Citation: Wang Wang, Yucheng Liu, Shengli Chen. Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230305. doi: 10.3866/PKU.WHXB202303059 shu

Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability

  • Corresponding author: Shengli Chen, slchen@whu.edu.cn
  • Received Date: 31 March 2023
    Revised Date: 28 April 2023
    Accepted Date: 8 May 2023
    Available Online: 19 May 2023

    Fund Project: the National Natural Science Foundation of China 22102121the National Natural Science Foundation of China 21832004the China National Postdoctoral Program for Innovative Talents BX20200253

  • In recent decades, the oxygen evolution reaction (OER) has attracted significant attention because of its critical role in energy storage and conversion technologies. This reaction requires highly efficient catalysts such as IrO2 and RuO2 to accelerate its slow reaction rate. Among existing developed low-cost materials, NiFe layered double hydroxides (NiFe LDH) have demonstrated great potential for use in OERs in alkaline electrolytes with low overpotential (200–300 mV at 10 mA∙cm−2). Extensive efforts have been devoted to developing efficient electrocatalysts based on NiFe LDHs; Further reducing their overpotential can be a challenging task. To overcome this bottleneck, it is necessary to clearly identify the catalytic mechanism and active sites and finding new solutions to obtain catalysts with ultra-low overpotential. Through this review, we thoroughly examined the structure, composition, and development history of NiFe LDHs. Despite the extensive investigation of the catalytic active sites and mechanism, it still remains elusive and controversial. Herein, existing studies that have aimed to elucidate the catalytic sites are presented and comprehensively analyzed, providing an insightful understanding of the catalytic mechanism and active sites of NiFe LDHs. Additionally, various strategies, such as heteroatom doping and the introduction of vacancies, have been proposed to enhance the catalytic activities of these materials. Considering the electronic and geometrical structures of NiFe LDHs, this review summarizes and categorizes activity enhancement methods based on different enhancement mechanisms, offering new insights and directions for developing high-performance NiFe LDH-based catalysts. Furthermore, despite being crucial to the practical use of the catalyst, catalyst stability is often overlooked, especially under technological conditions such as high current densities. Recent works have suggested that NiFe LDH-based catalysts suffer severe activity fading under high current densities after a short period of operation. It is important to update recent research on the stability of these catalysts. This review emphasizes the stability issues of NiFe LDH-based catalysts to draw more attention toward research and analyses related to the decay mechanisms of these catalysts. We have summarized and discussed the recent strategies that have been proposed to reduce the stability problem developed based on these decay mechanisms. Finally, the review concludes with a discussion of possible directions for producing NiFe LDHs with extraordinary catalytic activities and stabilities.
  • 加载中
    1. [1]

      She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    2. [2]

      Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197  doi: 10.1126/science.1103197

    3. [3]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    4. [4]

      Ni, Z.; Luo, C.; Cheng, B.; Kuang, P.; Li, Y.; Yu, J. Appl. Catal. B-Environ. 2023, 321, 122072. doi: 10.1016/j.apcatb.2022.122072  doi: 10.1016/j.apcatb.2022.122072

    5. [5]

      Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. eScience 2023, 3, 100111. doi: 10.1016/j.esci.2023.100111  doi: 10.1016/j.esci.2023.100111

    6. [6]

      Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F.; Zhang, Q.; Gu, L.; Cao, J.; Li, L.; Haw, S.; et al. Chem 2022, 8, 1673. doi: 10.1016/j.chempr.2022.02.003  doi: 10.1016/j.chempr.2022.02.003

    7. [7]

      Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J.; Tang, Y. Adv. Mater. 2017, 30, 1704609. doi: 10.1002/adma.201704609  doi: 10.1002/adma.201704609

    8. [8]

      Zhang, J.; Zhou, H.; Zhu, J.; Hu, P.; Hang, C.; Yang, J.; Peng, T.; Mu, S.; Huang, Y. ACS Appl. Mater. Interfaces 2017, 9, 24545. doi: 10.1021/acsami.7b04665  doi: 10.1021/acsami.7b04665

    9. [9]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; I. N. Waterhouse, G.; Wu, L.; Tung, C.; Zhang, T. Adv. Energy Mater. 2017, 7, 1700467. doi: 10.1002/aenm.201700467  doi: 10.1002/aenm.201700467

    10. [10]

      Bergmann, A; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dau, H.; Strasser, P. Nat. Commun. 2015, 6, 8625. doi: 10.1038/ncomms9625  doi: 10.1038/ncomms9625

    11. [11]

