Citation: Yan Xin, Yunnian Ge, Zezhong Li, Qiaobao Zhang, Huajun Tian. Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230306. doi: 10.3866/PKU.WHXB202303060 shu

Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries

  • Corresponding author: Yan Xin, xinyan@ncepu.edu.cn Qiaobao Zhang, zhangqiaobao@xmu.edu.cn Huajun Tian, huajun.tian@ncepu.edu.cn
  • Received Date: 31 March 2023
    Revised Date: 10 May 2023
    Accepted Date: 17 May 2023
    Available Online: 29 May 2023

    Fund Project: the National Natural Science Foundation of China 52122211the National Natural Science Foundation of China 52072323the Interdisciplinary Innovation Program of North China Electric Power University XM2212315the Fundamental Research Funds for the Central Universities of China 2018MS019

  • With the development of modern society, the demand for energy is increasing. Consequently, the efficient utilization of renewable energy has become the primary concern in the energy sector. Secondary batteries can accomplish energy storage through efficient electrical/chemical energy conversion, thereby providing an effective solution for the utilization of renewable energy. Lithium-ion batteries have been the most widely used secondary battery systems, owing to their high energy densities and long lifetimes. Nevertheless, traditional inorganic cathode materials have recently encountered problems such as increasing manufacturing costs, lithium supply-chain constraints, and safety issues. Meanwhile, organic electrode materials (OEMs) have emerged as promising electrode candidates for secondary batteries owing to several advantages, such as their low costs, abundant resources, environmental friendliness, and structural designability. In recent decades, considerable efforts have been dedicated to OEM research. To date, commonly used OEMs include carbonyl polymers, conductive polymers, nitrile compounds, organic sulfides, organic free radical compounds, imine compounds, and Azo compounds. OEMs have been used in various metal ion battery systems, including lithium-, sodium-, aluminum-, zinc-, magnesium-, potassium-, and calcium-based batteries. However, the commercialization of OEMs still encounters several challenges, mainly owing to their low conductivity, high solubility, and low discharge potential. The low intrinsic conductivity of OEMs leads to difficulties in ion diffusion, while their high solubility in organic electrolytes inevitably reduces cyclic stability. Moreover, the low discharge potential of OEMs decreases energy density and rate performance. In view of the technical restrictions affecting OEMs, researchers have focused on modifications and optimizations of the structure, preparation strategies, and sizes of OEMs. In this paper, we review the development history and applications of OEMs and systemically summarize their classification, reaction mechanisms, and primary challenges. In addition, we thoroughly report on OEM modification strategies. By shaping their molecular structures, such as either by substituent introduction, conjugated structure formation, or small molecule polymerization, the solubility of OEMs can be reduced, and their discharge potential can be enhanced. The conductivity of OEMs can be improved significantly by combining them with conductive carbon materials. Nano-sized optimization and electrode–electrolyte coupling can also significantly improve their cycle stability and rate performance. Additionally, the electrochemical performance of OEMs can be improved by optimizing preparation processes and determining the best technological parameters. Finally, we envision future research paths of OEM modification, which could provide a future reference in OEM design and research.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 1. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    3. [3]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    4. [4]

      Cao, Y. L.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 200. doi: 10.1038/s41565-019-0371-8  doi: 10.1038/s41565-019-0371-8

    5. [5]

      Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y. L.; Yao, Y. Chem. Rev. 2020, 120, 6490. doi: 10.1021/acs.chemrev.9b00482  doi: 10.1021/acs.chemrev.9b00482

    6. [6]

      Huang, J. D.; Zhu, Y. H.; Feng, Y.; Han, Y. H.; Gu, Z. Y.; Liu, R. X.; Yang, D. Y.; Chen, K.; Zhang, X. Y.; Sun, W.; et al. Acta Phys.-Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    7. [7]

      Li, H. Joule 2019, 3, 911. doi: 10.1016/j.joule.2019.03.028  doi: 10.1016/j.joule.2019.03.028

    8. [8]

      Manthiram, A. Nat. Commun. 2020, 11, 1550. doi: 10.1038/s41467-020-15355-0  doi: 10.1038/s41467-020-15355-0

    9. [9]

      Zhu, S. Y.; Li, H. Y.; Hu, Z. L.; Zhang, Q. B.; Zhao, J. B.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2103052.  doi: 10.3866/PKU.WHXB202103052

    10. [10]

      Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. ChemSusChem 2008, 1, 348. doi: 10.1002/cssc.200700161  doi: 10.1002/cssc.200700161

    11. [11]

      Xu, Z.; Ye, H. J.; Li, H. Q; Xu, Y. Z.; Wang, C. Y.; Yin, J.; Zhu, H. ACS Omega 2017, 2, 1273. doi: 10.1021/acsomega.6b00504  doi: 10.1021/acsomega.6b00504

    12. [12]

      Shea, J. J.; Luo, C. ACS Appl. Mater. Interfaces 2020, 12, 5361. doi: 10.1021/acsami.9b20384  doi: 10.1021/acsami.9b20384

    13. [13]

      Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Chem 2018, 4, 2786. doi: 10.1016/j.chempr.2018.09.005  doi: 10.1016/j.chempr.2018.09.005

    14. [14]

      Xie, J.; Zhang, Q. C. Small 2019, 15, 1805061. doi: 10.1002/smll.201805061  doi: 10.1002/smll.201805061

    15. [15]

      Zhu, L. M.; Ding, G. C.; Xie, L. L.; Cao, X. Y.; Liu, J. P.; Lei, X. F.; Ma, J. X. Chem. Mater. 2019, 31, 8582. doi: 10.1021/acs.chemmater.9b03109  doi: 10.1021/acs.chemmater.9b03109

    16. [16]

      Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, No. 1, 2. doi: 10.1149/1.2411755  doi: 10.1149/1.2411755

    17. [17]

      MacInnes, D.; Druy, M. A.; Nigrey, P. J.; Nairns, D. P.; MacDiarmid, A. G.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1981, No. 7, 317. doi: 10.1039/C39810000317  doi: 10.1039/C39810000317

    18. [18]

      Tobishima, S. I.; Yamaki, J. I.; Yamaji, A. J. Electrochem. Soc. 1984, 131, 57. doi: 10.1149/1.2115542  doi: 10.1149/1.2115542

    19. [19]

      Pickup, P. G.; Osteryoung, R. A. J. Am. Chem. Soc. 1984, 106, 2294. doi: 10.1021/ja00320a014  doi: 10.1021/ja00320a014

    20. [20]

      Macdiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Nanaxakkara, L. D.; Wu, S. W.; Yaniger, S. I. Mol. Cryst. Liq. Cryst. 1985, 121, 173. doi: 10.1080/00268948508074857  doi: 10.1080/00268948508074857

    21. [21]

      Visco, S. J.; DeJonghe, L. C. J. Electrochem. Soc. 1988, 135, 2905. doi: 10.1149/1.2095460  doi: 10.1149/1.2095460

    22. [22]

      Matsunaga, T.; Daifuku, H.; Nakajima, T.; Kawagoe, T. Polym. Adv. Technol. 1990, 1, 33. doi: 10.1002/pat.1990.220010106  doi: 10.1002/pat.1990.220010106

    23. [23]

      Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279. doi: 10.1016/0379-6779(96)80214-1  doi: 10.1016/0379-6779(96)80214-1

    24. [24]

      Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351. doi: 10.1016/S0009-2614(02)00705-4  doi: 10.1016/S0009-2614(02)00705-4

    25. [25]

      Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. doi: 10.1038/nmat2372  doi: 10.1038/nmat2372

    26. [26]

      Matsunaga, T.; Kubota, T.; Sugimoto, T.; Satoh, M. Chem. Lett. 2011, 40, 750. doi: 10.1246/cl.2011.750  doi: 10.1246/cl.2011.750

    27. [27]

      Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. Angew. Chem. 2012, 21, 5237. doi: 10.1002/ange.201109187  doi: 10.1002/ange.201109187

    28. [28]

