm.202209543
-
[9]
Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu, J.; Bello, I. T.; Ni, M. Appl. Catal. B 2023, 320, 121992. doi: 10.1016/j.apcatb.2022.121992
-
[10]
Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31, 1802234. doi: 10.1002/adma.201802234
-
[11]
Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.; Zhao, T.; Lin, R.; Wang, K.; et al. Appl. Catal. B 2020, 274, 119086. doi: 10.1016/j.apcatb.2020.119086
-
[12]
Liu, W.; Zhang, J.; Bai, Z.; Jiang, G.; Li, M.; Feng, K.; Yang, L.; Ding, Y.; Yu, T.; Chen, Z.; et al. Adv. Funct. Mater. 2018, 28, 1706675. doi: 10.1002/adfm.201706675
-
[13]
Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S. ACS Energy Lett. 2021, 6, 1153. doi: 10.1021/acsenergylett.1c00037
-
[14]
Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354. doi: 10.1039/D0CS00415D
-
[15]
Xiong, Q.; Zheng, J.; Liu, B.; Liu, Y.; Li, H.; Yang, M. Appl. Catal. B 2023, 321, 122067. doi: 10.1016/j.apcatb.2022.122067
-
[16]
Ma, Y.; Chen, W.; Jiang, Z.; Tian, X.; Wang, X.; Chen, G.; Jiang, Z. -J. J. Mater. Chem. A 2022, 10, 12616. doi: 10.1039/D2TA03110H
-
[17]
Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H. Appl. Catal. B 2022, 315, 121501. doi: 10.1016/j.apcatb.2022.121501
-
[18]
Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Adv. Funct. Mater. 2020, 30, 1910274. doi: 10.1002/adfm.201910274
-
[19]
Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X. Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544
-
[20]
Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang, Z. S. Chem. Eng. J. 2022, 429, 132174. doi: 10.1016/j.cej.2021.132174
-
[21]
Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.; Jeong, C.; Kang, J.; Li, O. L. J. Colloid Interface Sci 2021, 582, 977. doi: 10.1016/j.jcis.2020.08.101
-
[22]
Sheng, K.; Yi, Q.; Chen, A. L.; Wang, Y.; Yan, Y.; Nie, H.; Zhou, X. ACS Appl. Mater. Interfaces 2021, 13, 45394. doi: 10.1021/acsami.1c10671
-
[23]
Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. Appl. Catal. B 2022, 316, 121687. doi: 10.1016/j.apcatb.2022.121687
-
[24]
He, X.; Tian, Y.; Huang, Z.; Xu, L.; Wu, J.; Qian, J.; Zhang, J.; Li, H. J. Mater. Chem. A 2021, 9, 2301. doi: 10.1039/D0TA10370E
-
[25]
Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem. A 2021, 9, 7750. doi: 10.1039/D1TA01014J
-
[26]
Ban, J.; Xu, H.; Cao, G.; Fan, Y.; Pang, W. K.; Shao, G.; Hu, J. Adv. Funct. Mater. 2023, 33, 2300623. doi: 10.1002/adfm.202300623
-
[27]
Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005
-
[28]
Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28, 1805641. doi: 10.1002/adfm.201805641
-
[29]
Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075
-
[30]
Kang, J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Tan, X. Y.; Liu, S. M.; Wang, S.B. Chem. Eng. J. 2019, 362, 251. doi: 10.1016/j.cej.2019.01.035.
-
[31]
Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Adv. Mater. 2022, 34, 2105410. doi: 10.1002/adma.202105410
-
[32]
Zhao, B.; Wu, Y.; Han, L.; Xia, Z.; Wang, Q.; Chang, S.; Liu, B.; Wang, G.; Shang, Y.; Cao, A. Energy Storage Mater. 2022, 50, 344. doi: 10.1016/j.ensm.2022.05.029
-
[33]
Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C.; Roth, E. P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023. doi: 10.1039/c1ee01786a
-
[34]
Wang, J.; Shu, R.; Chai, J.; Rao, S. G.; Le Febvrier, A.; Wu, H.; Zhu, Y.; Yao, C.; Luo, L.; Li, W.; et al. Mater. Des. 2022, 219, 110749. doi: 10.1016/j.matdes.2022.110749
-
[35]
Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.; Dai, L.; Liu, H. Adv. Sci 2019, 6, 1801829. doi: 10.1002/advs.201801829
-
[36]
Kuttiyiel, K. A.; Sasaki, K.; Chen, W. F.; Su, D.; Adzic, R. R. J. Mater. Chem. A 2014, 2, 591. doi: 10.1039/C3TA14301E
-
[37]
Deng, D.; Qian, J.; Liu, X.; Li, H.; Su, D.; Li, H.; Li, H.; Xu, L. Adv. Funct. Materials 2022, 32, 2203471. doi: 10.1002/adfm.202203471
-
[38]
Deng, D.; Wu, S.; Li, H.; Li, H.; Xu, L. Small 2023, 19, 2205469. doi: 10.1002/smll.202205469
-
[39]
López-Callejas, R.; Valencia-Alvarado, R.; Muñoz-Castro, A. E.; Godoy-Cabrera, O. G.; Barocio, S. R.; Chávez-Alarcón, E. Vacuum 2004, 76, 287. doi: 10.1016/j.vacuum.2004.07.060
-
[40]
Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. J. Energy Chem. 2014, 23, 324. doi: 10.1016/S2095-4956(14)60154-6
-
[41]
Chen, M.; Lu, S.; Fu, X.; Luo, J. Adv. Sci. 2020, 7, 1903777. doi: 10.1002/advs.201903777
-
[42]
Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. Nano Energy 2019, 61, 86. doi: 10.1016/j.nanoen.2019.04.031
-
[43]
Park, J.; Yoon, K. Y.; Kwak, M. J.; Lee, J. E.; Kang, J.; Jang, J. H. ACS Appl. Mater. Interfaces 2021, 13, 54906. doi: 10.1021/acsami.1c13872
-
[44]
Xu, L.; Wu, S.; He, X.; Wang, H.; Deng, D.; Wu, J.; Li, H. Chem. Eng. J. 2022, 437, 135291. doi: 10.1016/j.cej.2022.135291
-
[45]
Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443. doi: 10.1021/acscatal.9b03716
-
[46]
Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1970332. doi: 10.1002/adfm.201970332
-
[47]
Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Nano Energy 2018, 52, 307. doi: 10.1016/j.nanoen.2018.08.003
-
[48]
Tang, H.; Yang, D.; Lu, M.; Kong, S.; Hou, Y.; Liu, D.; Liu, D.; Yan, S.; Chen, Z.; Yu, T.; et al. J. Mater. Chem. A 2021, 9, 25435. doi: 10.1039/D1TA07561F
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 240
- HTML全文浏览量: 25