      Zhou, D.; Cai, Z.; Jia, Y.; Xiong, X.; Xie, Q.; Wang, S.; Zhang, Y.; Liu, W.; Duan, H.; Sun, X. Nanoscale Horiz. 2018, 3, 532. doi: 10.1039/c8nh00121a  doi: 10.1039/c8nh00121a

    12. [12]

      Li, L.; Hu, Z.; Kang, Y.; Cao, S.; Xu, L.; Yu, L.; Zhang, L.; Yu, J. C. Nat. Commun. 2023, 14, 1890. doi: 10.1038/s41467-023-37007-9  doi: 10.1038/s41467-023-37007-9

    13. [13]

      Li, L.; Hu, Z.; Yu, J. C. Angew. Chem. Int. Ed. 2020, 59, 20538. doi: 10.1002/anie.202008031  doi: 10.1002/anie.202008031

    14. [14]

      Hu, Z.; Guo, W. Chin. Chem. Lett. 2021, 32, 3359. doi: 10.1016/j.cclet.2021.04.004  doi: 10.1016/j.cclet.2021.04.004

    15. [15]

      Hu, C.; Hu, Y.; Fan, C.; Yang, L.; Zhang, Y.; Li, H.; Xie, W. Angew. Chem. Int. Ed. 2021, 60, 19774. doi: 10.1002/anie.202103888  doi: 10.1002/anie.202103888

    16. [16]

      Kuo, C.; Mosa, I. M.; Poyraz, A. S.; Biswas, S.; E-Sawy, A. M.; Song, W. Q.; Luo, Z.; Chen, S. Y.; Rusling, J. F.; He, J.; et al. ACS Catal. 2015, 5, 1693. doi: 10.1021/cs501739e  doi: 10.1021/cs501739e

    17. [17]

      Bai, L.; Lee, S.; Hu, X. Angew. Chem. Int. Ed. 2020, 60, 3095. doi: 10.1002/anie.202011388  doi: 10.1002/anie.202011388

    18. [18]

      Rebollar, L.; Intikhab, S.; Oliveira, N. J.; Yan, Y. S.; Xu, B. J.; McCrum, I. T.; Snyder, J. D.; Tang, M. H. ACS Catal. 2020, 10, 14747. doi: 10.1021/acscatal.0c03801  doi: 10.1021/acscatal.0c03801

    19. [19]

      Hung, S.; Hsu, Y.; Chang, C.; Hsu, C.; Suen, N.; Chan, T.; Chen, H. Adv. Energy Mater. 2017, 8, 1701686. doi: 10.1002/aenm.201701686.  doi: 10.1002/aenm.201701686

    20. [20]

      Duan, Y.; Lee, J.; Xi, S.; Sun, Y.; Ge, J.; Ong, S.; Chen, Y.; Dou, S.; Meng, F.; Diao, C.; et al. Angew. Chem. Int. Ed. 2020, 60, 7418. doi: 10.1002/anie.202015060  doi: 10.1002/anie.202015060

    21. [21]

      Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. eScience 2022, 2, 438. doi: 10.1016/j.esci.2022.04.004  doi: 10.1016/j.esci.2022.04.004

    22. [22]

      Liu, C.; Qian, J.; Ye, Y.; Zhou, H.; Sun, C.; Sheehan, C.; Zhang, Z.; Wan, G.; Liu, Y.; Guo, J.; et al. Nat. Catal. 2020, 4, 36. doi: 10.1038/s41929-020-00550-5  doi: 10.1038/s41929-020-00550-5

    23. [23]

      Guo, C.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S. Chem 2019, 5, 2429. doi: 10.1016/j.chempr.2019.06.016  doi: 10.1016/j.chempr.2019.06.016

    24. [24]

      Luo, M.; Yang, Y.; Guo, S. Chem 2019, 5, 260. doi: 10.1016/j.chempr.2019.01.002  doi: 10.1016/j.chempr.2019.01.002

    25. [25]

      Zhang, Y.; Wu, C.; Jiang, H.; Lin, Y.; Liu, H.; He, Q.; Chen, S.; Duan, T.; Song, L. Adv. Mater. 2018, 30, 1707522. doi: 10.1002/adma.201707522.  doi: 10.1002/adma.201707522

    26. [26]

      Ha, Y.; Shi, L.; Yan, X.; Chen, Z.; Li, Y.; Xu, W.; Wu, R. ACS Appl. Mater. Interfaces 2019, 11, 45546. doi: 10.1021/acsami.9b13580  doi: 10.1021/acsami.9b13580

    27. [27]

