Citation: Ruiqin Feng, Ye Fan, Yun Fang, Yongmei Xia. Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230402. doi: 10.3866/PKU.WHXB202304020 shu

Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering

  • Corresponding author: Yun Fang, yunfang@126.com Yongmei Xia, ymxia@jiangnan.edu.cn
  • Received Date: 7 April 2023
    Revised Date: 6 June 2023
    Accepted Date: 7 June 2023
    Available Online: 16 June 2023

    Fund Project: the National Natural Science Foundation of China 21606107

  • Mixed solutions of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) were investigated by capillary electrophoresis, together with other technologies, to confirm the formation of PVP-bound SDS micelles through cation-bridging association, which shows the nature of polyanions and the ability to exchange Na+ of SDS with environmental cations. Because additional water-soluble precursors of nanomaterials are capable of entering the cation-bridging layer of the PVP-SDS pseudo-polyanions, we speculate that the PVP chain and PVP-bound SDS micelles located on both sides of the precursor may act as a two-stage soft template to synthesize nanomaterials with unique morphologies. In this study, PVP-SDS pseudo-polyanions were used as soft templates to promote the growth of gold particles into gold nanoflowers (AuNFs). Tensiometry, conductometry, capillary electrophoresis, and zeta potential measurements confirmed the formation of the new PVP-SDS-HAuCl4 pseudo-polyanions. Transmission electron microscopy, X-ray diffraction, and UV-Vis spectroscopy analyses showed that the AuNFs synthesized in the mixed solution of PVP (50 g·L−1)-SDS (2 mmol·L−1)-HAuCl4 (0.25 mmol·L−1) possessed a face-centered cubic structure with abundant {111} crystal plane, demonstrating an average equivalent diameter of 108 nm with rich nano-protrusion of approximately 16.5 nm on the surface of AuNFs. The mechanistic study shows that PVP mainly acts as an in situ reductant for HAuCl4 in PVP-bound SDS micelles that simultaneously act as the primary template to govern the size of the primary gold crystals. In addition to continuously reducing HAuCl4, PVP functions as a secondary template, leading to primary gold crystals in a finite space linked by the PVP chain through preferential adsorption, stacked, and grown into mature AuNFs. Finally, a lower HAuCl4 concentration and an adequate reduction period are favorable in the aforementioned process dominated by the soft template rather than by the crystal growth rule of gold particles; thus, the reduction rate of HAuCl4 and nucleation-growth competition of gold particles can be regulated. Therefore, the optimal combination of low concentrations of SDS, PVP, and HAuCl4, together with an appropriate reduction period, would result in synergism between the reduction rate of HAuCl4, crystal growth rule of gold particles, and stacking degree of the primary gold crystals. AuNFs show strong surface-enhanced Raman scattering (SERS) activity for the Raman probe molecule of rhodamine 6G, strongly depending on the nano-protrusion morphology of AuNFs. The highest SERS enhancement factor can reach 6.71 × 107, which is superior to the reported level of the similar AuNFs (106). Because the particle sizes and morphologies of AuNFs can be precisely regulated, this strategy is a facile aqueous one-pot method for the synthesis of nanomaterials under normal temperature and pressure, which eliminates carrier requirements or adsorption interference from cationic surfactants, and has the potential to further enhance the SERS activity of the nanomaterials.
  • 加载中
    1. [1]

      Barveen, N. R.; Wang, T. J.; Chang, Y. H.; Yuan, L. Z. J. Alloy. Compd. 2021, 861, 157952. doi: 10.1016/j.jallcom.2020.157952  doi: 10.1016/j.jallcom.2020.157952

    2. [2]

      Ge, K.; Huang, Y.; Zhang, H.; Gu, Y. Sensor Actuat B-Chem. 2022, 361, 131734. doi: 10.1016/j.snb.2022.131734  doi: 10.1016/j.snb.2022.131734

    3. [3]

      Zhang, Y.-J.; Zhu, Y.-Z.; Li, J.-F. Acta Phys. -Chim. Sin. 2021, 37 (9), 2004052.  doi: 10.3866/PKU.WHXB202004052

    4. [4]

      Zheng, X.; Ye, J.; Chen, W.; Wang, X.; Li, J.; Su, F.; Ding, C.; Huang, Y. ACS Sens. 2022, 7 (10), 3126. doi: 10.1021/acssensors.2c01603  doi: 10.1021/acssensors.2c01603

    5. [5]