      Chen, Y. A.; Luo, W.; Carter, M.; Zhou, L. H.; Dai, J. Q.; Fu, K.; Lacey, S.; Li, T.; Wan, J. Y.; Han, X. G. Nano Energy 2015, 18, 205. doi: 10.1016/j.nanoen.2015.10.015  doi: 10.1016/j.nanoen.2015.10.015

    29. [29]

      Rodríguez-Pérez, I. A.; Yuan, Y. F.; Bommier, C.; Wang, X. F.; Ma, L.; Leonard, D. P.; Lerner, M. M.; Carter, R. G.; Wu, T. P.; Greaney, P. A. J. Am. Chem. Soc. 2017, 139, 13031. doi: 10.1021/jacs.7b06313  doi: 10.1021/jacs.7b06313

    30. [30]

      Luo, C.; Borodin, O.; Ji, X.; Hou, S.; Gaskell, K. J.; Fan, X. L.; Chen, J.; Deng, T.; Wang, R. X; Jiang, J. J. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 2004. doi: 10.1073/pnas.1717892115  doi: 10.1073/pnas.1717892115

    31. [31]

      Wang, J. D.; Lakraychi, A. E.; Liu, X. L.; Sieuw, L.; Morari, C.; Poizot, P.; Vlad, A. Nat. Mater. 2021, 20, 665. doi: 10.1038/s41563-020-00869-1  doi: 10.1038/s41563-020-00869-1

    32. [32]

      Naegele, D.; Bittihn, R. Solid State Ion 1988, 28, 983. doi: 10.1016/0167-2738(88)90316-5  doi: 10.1016/0167-2738(88)90316-5

    33. [33]

      Miller, J. S. Adv. Mater. 1993, 5, 671. doi: 10.1002/adma.19930050918  doi: 10.1002/adma.19930050918

    34. [34]

      Yokoji, T.; Kameyama, Y.; Maruyama, N.; Matsubara, H. J. Mater. Chem. A 2016, 4, 5457. doi: 10.1039/c5ta10713j  doi: 10.1039/c5ta10713j

    35. [35]

      Zhang, K.; Guo, C. Y.; Zhao, Q.; Niu, Z. Q.; Chen, J. Adv. Sci. 2015, 2, 1500018. doi: 10.1002/advs.201500018  doi: 10.1002/advs.201500018

    36. [36]

      Xu, F.; Xia, J. T.; Shi, W. Electrochem. Commun. 2015, 60, 117. doi: 10.1016/j.elecom.2015.08.027  doi: 10.1016/j.elecom.2015.08.027

    37. [37]

      Tian, B. B.; Zheng, J.; Zhao, C. X.; Liu, C. B.; Su, C. L.; Tang, W.; Li, X.; Ning, G. H. J. Mater. Chem. A 2019, 7, 9997. doi: 10.1039/c9ta00647h  doi: 10.1039/c9ta00647h

    38. [38]

      Chen, Y.; Li, J. Y.; Zhu, Q.; Fan, K.; Cao, Y. Q.; Zhang, G. Q.; Zhang, C. Y.; Gao, Y. B.; Zou, J. C.; Zhai, T. Y. Angew. Chem. Int. Ed. 2022, 61, e202116289. doi: 10.1002/anie.202116289  doi: 10.1002/anie.202116289

    39. [39]

      Pan, B. F.; Huang, J. H.; Feng, Z. X.; Zeng, L.; He, M. N.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z. C. Adv. Energy Mater. 2016, 6, 1600140. doi: 10.1002/aenm.201600140  doi: 10.1002/aenm.201600140

    40. [40]

      Kim, D. J.; Yoo, D. J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Nat. Energy 2019, 4, 51. doi: 10.1038/s41560-018-0291-0  doi: 10.1038/s41560-018-0291-0

    41. [41]

      Shacklette, L. W.; Toth, J. E.; Murthy, N. S.; Baughman, R. H. J. Electrochem. Soc. 1985, 132, 1529. doi: 10.1149/1.2114159  doi: 10.1149/1.2114159

    42. [42]

      Su, D. W.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. Chem. Commun. 2015, 51, 16092. doi: 10.1039/c5cc04229a  doi: 10.1039/c5cc04229a

    43. [43]

      Li, H.; Wu, J.; Li, H. B.; Xu, Y. L.; Zheng, J.; Shi, Q. F.; Kang, H. W.; Zhao, S. Q.; Zhang, L. H; Wang, R. Chem. Eng. J. 2022, 430, 132704. doi: 10.1016/j.cej.2021.132704  doi: 10.1016/j.cej.2021.132704

    44. [44]

      Karami, H.; Mousavi, M. F.; Shamsipur, M. J. Power Sources 2003, 124, 303. doi: 10.1016/s0378-7753(03)00620-7  doi: 10.1016/s0378-7753(03)00620-7

    45. [45]

      Ju, Q. Q.; Shi, Y.; Kan, J. Q. Synth. Met. 2013, 178, 27. doi: 10.1016/j.synthmet.2013.06.016  doi: 10.1016/j.synthmet.2013.06.016

    46. [46]

      Koura, N.; Ejiri, H.; Takeishi, K. J. Electrochem. Soc. 1993, 140, 602. doi: 10.1149/1.2056128  doi: 10.1149/1.2056128

    47. [47]

      Chola, N. M.; Nagarale, R. K. J. Electrochem. Soc. 2020, 167, 100552. doi: 10.1149/1945-7111/ab9cc9  doi: 10.1149/1945-7111/ab9cc9

    48. [48]

      Li, F. L.; Si, Y. B.; Liu, B. J.; Li, Z. J.; Fu, Y. Z. Adv. Funct. Mater. 2019, 29, 1902223. doi: 10.1002/adfm.201902223  doi: 10.1002/adfm.201902223

    49. [49]

      Wang, D. Y.; Si, Y. B.; Guo, W.; Fu, Y. Z. Adv. Sci. 2020, 7, 1902646. doi: 10.1002/advs.201902646  doi: 10.1002/advs.201902646

    50. [50]

      NuLi, Y. N.; Guo, Z. P.; Liu, H. K.; Yang, J. Electrochem. Commun. 2007, 9, 1913. doi: 10.1016/j.elecom.2007.05.009  doi: 10.1016/j.elecom.2007.05.009

    51. [51]

      Tuttle, M. R.; Walter, C.; Brackman, E.; Moore, C. E.; Espe, M.; Rasik, C.; Adams, P.; Zhang, S. Chem. Sci. 2021, 12, 15253. doi: 10.1039/d1sc04231a  doi: 10.1039/d1sc04231a

    52. [52]

      Bugnon, L.; Morton, C. J.; Novak, P.; Vetter, J.; Nesvadba, P. Chem. Mater. 2007, 19, 2910. doi: 10.1021/cm063052h  doi: 10.1021/cm063052h

    53. [53]

      Oyaizu, K.; Kawamoto, T.; Suga, T.; Nishide, H. Macromolecules 2010, 43, 10382. doi: 10.1021/ma1020159  doi: 10.1021/ma1020159

    54. [54]

      Deng, W. W.; Shi, W. B.; Liu, Q. J.; Jiang, J. Y.; Wang, Q. L.; Guo, C. X. J. Power Sources 2020, 479, 228796. doi: 10.1016/j.jpowsour.2020.228796  doi: 10.1016/j.jpowsour.2020.228796

    55. [55]

      Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Macromol. Chem. Phys. 2009, 210, 1989. doi: 10.1002/macp.200900257  doi: 10.1002/macp.200900257

    56. [56]

      Chen, Q.; Nuli, Y. N.; Guo, W.; Yang, J.; Wang, J. L.; Guo, Y. G. Acta Phys.-Chim. Sin. 2013, 29, 2295.  doi: 10.3866/PKU.WHXB201309241

    57. [57]

      Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Nat. Commun. 2014, 5, 5335. doi: 10.1038/ncomms6335  doi: 10.1038/ncomms6335

    58. [58]

      Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H. Nat. Energy 2017, 2, 1. doi: 10.1038/nenergy.2017.74  doi: 10.1038/nenergy.2017.74

    59. [59]

      López-Herraiz, M.; Castillo-Martínez, E.; Carretero-González, J.; Carrasco, J.; Rojo, T.; Armand, M. Energy Environ. Sci. 2015, 8, 3233. doi: 10.1039/c5ee01832c  doi: 10.1039/c5ee01832c

    60. [60]

      Sun, G. C.; Yang, B. Z.; Chen, X. J.; Wei, Y. H.; Yin, G.; Zhang, H. P.; Liu, Q. Chem. Eng. J. 2022, 431, 134253. doi: 10.1016/j.cej.2021.134253  doi: 10.1016/j.cej.2021.134253

    61. [61]

      Mao, M. L.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X. L.; Cui, C. Y.; Yue, J. M.; Tong, Y. X.; Yang, G. J. Angew. Chem. Int. Ed. 2019, 58, 17820. doi: 10.1002/anie.201910916  doi: 10.1002/anie.201910916

    62. [62]

      Luo, W.; Allen, M.; Raju, V.; Ji, X. L. Adv. Energy Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554  doi: 10.1002/aenm.201400554

    63. [63]

      Luo, C.; Ji, X.; Hou, S.; Eidson, N.; Fan, X. L.; Liang, Y. J.; Deng, T.; Jiang, J. J.; Wang, C. S. Adv. Mater. 2018, 30, 1706498. doi: 10.1002/adma.201706498  doi: 10.1002/adma.201706498

    64. [64]

      Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J. J.; Chen, Z. H.; Ren, Y.; Amine, K. Angew. Chem. Int. Ed. 2018, 57, 2879. doi: 10.1002/anie.201713417  doi: 10.1002/anie.201713417

    65. [65]

      Liang, Y. J.; Luo, C.; Wang, F.; Hou, S.; Liou, S. C.; Qing, T. T.; Li, Q.; Zheng, J.; Cui, C. Y.; Wang, C. S. Adv. Energy Mater. 2019, 9, 1802986. doi: 10.1002/aenm.201802986  doi: 10.1002/aenm.201802986

    66. [66]

      Wei, J.; Zhang, P. B.; Shen, T. Y.; Liu, Y. Z.; Dai, T. F.; Tie, Z. X.; Jin, Z. ACS Energy Lett. 2022, 8, 762. doi: 10.1021/acsenergylett.2c02646  doi: 10.1021/acsenergylett.2c02646

    67. [67]

      Wang, W. K.; Zhang, Y. Y.; Wang, A. B.; Yu, Z. B.; Han, M. F.; Yang, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 47.  doi: 10.3866/PKU.WHXB20100105

    68. [68]

      Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Adv. Energy Mater. 2013, 3, 600. doi: 10.1002/aenm.201200947  doi: 10.1002/aenm.201200947

    69. [69]

      Zhao, L. B.; Gao, S. T.; He, R. X.; Shen, W.; Li, M. ChemSusChem 2018, 11, 1215. doi: 10.1002/cssc.201702344  doi: 10.1002/cssc.201702344

    70. [70]

      Liang, Y. L.; Zhang, P.; Chen, J. Chem. Sci. 2013, 4, 1330. doi: 10.1039/c3sc22093a  doi: 10.1039/c3sc22093a

    71. [71]

      Ohzuku, T.; Wakamatsu, H.; Takehara, Z.; Yoshizawa, S. Electrochim. Acta 1979, 24, 723. doi: 10.1016/0013-4686(79)87057-7  doi: 10.1016/0013-4686(79)87057-7

    72. [72]

      Han, X. Y.; Chang, C. Y.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Adv. Mater. 2007, 19, 1616. doi: 10.1002/adma.200602584  doi: 10.1002/adma.200602584

    73. [73]

      Kim, D. J.; Je, S. H.; Sampath, S.; Choi, J. W.; Coskun, A. RSC Adv. 2012, 2, 7968. doi: 10.1039/c2ra21239k  doi: 10.1039/c2ra21239k

    74. [74]

      Ito, T.; Shirakawa, H.; Ikeda, S. J. Polym. Sci. A-Polym. Chem. 1974, 12, 11. doi: 10.1002/pol.1974.170120102  doi: 10.1002/pol.1974.170120102

    75. [75]

      Novák, P.; Müller, K.; Santhanam, K.; Haas, O. Chem. Rev. 1997, 97, 207. doi: 10.1021/cr941181o  doi: 10.1021/cr941181o

    76. [76]

      Liao, H. P.; Ding, H. M.; Li, B. J.; Ai, X. P.; Wang, C. J. Mater. Chem. A 2014, 2, 8854. doi: 10.1039/c4ta00523f  doi: 10.1039/c4ta00523f

    77. [77]

      Guo, W.; Fu, Y. Z. Chem. Eur. J. 2020, 26, 13322. doi: 10.1002/chem.202000878  doi: 10.1002/chem.202000878

    78. [78]

      Wang, D. Y.; Guo, W.; Fu, Y. Z. Acc. Chem. Res. 2019, 52, 2290. doi: 10.1021/acs.accounts.9b00231  doi: 10.1021/acs.accounts.9b00231

    79. [79]

      Guo, W.; Wang, D. Y.; Chen, Q. L.; Fu, Y. Z. Adv. Sci. 2022, 9, 2103989. doi: 10.1002/advs.202103989  doi: 10.1002/advs.202103989

    80. [80]

      Qu, Z. Y.; Zhang, X. Y.; Xiao, R.; Sun, Z. H.; Li, F. Acta Phys. -Chim. Sin. 2023, 39, 2301019.  doi: 10.3866/PKU.WHXB202301019

    81. [81]

      Li, Y.; Wu, K. H.; Huang, N.; Dalapati, S.; Su, B. J.; Jang, L. Y.; Gentle, I. R.; Jiang, D. L.; Wang, D. W. Energy Storage Mater. 2018, 12, 30. doi: 10.1016/j.ensm.2017.11.007  doi: 10.1016/j.ensm.2017.11.007

    82. [82]

      Li, F. J.; Si, Y. B.; Li, Z. J.; Guo, W.; Fu, Y. Z. J. Mater. Chem. A 2020, 8, 87. doi: 10.1039/c9ta10611a  doi: 10.1039/c9ta10611a

    83. [83]

      Bhargav, A.; Ma, Y.; Shashikala, K.; Cui, Y.; Losovyj, Y.; Fu, Y. Z. J. Mater. Chem. A 2017, 5, 25005. doi: 10.1039/c7ta07460c  doi: 10.1039/c7ta07460c

    84. [84]

      Wang, D. Y.; Si, Y. B.; Guo, W.; Fu, Y. Z. Nat. Commun. 2021, 12, 3220. doi: 10.1038/s41467-021-23521-1  doi: 10.1038/s41467-021-23521-1

    85. [85]

      Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397. doi: 10.1002/adma.201203119  doi: 10.1002/adma.201203119

    86. [86]

      Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Energy Environ. Sci. 2017, 10, 2334. doi: 10.1039/c7ee01473b  doi: 10.1039/c7ee01473b

    87. [87]

      Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem. 2017, 19, 2980. doi: 10.1039/c7gc00849j  doi: 10.1039/c7gc00849j

    88. [88]

      Deunf, É.; Jiménez, P.; Guyomard, D.; Dolhem, F.; Poizot, P. Electrochem. Commun. 2016, 72, 64. doi: 10.1016/j.elecom.2016.09.002  doi: 10.1016/j.elecom.2016.09.002

    89. [89]

      Lee, M.; Hong, J.; Seo, D. H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Angew. Chem. Int. Ed. 2013, 52, 8322. doi: 10.1002/anie.201301850  doi: 10.1002/anie.201301850

    90. [90]

      Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Adv. Mater. 2014, 26, 2558. doi: 10.1002/adma.201305005  doi: 10.1002/adma.201305005

    91. [91]