      Zhang, B.; Wang, L.; Cao, Z.; M. Kozlov, S.; F. Pelayo, G.; Dinh, C.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; et al. Nat. Catal. 2020, 3, 985. doi: 10.1038/s41929-020-00525-6  doi: 10.1038/s41929-020-00525-6

    28. [28]

      Le Formal, F.; Yerly, L.; Mensi, E. P.; Da Costa, X. P.; Boudoire, F.; Guijarro, N.; Spodaryk, M.; Zuttel, A.; Sivula, K. ACS Catal. 2020, 10, 12139. doi: 10.1021/acscatal.0c03523  doi: 10.1021/acscatal.0c03523

    29. [29]

      Li, J.; Liu, G.; Fu, J.; Jiang, G.; Luo, D.; M. Hassan, F.; Zhang, J.; Deng, Y.; Xu, P.; Ricardez-Sandoval, L.; et al. J. Catal. 2018, 367, 43. doi: 10.1016/j.jcat.2018.08.020  doi: 10.1016/j.jcat.2018.08.020

    30. [30]

      Bo, X.; K. Hocking, Rosalie; Zhou, S.; Li, Y.; Chen, X.; Zhuang, J.; Du, Y.; Zhao, C. Energy Environ. Sci. 2020, 13, 4225. doi: 10.1039/d0ee01609h  doi: 10.1039/d0ee01609h

    31. [31]

      Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q. Nat. Energy 2019, 4, 115. doi: 10.1038/s41560-018-0308-8  doi: 10.1038/s41560-018-0308-8

    32. [32]

      Thenuwara, A.; H. Attanayake, N.; Yu, J.; P. Perdew, J.; J. Elzinga, E.; Yan, Q.; Strongin, D. J. Phys. Chem. B 2017, 122, 847. doi: 10.1021/acs.jpcb.7b06935  doi: 10.1021/acs.jpcb.7b06935

    33. [33]

      Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T.; Salunke, A.; Ma, L.; Liang, H.; Kundu, S. Nano Energy 2017, 39, 30. doi: 10.1016/j.nanoen.2017.06.027  doi: 10.1016/j.nanoen.2017.06.027

    34. [34]

      Li, Y.; Zhao, C. ACS Catal. 2017, 7, 2535. doi: 10.1021/acscatal.6b03497  doi: 10.1021/acscatal.6b03497

    35. [35]

      Zou, S.; S. Burke, M.; Kast, M.; Fan, J.; Danilovic, N.; Boettcher, S. Chem. Mater. 2015, 27, 8011. doi: 10.1021/acs.chemmater.5b03404  doi: 10.1021/acs.chemmater.5b03404

    36. [36]

      Lv, Y.; Wu, X.; Jia, W.; Guo, J.; Zhang, H.; Liu, H.; Jia, D.; Tong, F. Carbon 2020, 169, 45. doi: 10.1016/j.carbon.2020.07.048  doi: 10.1016/j.carbon.2020.07.048

    37. [37]

      Oliver-Tolentino, M.; Vazquez-Samperio, J.; Manzo-Robledo, A.; Gonzalez-Huerta, R.; Flores-Moreno, J.; Ramirez-Rosales, D.; Guzman-Vargas, A. J. Phys. Chem. C 2014, 118, 22432. doi: 10.1021/jp506946b  doi: 10.1021/jp506946b

    38. [38]

      Ma, R.; Liang, J.; Liu, X.; Sasaki, T. J. Am. Chem. Soc. 2012, 134, 19915. doi: 10.1021/ja310246r  doi: 10.1021/ja310246r

    39. [39]

      Dionigi, F.; Strasser, P. Adv. Energy Mater. 2016, 6, 1600621. doi: 10.1002/aenm.201600621  doi: 10.1002/aenm.201600621

    40. [40]

      Wijitwongwan, R.; Intasa-ard, S.; Ogawa, M. ChemEngineering 2019, 3, 68. doi: 10.3390/chemengineering3030068  doi: 10.3390/chemengineering3030068

    41. [41]

      Corrigan, D. A. J. Electrochem. Soc. 1987, 134, 377. doi: 10.1149/1.2100463  doi: 10.1149/1.2100463

    42. [42]

      Corrigan, D. A.; Conell, R.; Fierro, C.; Scherson, D. J. Phys. Chem. 1987, 91, 5009. doi: 10.1021/j100303a024  doi: 10.1021/j100303a024

    43. [43]

      Zhu, K.; Zhu, X.; Yang, W. Angew. Chem. Int. Ed. 2018, 58, 1252. doi: 10.1002/anie.201802923  doi: 10.1002/anie.201802923

    44. [44]