      Wei, W.; Xi, Z.; Huang, Q. Chinese J. Chem. Phys. 2021, 34 (2), 197. doi: 10.1063/1674-0068/cjcp2005062  doi: 10.1063/1674-0068/cjcp2005062

    6. [6]

      Zhao, X. S.; Qiu, H. Y.; Shao, Y.; Wang, P. J.; Yu, S. L.; Li, H.; Zhou, Y. B.; Zhou, Z.; Ma, L. F.; Tan, C. L. Acta Phys. -Chim. Sin. 2023, 39 (7), 2211043.  doi: 10.3866/PKU.WHXB202211043

    7. [7]

      Duval, R. E.; Gouyau, J.; Lamouroux, E. Nanomaterials 2019, 9 (12), 1775. doi: 10.3390/nano9121775  doi: 10.3390/nano9121775

    8. [8]

      Ning, C. F.; Tian, Y. F.; Zhou, W.; Yin, B. C.; Ye, B. C. Analyst 2019, 144 (9), 2929. doi: 10.1039/c9an00306a  doi: 10.1039/c9an00306a

    9. [9]

      Tang, H.; Zhu, C.; Meng, G.; Wu, N. J. Electrochem. Soc. 2018, 165 (8), B3098. doi: 10.1149/2.0161808jes  doi: 10.1149/2.0161808jes

    10. [10]

      Lafuente, M.; Ruiz-Rincón, S.; Mallada, R.; Cea, P.; Pilar Pina, M. Appl. Surf. Sci. 2020, 506, 144663. doi: 10.1016/j.apsusc.2019.144663  doi: 10.1016/j.apsusc.2019.144663

    11. [11]

      Sivashanmugan, K.; Nguyen, V.-H.; Nguyen, B.-S. Mater. Lett. 2020, 271, 127807. doi: 10.1016/j.matlet.2020.127807  doi: 10.1016/j.matlet.2020.127807

    12. [12]

      Xu, L.; Liu, H.; Zhou, H.; Hong, M. Talanta 2021, 228, 122204. doi: 10.1016/j.talanta.2021.122204  doi: 10.1016/j.talanta.2021.122204

    13. [13]

      Liu, B. Y.; Yang, M.; Li, H. G. Colloids Surf. A 2017, 520, 213. doi: 10.1016/j.colsurfa.2017.01.087  doi: 10.1016/j.colsurfa.2017.01.087

    14. [14]

      Feng, R.Q.; Fang, Y.; Fan, Y.; Xia, Y. M. Chem. J. Chin. Univ. 2023, 44 (8), 20230027.  doi: 10.7503/cjcu20230027

    15. [15]

      Liebig, F.; Henning, R.; Sarhan, R. M.; Prietzel, C.; Bargheer, M.; Koetz, J. Nanotechnology 2018, 29 (18), 185603. doi: 10.1088/1361-6528/aaaffd  doi: 10.1088/1361-6528/aaaffd

    16. [16]

      Ren, Y.; Xu, C.; Wu, M.; Niu, M.; Fang, Y. Colloids Surf. A 2011, 380, 222. doi: 10.1016/j.colsurfa.2011.02.029  doi: 10.1016/j.colsurfa.2011.02.029

    17. [17]

      Barbosa, S.; Agrawal, A.; Rodriguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzan, L. M. Langmuir 2010, 26 (18), 14943. doi: 10.1021/la102559e  doi: 10.1021/la102559e

    18. [18]

      Chen, H.; Yu, H.; Cui, S.; Liu, C. Int. J. Appl. Ceram. Technol. 2019, 17 (3), 1460. doi: 10.1111/ijac.13261  doi: 10.1111/ijac.13261

    19. [19]

      Yang, Y.; He, B. W.; Ma, H. L.; Yang, S.; Ren, Z. H.; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38 (12), 2201050.  doi: 10.3866/PKU.WHXB202201050

    20. [20]

      Javed, R.; Usman, M.; Tabassum, S.; Zia, M. Appl. Surf. Sci. 2016, 386, 319. doi: 10.1016/j.apsusc.2016.06.042  doi: 10.1016/j.apsusc.2016.06.042

    21. [21]

      Zhai, Y.; DuChene, J. S.; Wang, Y.-C.; Qiu, J.; Johnston-Peck, A. C.; You, B.; Guo, W.; DiCiaccio, B.; Qian, K.; Zhao, E. W.; et al. Nat. Mater. 2016, 15 (8), 889. doi: 10.1038/nmat4683  doi: 10.1038/nmat4683

    22. [22]