      Son, E. J.; Kim, J. H.; Kim, K.; Park, C. B. J. Mater. Chem. A 2016, 4, 11179. doi: 10.1039/c6ta03123d  doi: 10.1039/c6ta03123d

    92. [92]

      Cui, C. Y.; Ji, X.; Wang, P. F.; Xu, G. L.; Chen, L.; Chen, J.; Kim, H.; Ren, Y.; Chen, F.; Yang, C. Y. ACS Energy Lett. 2019, 5, 224. doi: 10.1021/acsenergylett.9b02466  doi: 10.1021/acsenergylett.9b02466

    93. [93]

      Wang, J. Q.; Chen, C. S.; Zhang, Y. G. ACS Sustain. Chem. Eng. 2018, 6, 1772. doi: 10.1021/acssuschemeng.7b03165  doi: 10.1021/acssuschemeng.7b03165

    94. [94]

      Shimizu, A.; Tsujii, Y.; Kuramoto, H.; Nokami, T.; Inatomi, Y.; Hojo, N.; Yoshida, J. I. Energy Technol. 2014, 2, 155. doi: 10.1002/ente.201300148  doi: 10.1002/ente.201300148

    95. [95]

      Banda, H.; Damien, D.; Nagarajan, K.; Raj, A.; Hariharan, M.; Shaijumon, M. M. Adv. Energy Mater. 2017, 7, 1701316. doi: 10.1002/aenm.201701316  doi: 10.1002/aenm.201701316

    96. [96]

      Yokoji, T.; Matsubara, H.; Satoh, M. J. Mater. Chem. A 2014, 2, 19347. doi: 10.1039/c4ta02812k  doi: 10.1039/c4ta02812k

    97. [97]

      Zeng, R. H.; Xing, L. D.; Qiu, Y. C.; Wang, Y. T.; Huang, W. N.; Li, W. S.; Yang, S. H. Electrochim. Acta 2014, 146, 447. doi: 10.1016/j.electacta.2014.09.08  doi: 10.1016/j.electacta.2014.09.08

    98. [98]

      Hanyu, Y.; Sugimoto, T.; Ganbe, Y.; Masuda, A.; Honma, I. J. Electrochem. Soc. 2013, 161, A6. doi: 10.1149/2.015401jes  doi: 10.1149/2.015401jes

    99. [99]

      Hanyu, Y.; Honma, I. Sci. Rep. 2012, 2, 453. doi: 10.1038/srep00453  doi: 10.1038/srep00453

    100. [100]

      Lee, J.; Kim, H.; Park, M. J. Chem. Mater. 2016, 28, 2408. doi: 10.1021/acs.chemmater.6b00624  doi: 10.1021/acs.chemmater.6b00624

    101. [101]

      Li, Z. Y.; Jia, Q. Q.; Chen, Y.; Fan, K.; Zhang, C. Y.; Zhang, G. Q.; Xu, M.; Mao, M. L.; Ma, J.; Hu, W. P. Angew. Chem. Int. Ed. 2022, 61, e202207221. doi: 10.1002/anie.202207221  doi: 10.1002/anie.202207221

    102. [102]

      Shimizu, A.; Kuramoto, H.; Tsujii, Y.; Nokami, T.; Inatomi, Y.; Hojo, N.; Suzuki, H.; Yoshida, J. I. J. Power Sources 2014, 260, 211. doi: 10.1016/j.jpowsour.2014.03.027  doi: 10.1016/j.jpowsour.2014.03.027

    103. [103]

      Wan, W.; Lee, H.; Yu, X. Q.; Wang, C.; Nam, K. W.; Yang, X. Q.; Zhou, H. H. RSC Adv. 2014, 4, 19878. doi: 10.1039/c4ra01166j  doi: 10.1039/c4ra01166j

    104. [104]

      Hanyu, Y.; Ganbe, Y.; Honma, I. J. Power Sources 2013, 221, 186. doi: 10.1016/j.jpowsour.2012.08.040  doi: 10.1016/j.jpowsour.2012.08.040

    105. [105]

      Tang, M.; Zhu, S. L.; Liu, Z. T.; Jiang, C.; Wu, Y. C.; Li, H. Y.; Wang, B.; Wang, E. J.; Ma, J.; Wang, C. L. Chem 2018, 4, 2600. doi: 10.1016/j.chempr.2018.08.014  doi: 10.1016/j.chempr.2018.08.014

    106. [106]

      Chen, D. Y.; Avestro, A. J.; Chen, Z. H.; Sun, J. L.; Wang, S. J.; Xiao, M.; Erno, Z.; Algaradah, M. M.; Nassar, M. S.; Amine, K. Adv. Mater. 2015, 27, 2907. doi: 10.1002/adma.201405416  doi: 10.1002/adma.201405416

    107. [107]

      Yang, J. X.; Xiong, P. X.; Shi, Y. Q.; Sun, P. F.; Wang, Z. P.; Chen, Z. F.; Xu, Y. H. Adv. Funct. Mater. 2020, 30, 1909597. doi: 10.1002/adfm.201909597  doi: 10.1002/adfm.201909597

    108. [108]

      Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336  doi: 10.1021/jacs.5b00336

    109. [109]

      Sotomura, T.; Uemachi, H.; Takeyama, K.; Naoi, K.; Oyama, N. Electrochim. Acta 1992, 37, 1851. doi: 10.1016/0013-4686(92)85089-4  doi: 10.1016/0013-4686(92)85089-4

    110. [110]

      Tannai, H.; Tsuge, K.; Sasaki, Y.; Hatozaki, O.; Oyama, N. Dalton Trans. 2003, No. 11, 2353. doi: 10.1021/jp960774v  doi: 10.1021/jp960774v

    111. [111]

      Kaminaga, A.; Tatsuma, T.; Sotomura, T.; Oyama, N. J. Electrochem. Soc. 1995, 142, L47. doi: 10.1149/1.2044178  doi: 10.1149/1.2044178

    112. [112]

      Song, Z. P.; Qian, Y. M.; Gordin, M. L.; Tang, D. H.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. S.; Wang, D. H. Angew. Chem. 2015, 127, 14153. doi: 10.1002/anie.201506673  doi: 10.1002/anie.201506673

    113. [113]

      Sharma, P.; Damien, D.; Nagarajan, K.; Shaijumon, M. M.; Hariharan, M. J. Phys. Chem. Lett. 2013, 4, 3192. doi: 10.1021/jz4017359  doi: 10.1021/jz4017359

    114. [114]

      Shi, Y. Q.; Sun, P. F.; Yang, J. X.; Xu, Y. H. ChemSusChem 2020, 13, 334. doi: 10.1002/cssc.201902966  doi: 10.1002/cssc.201902966

    115. [115]

      Sang, P. F.; Si, Y. B.; Fu, Y. Z. Chem. Commun. 2019, 55, 4857. doi: 10.1039/c9cc01495k  doi: 10.1039/c9cc01495k

    116. [116]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411  doi: 10.1126/science.1120411

    117. [117]

      Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Adv. Energy Mater. 2020, 10, 1904199. doi: 10.1002/aenm.201904199  doi: 10.1002/aenm.201904199

    118. [118]

      Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M. Adv. Energy Mater. 2022, 12, 2100177. doi: 10.1002/aenm.202100177  doi: 10.1002/aenm.202100177

    119. [119]

      Cao, Y.; Wang, M. D.; Wang, H. J.; Han, C. Y.; Pan, F. S.; Sun, J. Adv. Energy Mater. 2022, 12, 2200057. doi: 10.1002/aenm.202200057  doi: 10.1002/aenm.202200057

    120. [120]

      Zou, J. C.; Fan, K.; Chen, Y.; Hu, W. P.; Wang, C. L. Coord. Chem. Rev. 2022, 458, 214431. doi: 10.1016/j.ccr.2022.214431  doi: 10.1016/j.ccr.2022.214431

    121. [121]