      Zhu, W.; Chen, S.; Liao, F.; Zhao, X.; Shi, H.; Shi, Y.; Xu, L.; Shao, Q.; Kang, Z.; Shao, M. Chem. Eng. J. 2021, 420, 129690. doi: 10.1016/j.cej.2021.129690  doi: 10.1016/j.cej.2021.129690

    45. [45]

      Liang, C.; Zou, P.; Adeela, N.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H.; Yang, C. Energy Environ. Sci. 2019, 13, 86. doi: 10.1039/c9ee02388g  doi: 10.1039/c9ee02388g

    46. [46]

      Li, D.; Li, T.; Hao, G.; Guo, W.; Chen, S.; Liu, G.; Li, J.; Zhao, Q. Chem. Eng. J. 2020, 300, 125738. doi: 10.1016/j.cej.2020.125738  doi: 10.1016/j.cej.2020.125738

    47. [47]

      Wang, W.; Liu, Y.; Li, J.; Luo, J.; Fu, L.; Chen, S. J. Mater. Chem. A 2018, 6, 14299. doi: 10.1039/c8ta05295f  doi: 10.1039/c8ta05295f

    48. [48]

      Kuai, C.; Zhang, Y.; Wu, D.; Sokaras, D.; Mu, L.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. ACS Catal. 2019, 9, 6027. doi: 10.1021/acscatal.9b01935  doi: 10.1021/acscatal.9b01935

    49. [49]

      Zhou, Q.; Chen, Y.; Zhao, G.; Lin, Y.; Yu, Z.; Xu, X.; Wang, X.; Liu, H.; Sun, W.; Dou, S. ACS Catal. 2018, 8, 5382. doi: 10.1021/acscatal.8b01332  doi: 10.1021/acscatal.8b01332

    50. [50]

      Li, J.; Song, J.; Huang, B.; Liang, G.; Liang, W.; Huang, G.; Jin, Y.; Zhang, H.; Xie, F.; Chen, J.; et al. J. Catal. 2020, 389, 375. doi: 10.1016/j.jcat.2020.06.022  doi: 10.1016/j.jcat.2020.06.022

    51. [51]

      Zhang, B.; Jiang, K.; Wang, H.; Hu, S. Nano Lett. 2018, 19, 530. doi: 10.1021/acs.nanolett.8b04466  doi: 10.1021/acs.nanolett.8b04466

    52. [52]

      Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. J. Am. Chem. Soc. 2012, 134, 17253. doi: 10.1021/ja307507a  doi: 10.1021/ja307507a

    53. [53]

      Chen, R.; Hung, S.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Adv. Mater. 2019, 31, 1903909. doi: 10.1002/adma.201903909  doi: 10.1002/adma.201903909

    54. [54]

      Kuai, C.; Xu, Z.; Xi, C.; Hu, A.; Yang, Z.; Zhang, Y.; Sun, C.-J.; Li, L.; Sokaras, D.; Dong, C.; et al. Nat. Catal. 2020, 3, 743. doi: 10.1038/s41929-020-0496-z  doi: 10.1038/s41929-020-0496-z

    55. [55]

      Zhao, J.; Zhang, J.; Li, Z.; Bu, X. Small 2020, 16, 2003916. doi: 10.1002/smll.202003916  doi: 10.1002/smll.202003916

    56. [56]

      Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. J. Mater. Chem. A 2020, 9, 3180. doi: 10.1039/d0ta10712c  doi: 10.1039/d0ta10712c

    57. [57]

      Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. Adv. Energy Mater. 2019, 9, 1803358. doi: 10.1002/aenm.201803358  doi: 10.1002/aenm.201803358

    58. [58]

      Louie, M. W.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 12329. doi: 10.1021/ja405351s  doi: 10.1021/ja405351s

    59. [59]

      Cavani, F.; Trifirò, F.; Vaccari, A. Catal. Today 1991, 11, 173. doi: 10.1016/0920-5861(91)80068-K  doi: 10.1016/0920-5861(91)80068-K

    60. [60]

      Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. J. Am. Chem. Soc. 2014, 136, 6744. doi: 10.1021/ja502379c  doi: 10.1021/ja502379c

    61. [61]

      Hunter, B. M.; Thompson, N. B.; Muller, A. M.; Rossman, G. R.; Hill, M. G.; Winkler, J. R.; Gray, H. B. Joule 2018, 2, 747. doi: 10.1016/j.joule.2018.01.008  doi: 10.1016/j.joule.2018.01.008

    62. [62]