      Uehara, N.; Sonoda, N.; Iwamatsu, T.; Haneishi, C.; Inagawa, A. Colloids Surf. A 2020, 585, 124113. doi: 10.1016/j.colsurfa.2019.124113  doi: 10.1016/j.colsurfa.2019.124113

    23. [23]

      Das, R. S.; Singh, B.; Banerjee, R.; Mukhopadhyay, S. Dalton Trans. 2013, 42 (11), 4068. doi: 10.1039/c2dt32007j  doi: 10.1039/c2dt32007j

    24. [24]

      Zhang, Q.; Li, H.; Gao, P.; Wang, L. Chin. J. Catal. 2014, 35 (11), 1793. doi: 10.1016/s1872-2067(14)60203-5  doi: 10.1016/s1872-2067(14)60203-5

    25. [25]

      Mei, S.; Qi, H.; Zhou, T.; Li, C. Y. Angew. Chem. Int. Ed. 2017, 56 (44), 13645. doi: 10.1002/anie.201706180  doi: 10.1002/anie.201706180

    26. [26]

      Zhao, N.; Peng, J.; Wang, J. P.; Zhai, M. L. Acta Phys. -Chim. Sin. 2022, 38 (4), 2004046.  doi: 10.3866/PKU.WHXB202004046

    27. [27]

      Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.-H.; Schüth, F. Chem. Rev. 2016, 116 (22), 14056. doi: 10.1021/acs.chemrev.6b00374  doi: 10.1021/acs.chemrev.6b00374

    28. [28]

      Feng, R.; Wu, Y.; Wang, W.; Fang, Y.; Chen, M.; Xia, Y. J. Mol. Liq. 2022, 354, 118898. doi: 10.1016/j.molliq.2022.118898  doi: 10.1016/j.molliq.2022.118898

    29. [29]

      Feng, R.; Chen, M.; Fang, Y.; Fan, Y.; Xia, Y. Colloids Surf. A 2023, 671, 131585. doi: 10.1016/j.colsurfa.2023.131585  doi: 10.1016/j.colsurfa.2023.131585

    30. [30]

      Guo, S.; Dong, S.; Wang, E. Cryst. Growth Des. 2009, 9 (1), 372. doi: 10.1021/cg800583h  doi: 10.1021/cg800583h

    31. [31]

      Li, Y.; Xu, R.; Bloor, D. M.; Penfold, J.; Holzwarth, J. F.; Jones, E. W. Langmuir 2000, 16 (23), 8677. doi: 10.1021/la000292h  doi: 10.1021/la000292h

    32. [32]

      Patel, A. S.; Juneja, S.; Kanaujia, P. K.; Maurya, V.; Prakash, G. V.; Chakraborti, A.; Bhattacharya, J. Nano-Struct. Nano-Objects 2018, 16, 329. doi: 10.1016/j.nanoso.2018.09.001  doi: 10.1016/j.nanoso.2018.09.001

    33. [33]

      Ramos, R. M. C. R.; Jiang, W.; Heng, J. Z. X.; Ko, H. Y. Y.; Ye, E.; Regulacio, M. D. ACS Appl. Nano Mater. 2023, 6 (5), 3963. doi: 10.1021/acsanm.3c00192  doi: 10.1021/acsanm.3c00192

    34. [34]

      Li, J.; Chang, M.; Zhou, X.; Li, D.; Li, Y. Mater. Res. Bull. 2014, 59, 1506. doi: 10.1016/j.materresbull.2014.07.017  doi: 10.1016/j.materresbull.2014.07.017

    35. [35]

      Sahu, B. K.; Dwivedi, A.; Pal, K. K.; Pandian, R.; Dhara, S.; Das, A. Appl. Surf. Sci. 2021, 537, 147615. doi: 10.1016/j.apsusc.2020.147615  doi: 10.1016/j.apsusc.2020.147615

    36. [36]

      Li, H.; Liu, H.; Qin, Y.; Mu, Y.; Fang, X.; Zhai, T.; Zhang, X. Plasmonics 2020, 15 (6), 2027. doi: 10.1007/s11468-020-01229-0  doi: 10.1007/s11468-020-01229-0

    37. [37]

      Kim, D.; Kim, J.; Henzie, J.; Ko, Y.; Lim, H.; Kwon, G.; Na, J.; Kim, H.-J.; Yamauchi, Y.; You, J. Chem. Eng. J. 2021, 419, 129445. doi: 10.1016/j.cej.2021.129445  doi: 10.1016/j.cej.2021.129445

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    15. [15]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1)
  • Abstract views(800)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return