      Sun, Y. H.; Gao, M. D; Li, H.; Xu, L.; Xue, Q.; Wang, X. R.; Bai, Y.; Wu, C. Acta Phys. -Chim. Sin. 2021, 37, 2007048.  doi: 10.3866/PKU.WHXB202007048

    122. [122]

      Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. J. Am. Chem. Soc. 2017, 139, 4258. doi: 10.1021/jacs.7b02648  doi: 10.1021/jacs.7b02648

    123. [123]

      Ramanathan, V.; Ogale, S.; Haldar, S.; Kushwaha, R.; Roy, K. Adv. Energy Mater. 2019, 9, 1902428. doi: 10.1002/aenm.201902428  doi: 10.1002/aenm.201902428

    124. [124]

      Vitaku, E.; Gannett, C. N.; Carpenter, K. L.; Shen, L.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2019, 142, 16. doi: 10.1021/jacs.9b08147  doi: 10.1021/jacs.9b08147

    125. [125]

      Singh, V.; Kim, J.; Kang, B.; Moon, J.; Kim, S.; Kim, W. Y.; Byon, H. R. Adv. Energy Mater. 2021, 11, 2003735. doi: 10.1002/aenm.202003735  doi: 10.1002/aenm.202003735

    126. [126]

      Gao, H.; Neale, A. R.; Zhu, Q.; Bahri, M.; Wang, X.; Yang, H. F.; Xu, Y. J.; Clowes, R.; Browning, N. D.; Little, M. A. J. Am. Chem. Soc. 2022, 144, 9434. doi: 10.1021/jacs.2c02196  doi: 10.1021/jacs.2c02196

    127. [127]

      Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. Adv. Mater. 2019, 31, 1901640. doi: 10.1002/adma.201901640  doi: 10.1002/adma.201901640

    128. [128]

      Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Adv. Energy Mater. 2019, 9, 1801010. doi: 10.1002/aenm.201801010  doi: 10.1002/aenm.201801010

    129. [129]

      Wang, Z. Q.; Gu, S. A.; Cao, L. J.; Kong, L.; Wang, Z. Y.; Qin, N.; Li, M. Q.; Luo, W.; Chen, J. J.; Wu, S. S. ACS Appl. Mater. Interfaces 2020, 13, 514. doi: 10.1021/acsami.0c17692  doi: 10.1021/acsami.0c17692

    130. [130]

      Wu, M. M.; Zhao, Y.; Sun, B. Q.; Sun, Z. H.; Li, C. X.; Han, Y.; Xu, L. Q; Ge, Z.; Ren, Y. X; Zhang, M. T. Nano Energy 2020, 70, 104498. doi: 10.1016/j.nanoen.2020.104498  doi: 10.1016/j.nanoen.2020.104498

    131. [131]

      Li, S. W.; Liu, Y. Z.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. F. Energy Storage Mater. 2022, 48, 439. doi: 10.1016/j.ensm.2022.03.033  doi: 10.1016/j.ensm.2022.03.033

    132. [132]

      Xu, F.; Jin, S. B.; Zhong, H.; Wu, D. C.; Yang, X. Q.; Chen, X.; Wei, H.; Fu, R. W; Jiang, D. J. Sci. Rep. 2015, 5, 8225. doi: 10.1038/srep08225  doi: 10.1038/srep08225

    133. [133]

      Yoo, J.; Cho, S. J.; Jung, G. Y.; Kim, S. H.; Choi, K. H.; Kim, J. H.; Lee, C. K.; Kwak, S. K.; Lee, S. Y. Nano Lett. 2016, 16, 3292. doi: 10.1021/acs.nanolett.6b00870  doi: 10.1021/acs.nanolett.6b00870

    134. [134]

      Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 9443. doi: 10.1002/anie.201805540  doi: 10.1002/anie.201805540

    135. [135]

      Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M.; Berger, R.; Feng, X. L. Adv. Mater. 2019, 31, 1901478. doi: 10.1002/adma.201901478  doi: 10.1002/adma.201901478

    136. [136]

      Wang, Z. L.; Li, Y. J.; Liu, P. J.; Qi, Q. Y.; Zhang, F.; Lu, G. L.; Zhao, X.; Huang, X. Y. Nanoscale 2019, 11, 5330. doi: 10.1039/c9nr00088g  doi: 10.1039/c9nr00088g

    137. [137]

      Schon, T. B.; Tilley, A. J.; Kynaston, E. L.; Seferos, D. S. ACS Appl. Mater. Interfaces 2017, 9, 15631. doi: 10.1021/acsami.7b02336  doi: 10.1021/acsami.7b02336

    138. [138]

      Xu, S. Q.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W. B.; Zhuang, X. D.; Brunner, E.; Heine, T.; Berger, R. Angew. Chem. 2019, 131, 859. doi: 10.1002/ange.201812685  doi: 10.1002/ange.201812685

    139. [139]

      Yang, D. H.; Yao, Z. Q.; Wu, D. H.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. J. Mater. Chem. A 2016, 4, 18621. doi: 10.1039/c6ta07606h  doi: 10.1039/c6ta07606h

    140. [140]

      Zhu, Z. Q.; Chen, J. J. Electrochem. Soc. 2015, 162, A2393. doi: 10.1149/2.0031514jes  doi: 10.1149/2.0031514jes

    141. [141]

      Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576. doi: 10.1038/s41467-018-02889-7  doi: 10.1038/s41467-018-02889-7

    142. [142]

      Narayan, R.; Blagojević, A.; Mali, G.; Vélez Santa, J. F.; Bitenc, J.; Randon-Vitanova, A.; Dominko, R. Chem. Mater. 2022, 34, 6378. doi: 10.1021/acs.chemmater.2c00862  doi: 10.1021/acs.chemmater.2c00862

    143. [143]

      Wu, H. P.; Yang, Q.; Meng, Q. H.; Ahmad, A.; Zhang, M.; Zhu, L. Y.; Liu, Y. G.; Wei, Z. X. J. Mater. Chem. A 2016, 4, 2115. doi: 10.1039/c5ta07246h  doi: 10.1039/c5ta07246h

    144. [144]

      Wu, H. P.; Wang, K.; Meng, Y. N.; Lu, K.; Wei, Z. X. J. Mater. Chem. A 2013, 1, 6366. doi: 10.1039/c3ta10473g  doi: 10.1039/c3ta10473g

    145. [145]

      Wang, J. H.; Liu, Z. L.; Wang, H. G.; Cui, F. C.; Zhu, G. S. Chem. Eng. J. 2022, 450, 138051. doi: 10.1016/j.cej.2022.138051  doi: 10.1016/j.cej.2022.138051

    146. [146]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang, Y. S.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    147. [147]

      Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Adv. Mater. 2012, 24, 5979. doi: 10.1002/adma.201201587  doi: 10.1002/adma.201201587

    148. [148]

      Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Chem. Rev. 2014, 114, 7150. doi: 10.1021/cr500023c  doi: 10.1021/cr500023c

    149. [149]

      Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Adv. Mater. 2014, 26, 849. doi: 10.1002/adma.201303115  doi: 10.1002/adma.201303115

    150. [150]

      Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501  doi: 10.1126/science.1246501

    151. [151]

      Zhang, S. Q.; Zhao, W. T.; Li, H.; Xu, Q. ChemSusChem 2020, 13, 188. doi: 10.1002/cssc.201902697  doi: 10.1002/cssc.201902697

    152. [152]

      Xiao, Z. Y.; Xiang, G. Q.; Zhang, Q.; Wang, Y. L.; Yang, Y. K. Energy Environ. Mater. 2022. doi: 10.1002/eem2.12399  doi: 10.1002/eem2.12399

    153. [153]

      Ai, W.; Zhou, W. W.; Du, Z. Z.; Sun, C. C.; Yang, J.; Chen, Y.; Sun, Z. P.; Feng, S.; Zhao, J. F.; Dong, X. C. Adv. Funct. Mater. 2017, 27, 1603603. doi: 10.1002/adfm.201603603  doi: 10.1002/adfm.201603603

    154. [154]

      Wang, Y.; Kretschmer, K.; Zhang, J. Q.; Mondal, A. K.; Guo, X.; Wang, G. X. RSC Adv. 2016, 6, 57098. doi: 10.1039/c6ra11809g  doi: 10.1039/c6ra11809g

    155. [155]

      Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Nano Lett. 2012, 12, 2205. doi: 10.1021/nl2039666  doi: 10.1021/nl2039666

    156. [156]

      Li, L.; Zuo, Z. C.; Wang, F.; Gao, J. C.; Cao, A.; He, F.; Li, Y. L. Adv. Mater. 2020, 32, 2000140. doi: 10.1002/adma.202000140  doi: 10.1002/adma.202000140

    157. [157]

      Gao, H.; Tian, B. B.; Yang, H. F.; Neale, A. R.; Little, M. A.; Sprick, R. S.; Hardwick, L. J.; Cooper, A. I. ChemSusChem 2020, 13, 5571. doi: 10.1002/cssc.202001389  doi: 10.1002/cssc.202001389

    158. [158]

      Li, H.; Duan, W. C.; Zhao, Q.; Cheng, F. Y.; Liang, J.; Chen, J. Inorg. Chem. Front. 2014, 1, 193. doi: 10.1039/c3qi00076a  doi: 10.1039/c3qi00076a

    159. [159]

      Kim, H.; Kwon, J. E.; Lee, B.; Hong, J.; Lee, M.; Park, S. Y.; Kang, K. Chem. Mater. 2015, 27, 7258. doi: 10.1021/acs.chemmater.5b02569  doi: 10.1021/acs.chemmater.5b02569

    160. [160]

      Mirle, C.; Medabalmi, V.; Ramanujam, K. ACS Appl. Energy Mater. 2021, 4, 1218. doi: 10.1021/acsaem.0c02511  doi: 10.1021/acsaem.0c02511

    161. [161]

      Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Nano Lett. 2013, 13, 4404. doi: 10.1021/nl402239p  doi: 10.1021/nl402239p

    162. [162]

      Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Nano Lett. 2016, 16, 3329. doi: 10.1021/acs.nanolett.6b00954  doi: 10.1021/acs.nanolett.6b00954

    163. [163]

      Luo, C.; Huang, R. M.; Kevorkyants, R.; Pavanello, M.; He, H. X.; Wang, C. S. Nano Lett. 2014, 14, 1596. doi: 10.1021/nl500026j  doi: 10.1021/nl500026j

    164. [164]

      Xu, F.; Chen, X.; Tang, Z. W.; Wu, D. C.; Fu, R. W.; Jiang, D. L. Chem. Commun. 2014, 50, 4788. doi: 10.1039/c4cc01002g  doi: 10.1039/c4cc01002g

    165. [165]

      Zhang, C.; He, Y. W.; Mu, P.; Wang, X.; He, Q.; Chen, Y.; Zeng, J. H.; Wang, F.; Xu, Y. H.; Jiang, J. X. Adv. Funct. Mater. 2018, 28, 1705432. doi: 10.1002/adfm.201705432  doi: 10.1002/adfm.201705432

    166. [166]

      Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Adv. Energy Mater. 2015, 5, 1402189. doi: 10.1002/aenm.201402189  doi: 10.1002/aenm.201402189

    167. [167]

      Xie, J.; Rui, X. H.; Gu, P. Y.; Wu, J. S.; Xu, Z. J.; Yan, Q. Y.; Zhang, Q. C. ACS Appl. Mater. Interfaces 2016, 8, 16932. doi: 10.1021/acsami.6b04277  doi: 10.1021/acsami.6b04277

    168. [168]

      Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Angew. Chem. Int. Ed. 2015, 54, 7354. doi: 10.1002/anie.201503072  doi: 10.1002/anie.201503072

    169. [169]

      Kapaev, R. R.; Shestakov, A. F.; Vasil'ev, S. G.; Stevenson, K. J. ACS Appl. Energy Mater. 2021, 4, 10423. doi: 10.1021/acsaem.1c01970  doi: 10.1021/acsaem.1c01970

    170. [170]

      Gu, S.; Wu, S. F.; Cao, L. J.; Li, M. C.; Qin, N.; Zhu, J.; Wang, Z. Q.; Li, Y. Z.; Li, Z. Q.; Chen, J. J. J. Am. Chem. Soc. 2019, 141, 9623. doi: 10.1021/jacs.9b03467  doi: 10.1021/jacs.9b03467

    171. [171]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952. doi: 10.1021/ja408243n  doi: 10.1021/ja408243n

    172. [172]

      Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. Adv. Energy Mater. 2018, 8, 1702170. doi: 10.1002/aenm.201702170  doi: 10.1002/aenm.201702170

    173. [173]

      Zhang, Y. R.; Wang, W. B.; Hou, M. L.; Zhang, Y. T.; Dou, Y. Y.; Yang, Z. H.; Xu, X. Y.; Liu, H. N.; Qiao, S. L. Energy Storage Mater. 2022, 47, 376. doi: 10.1016/j.ensm.2022.02.029  doi: 10.1016/j.ensm.2022.02.029

    174. [174]

      Xu, Z. X.; Li, M.; Sun, W. Y.; Tang, T.; Lu, J.; Wang, X. L. Adv. Mater. 2022, 34, 2200077. doi: 10.1002/adma.202200077  doi: 10.1002/adma.202200077

    175. [175]

      Wang, Y. Q.; Bai, P. X.; Li, B. F.; Zhao, C.; Chen, Z. F.; Li, M. J.; Su, H.; Yang, J. X.; Xu, Y. H. Adv. Energy Mater. 2021, 11, 2101972. doi: 10.1002/aenm.202101972  doi: 10.1002/aenm.202101972

    176. [176]

      Luo, C.; Ji, X.; Chen, J.; Gaskell, K. J.; He, X. Z.; Liang, Y. J.; Jiang, J. J.; Wang, C. S. Angew. Chem. 2018, 130, 8703. doi: 10.1002/anie.201804068  doi: 10.1002/anie.201804068

    177. [177]

      Wang, H.; An, H. W.; Shan, H. M.; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 37, 2007070.  doi: 10.3866/PKU.WHXB202007070

    178. [178]

      Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys.-Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    179. [179]

      Cui, D. M.; Tian, D.; Chen, S. S.; Yuan, L. J. J. Mater. Chem. A 2016, 4, 9177. doi: 10.1039/c6ta02880b  doi: 10.1039/c6ta02880b

    180. [180]

      Shi, Y. Q.; Yang, J. K.; Yang, J. X.; Wang, Z. P.; Chen, Z. F.; Xu, Y. H. Adv. Funct. Mater. 2022, 32, 2111307. doi: 10.1002/adfm.202111307  doi: 10.1002/adfm.202111307

    181. [181]

      Kim, J.; Elabd, A.; Chung, S. Y.; Coskun, A.; Choi, J. W. Chem. Mater. 2020, 32, 4185. doi: 10.1021/acs.chemmater.0c00246  doi: 10.1021/acs.chemmater.0c00246

    182. [182]

      Sang, P. F.; Song, J. H.; Guo, W.; Fu, Y. Z. Chem. Eng. J. 2021, 415, 129043. doi: 10.1016/j.cej.2021.129043  doi: 10.1016/j.cej.2021.129043

    183. [183]

      Luo, C.; Wang, J. J.; Fan, X. L.; Zhu, Y. J.; Han, F. D.; Suo, L. M.; Wang, C. S. Nano Energy 2015, 13, 537. doi: 10.1016/j.nanoen.2015.03.041  doi: 10.1016/j.nanoen.2015.03.041

    184. [184]

      Lyu, H. L.; Liu, J. R.; Mahurin, S.; Dai, S.; Guo, Z. H.; Sun, X. G. J. Mater. Chem. A 2017, 5, 24083. doi: 10.1039/c7ta07893e  doi: 10.1039/c7ta07893e

    185. [185]

      Kim, J. K.; Thébault, F.; Heo, M. Y.; Kim, D. S.; Hansson, Ö.; Ahn, J. H.; Johansson, P.; Öhrström, L.; Matic, A.; Jacobsson, P. Electrochem. Commun. 2012, 21, 50. doi: 10.1016/j.elecom.2012.05.016  doi: 10.1016/j.elecom.2012.05.016

    186. [186]

      Zhang, Y.; Gao, P. P.; Guo, X. Y.; Chen, H.; Zhang, R. Q.; Du, Y.; Wang, B. F.; Yang, H. S. RSC Adv. 2020, 10, 16732. doi: 10.1039/d0ra01312a  doi: 10.1039/d0ra01312a

    187. [187]

      Zhang, X. Y.; Xu, Q. H.; Wang, S. J.; Tang, Y. C.; Huang, X. B. ACS Appl. Energy Mater. 2021, 4, 11787. doi: 10.1021/acsaem.1c02556  doi: 10.1021/acsaem.1c02556

    188. [188]

      Rodríguez-Pérez, I. A.; Jian, Z. L.; Waldenmaier, P. K.; Palmisano, J. W.; Chandrabose, R. S.; Wang, X. F.; Lerner, M. M.; Carter, R. G.; Ji, X. L. ACS Energy Lett. 2016, 1, 719. doi: 10.1021/acsenergylett.6b00300  doi: 10.1021/acsenergylett.6b00300

    189. [189]

      Katsuyama, Y.; Kobayashi, H.; Iwase, K.; Gambe, Y.; Honma, I. Adv. Sci. 2022, 9, 2200187. doi: 10.1002/advs.202200187  doi: 10.1002/advs.202200187

    190. [190]

      Lu, Y.; Chen, J. Nat. Rev. Chem. 2020, 4, 127. doi: 10.1038/s41570-020-0160-9  doi: 10.1038/s41570-020-0160-9

    191. [191]

      Lyu, H. L.; Li, P. P.; Liu, J. R.; Mahurin, S.; Chen, J. H.; Hensley, D. K.; Veith, G. M.; Guo, Z. H.; Dai, S.; Sun, X. G. ChemSusChem 2018, 11, 763. doi: 10.1002/cssc.201702001  doi: 10.1002/cssc.201702001

    192. [192]

      Wang, X. X.; Tang, W.; Hu, Y.; Liu, W. Q.; Yan, Y. C.; Xu, L.; Fan, C. Green Chem. 2021, 23, 6090. doi: 10.1039/D1GC01927A  doi: 10.1039/D1GC01927A

    193. [193]

      Lu, Y.; Cai, Y. C.; Zhang, Q.; Chen, J. Adv. Mater. 2022, 34, 2104150. doi: 10.1002/adma.202104150  doi: 10.1002/adma.202104150

    194. [194]

      Kim, H.; Seo, D. H.; Yoon, G.; Goddard Ⅲ, W. A.; Lee, Y. S.; Yoon, W. S.; Kang, K. J. Phys. Chem. Lett. 2014, 5, 3086. doi: 10.1021/jz501557n  doi: 10.1021/jz501557n

    195. [195]

      Iordache, A.; Delhorbe, V.; Bardet, M.; Dubois, L.; Gutel, T.; Picard, L. ACS Appl. Mater. Interfaces 2016, 8, 22762. doi: 10.1021/acsami.6b07591  doi: 10.1021/acsami.6b07591

    196. [196]

      Shestakov, A. F.; Yarmolenko, O. V.; Ignatova, A. A.; Mumyatov, A. V.; Stevenson, K. J.; Troshin, P. A. J. Mater. Chem. A 2017, 5, 6532. doi: 10.1039/c6ta10520c  doi: 10.1039/c6ta10520c

    197. [197]

      Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Energies 2017, 10, 1314. doi: 10.3390/en10091314  doi: 10.3390/en10091314

    198. [198]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    199. [199]

      Patry, G.; Romagny, A.; Martinet, S.; Froelich, D. Energy Sci. Eng. 2015, 3, 71. doi: 10.1002/ese3.47  doi: 10.1002/ese3.47

    200. [200]

      Chen, M.; Liu, L.; Zhang, P. Y.; Chen, H. N. RSC Adv. 2021, 11, 24429. doi: 10.1039/d1ra03068j  doi: 10.1039/d1ra03068j

    201. [201]

      Qin, K. Q.; Tan, S.; Mohammadiroudbari, M.; Yang, Z. Z.; Yang, X. Q.; Hu, E. Y.; Luo, C. Nano Energy 2022, 101, 107554. doi: 10.1016/j.nanoen.2022.107554  doi: 10.1016/j.nanoen.2022.107554

    202. [202]

      Molina, A.; Patil, N.; Ventosa, E.; Liras, M.; Palma, J.; Marcilla, R. ACS Energy Lett. 2020, 5, 2945. doi: 10.1021/acsenergylett.0c01577  doi: 10.1021/acsenergylett.0c01577

    203. [203]

      Wang, J. Q.; Tee, K.; Lee, Y.; Riduan, S. N.; Zhang, Y. G. J. Mater. Chem. A 2018, 6, 2752. doi: 10.1039/c7ta10232a  doi: 10.1039/c7ta10232a

    204. [204]

      Wilkinson, D.; Bhosale, M.; Amores, M.; Naresh, G.; Cussen, S. A.; Cooke, G. ACS Appl. Energy Mater. 2021, 4, 12084. doi: 10.1021/acsaem.1c01339  doi: 10.1021/acsaem.1c01339

    205. [205]

      Song, Z. P.; Qian, Y. M.; Zhang, T.; Otani, M.; Zhou, H. S. Adv. Sci. 2015, 2, 1500124. doi: 10.1002/advs.201500124  doi: 10.1002/advs.201500124

    206. [206]

      Zhao, J. H.; Kang, T.; Chu, Y. L.; Chen, P.; Jin, F.; Shen, Y. B.; Chen, L. W. Nano Res. 2019, 12, 1355. doi: 10.1007/s12274-019-2306-y  doi: 10.1007/s12274-019-2306-y

    207. [207]

      Wang, J. Q.; Lee, Y.; Tee, K.; Riduan, S. N.; Zhang, Y. G Chem. Commun. 2018, 54, 7681. doi: 10.1039/c8cc03801e  doi: 10.1039/c8cc03801e

    208. [208]

      Shi, R. J.; Liu, L. J.; Lu, Y.; Wang, C. C.; Li, Y. X.; Li, L.; Yan, Z. H.; Chen, J. Nat. Commun. 2020, 11, 178. doi: 10.1038/s41467-019-13739-5  doi: 10.1038/s41467-019-13739-5

    209. [209]

      Tie, Z. W.; Liu, L. J.; Deng, S. Z.; Zhao, D. B.; Niu, Z. Q. Angew. Chem. 2020, 132, 4950. doi: 10.1002/anie.201916529  doi: 10.1002/anie.201916529

    210. [210]

      Chen, X. J.; Su, H. Q.; Yang, B. Z.; Yin, G.; Liu, Q. Sustain. Energy Fuels 2022, 6, 2523. doi: 10.1039/d2se00310d  doi: 10.1039/d2se00310d

    211. [211]

      Zhang, C.; Ma, W. Y.; Han, C. Z.; Luo, L. W.; Daniyar, A.; Xiang, S. H.; Wu, X. Y.; Ji, X. L.; Jiang, J. X. Energy Environ. Sci. 2021, 14, 462. doi: 10.1039/d0ee03356a  doi: 10.1039/d0ee03356a

    212. [212]

      Ma, D. X.; Zhao, H. M.; Cao, F.; Zhao, H. H.; Li, J. X.; Wang, L.; Liu, K. Chem. Sci. 2022, 13, 2385. doi: 10.1039/d1sc06412f  doi: 10.1039/d1sc06412f

    213. [213]

      Tie, Z. W.; Zhang, Y.; Zhu, J. C.; Bi, S. S.; Niu, Z. Q. J. Am. Chem. Soc. 2022, 144, 10301. doi: 10.1021/jacs.2c01485  doi: 10.1021/jacs.2c01485

    214. [214]

      Chen, J.; Li, L. D.; Cheng, Y. H.; Huang, Y.; Chen, C. Int. J. Hydrogen Energy 2022, 47, 16025. doi: 10.1016/j.ijhydene.2022.03.100  doi: 10.1016/j.ijhydene.2022.03.100

    215. [215]

      Zhang, H.; Qu, Z.; Tang, H. M.; Wang, X.; Koehler, R.; Yu, M. H.; Gerhard, C.; Yin, Y.; Zhu, M. S.; Zhang, K. ACS Energy Lett. 2021, 6, 2491. doi: 10.1021/acsenergylett.1c00768  doi: 10.1021/acsenergylett.1c00768

    216. [216]

      Cai, S. C.; Meng, Z. H.; Cheng, Y. P.; Zhu, Z. Y.; Chen, Q. Q.; Wang, P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Electrochim. Acta 2021, 395, 139074. doi: 10.1016/j.electacta.2021.139074  doi: 10.1016/j.electacta.2021.139074

    217. [217]

      Zhu, Z. H.; Yu, B.; Sun, W. W.; Chen, S. Q.; Wang, Y.; Li, X. P.; Lv, L. P. J. Power Sources 2022, 542, 231583. doi: 10.1016/j.jpowsour.2022.231583  doi: 10.1016/j.jpowsour.2022.231583

    218. [218]

      Guo, Z. W.; Ma, Y. Y.; Dong, X. L.; Huang, J. H.; Wang, Y. G.; Xia, Y. Y. Angew. Chem. 2018, 130, 11911. doi: 10.1002/anie.201807121  doi: 10.1002/anie.201807121

    219. [219]

      Wang, J. Q.; Liu, J.; Hu, M. M.; Zeng, J.; Mu, Y. B.; Guo, Y.; Yu, J.; Ma, X.; Qiu, Y. J.; Huang, Y. J. Mater. Chem. A 2018, 6, 11113. doi: 10.1039/c8ta03143f  doi: 10.1039/c8ta03143f

    220. [220]

      Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Adv. Mater. 2015, 27, 6504. doi: 10.1002/adma.201502241  doi: 10.1002/adma.201502241

    221. [221]

      Dong, F.; Peng, C. X.; Xu, H. Y.; Zheng, Y. X.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. ACS Nano 2021, 15, 20287. doi: 10.1021/acsnano.1c08449  doi: 10.1021/acsnano.1c08449

    222. [222]

      Wang, Y.; Jiang, H. D.; Zheng, R. Z.; Pan, J. B.; Niu, J. L.; Zou, X. L.; Jia, C. Y. J. Mater. Chem. A 2020, 8, 12799. doi: 10.1039/D0TA04203J  doi: 10.1039/D0TA04203J

    223. [223]

      Li, G. P.; Zhang, B. J.; Wang, J. W.; Zhao, H. Y.; Ma, W. Q.; Xu, L. T.; Zhang, W. D.; Zhou, K.; Du, Y. P.; He, G. Angew. Chem. 2019, 131, 8556. doi: 10.1002/anie.201903152  doi: 10.1002/anie.201903152

    224. [224]

      Khayum, A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Chem. Sci. 2019, 10, 8889. doi: 10.1039/C9SC03052B  doi: 10.1039/C9SC03052B

    225. [225]

      Jin, Z. X.; Cheng, Q.; Evans, A. M.; Gray, J.; Zhang, R. W.; Bao, S. T.; Wei, F. K.; Venkataraman, L.; Yang, Y.; Nuckolls, C. Chem. Sci. 2022, 13, 3533. doi: 10.1039/D1SC07157B  doi: 10.1039/D1SC07157B

    226. [226]

      Wang, Y. Q.; Yang, Z. X.; Xia, T. L.; Pan, G. X.; Zhang, L.; Chen, H.; Zhang, J. H. ChemElectroChem 2019, 6, 5080. doi: 10.1002/celc.201901267  doi: 10.1002/celc.201901267

    227. [227]

      Yu, Q. H.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S. H.; Lai, H. H.; Xu, L.; Fan, C. Chem. Eng. J. 2021, 415, 128509. doi: 10.1016/j.cej.2021.128509  doi: 10.1016/j.cej.2021.128509

    228. [228]

      Liu, W. Q.; Tang, W.; Zhang, X. P.; Hu, Y.; Wang, X. X.; Yan, Y. C.; Xu, L.; Fan, C. Int. J. Hydrogen Energy 2021, 46, 36801. doi: 10.1016/j.ijhydene.2021.08.203  doi: 10.1016/j.ijhydene.2021.08.203

    229. [229]

      Lu, Y.; Zhang, Q.; Li, F. J.; Chen, J. Angew. Chem. 2023, 135, e202216047. doi: 10.1002/anie.202216047  doi: 10.1002/anie.202216047

    230. [230]

      Zhou, G. Y.; Miao, Y. E.; Wei, Z. X.; Mo, L. L.; Lai, F. L.; Wu, Y.; Ma, J. M.; Liu, T. X. Adv. Funct. Mater. 2018, 28, 1804629. doi: 10.1002/adfm.201804629  doi: 10.1002/adfm.201804629

    231. [231]

      Ma, L.; Lu, D.; Yang, P.; Xi, X.; Liu, R. L.; Wu, D. Q. Electrochim. Acta 2019, 319, 201. doi: 10.1016/j.electacta.2019.06.153  doi: 10.1016/j.electacta.2019.06.153

    232. [232]

      Wang, B.; Wang, H.; Chen, W. X.; Wu, P. F.; Bu, L. H.; Zhang, L.; Wan, L. Z. J. Colloid Interface Sci. 2020, 572, 1. doi: 10.1016/j.jcis.2020.03.047  doi: 10.1016/j.jcis.2020.03.047

    233. [233]

      Wu, D. Q.; Lu, D.; Yang, P.; Ma, L.; Jiang, B.; Xi, X.; Meng, F. C.; Zhang, W. B.; Zhang, F.; Zhong, Q. Q. Chin. J. Polym. Sci. 2020, 38, 540. doi: 10.1007/s10118-020-2388-8  doi: 10.1007/s10118-020-2388-8

    234. [234]

      Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984. doi: 10.1021/ja9024897  doi: 10.1021/ja9024897

    235. [235]

      Jouhara, A.; Dupré, N.; Gaillot, A. C.; Guyomard, D.; Dolhem, F.; Poizot, P. Nat. Commun. 2018, 9, 4401. doi: 10.1038/s41467-018-06708-x  doi: 10.1038/s41467-018-06708-x

    236. [236]

      Lakraychi, A. E.; Deunf, E.; Fahsi, K.; Jimenez, P.; Bonnet, J. P.; Djedaini-Pilard, F.; Bécuwe, M.; Poizot, P.; Dolhem, F. J. Mater. Chem. A 2018, 6, 19182. doi: 10.1039/C8TA07097K  doi: 10.1039/C8TA07097K

    237. [237]

      Deng, W. W.; Shi, W. B.; Li, P. Y.; Hu, N. Q.; Wang, S. C.; Wang, J. Y.; Liu, L.; Shi, Z. Z.; Lin, J.; Guo, C. X. Energy Storage Mater. 2022, 46, 535. doi: 10.1016/j.ensm.2022.01.039  doi: 10.1016/j.ensm.2022.01.039

    238. [238]

      Wang, J. D.; Guo, X. L.; Apostol, P.; Liu, X. L.; Robeyns, K.; Gence, L.; Morari, C.; Gohy, J. F.; Vlad, A. Energy Environ. Sci. 2022, 15, 3923. doi: 10.1039/D2EE00566B  doi: 10.1039/D2EE00566B

  • 加载中
    1. [1]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    7. [7]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    10. [10]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Jian He Dinglin Zhang Liping Wu Ying Bao Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(8)
  • Abstract views(573)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return