      Chen J. Y. C.; Dang, L.; Liang, H.; Bi, W.; B. Gerken, J.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090. doi: 10.1021/jacs.5b10699  doi: 10.1021/jacs.5b10699

    63. [63]

      Wang, D.; Zhou, J.; Hu, Y.; Yang, J.; Han, N.; Li, Y.; Sham, T. J. Phys. Chem. C 2015, 119, 19573. doi: 10.1021/acs.jpcc.5b02685  doi: 10.1021/acs.jpcc.5b02685

    64. [64]

      Yeo, B. S.; Bell, A. T. J. Phys. Chem. C 2012, 116, 8394. doi: 10.1021/jp3007415  doi: 10.1021/jp3007415

    65. [65]

      Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. J. Am. Chem. Soc. 2017, 139, 11361. doi: 10.1021/jacs.7b07117  doi: 10.1021/jacs.7b07117

    66. [66]

      Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K.; Cai, Y.; Wise, A. M.; Cheng, M.; Sokaras, D.; Weng, T.; Alonso-Mori, R.; et al. J. Am. Chem. Soc. 2015, 137, 1305. doi: 10.1021/ja511559d  doi: 10.1021/ja511559d

    67. [67]

      Ahn, H. S.; Bard, A. J. J. Am. Chem. Soc. 2015, 138, 313. doi: 10.1021/jacs.5b10977  doi: 10.1021/jacs.5b10977

    68. [68]

      Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; Cube, F. V.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Proc. Natl. Acad. Sci. 2017, 114, 1486. doi: 10.1073/pnas.1620787114  doi: 10.1073/pnas.1620787114

    69. [69]

      Godwin, I. J.; Lyons, M. E. G. Electrochem. Commun. 2013, 32, 39. doi: 10.1016/j.elecom.2013.03.040  doi: 10.1016/j.elecom.2013.03.040

    70. [70]

      Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. J. Phys. Chem. C 2015, 119, 7243. doi: 10.1021/acs.jpcc.5b00105  doi: 10.1021/acs.jpcc.5b00105

    71. [71]

      Lee, S.; Banjac K.; Lingenfelder, M.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 10295. doi: 10.1002/anie.201903200  doi: 10.1002/anie.201903200

    72. [72]

      Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi: 10.1002/anie.201915803  doi: 10.1002/anie.201915803

    73. [73]

      Hao, Y.; Li, Y.; Wu, J.; Meng, L.; Wang, J.; Jia, C.; Liu, T.; Yang, X.; Liu, Z.; Gong, M. J. Am. Chem. Soc. 2021, 143, 1493. doi: 10.1021/jacs.0c11307  doi: 10.1021/jacs.0c11307

    74. [74]

      Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X.; et al. Nat. Commun. 2020, 11, 2522. doi: 10.1038/s41467-020-16237-1  doi: 10.1038/s41467-020-16237-1

    75. [75]

      Xiao, H.; Shin H.; Goddard, W. Proc. Natl. Acad. Sci. 2018, 115, 5872. doi: 10.1073/pnas.1722034115  doi: 10.1073/pnas.1722034115

    76. [76]

      Li, P.; Duan, X.; Kuang, Y.; Li, Y.; Zhang, G.; Liu, W.; Sun, X. Adv. Energy Mater. 2018, 8, 1703341. doi: 10.1002/aenm.201703341  doi: 10.1002/aenm.201703341

    77. [77]

      He, D.; Gao, R.; Liu, S.; Sun, M.; Liu, X.; Hu, K.; Su, Y.; Wang, L. ACS Catal. 2020, 10, 10570. doi: 10.1021/acscatal.0c03272  doi: 10.1021/acscatal.0c03272

    78. [78]

      Zhou, L.; Zhang, C.; Zhang, Y.; Li, Z.; Shao, M. Adv. Funct. Mater. 2021, 31, 2009743. doi: 10.1002/adfm.202009743  doi: 10.1002/adfm.202009743

    79. [79]

      DelloStritto, M. J.; Thenuwara, A. C.; Klein, M. L.; Strongin, D. R. J. Phys. Chem. C 2019, 123, 13593. doi: 10.1021/acs.jpcc.9b01671  doi: 10.1021/acs.jpcc.9b01671

    80. [80]

      Zhang, Y.; Cheng, C.; Kuai, C.; Sokaras, D.; Zheng, X.; Sainio, S.; Lin, F.; Dong, C.; Nordlund, D.; Du, X. J. Mater. Chem. A 2020, 8, 17471. doi: 10.1039/d0ta06353c  doi: 10.1039/d0ta06353c

    81. [81]

      Liu, M.; Min, K.; Han, B.; Lee, L. Adv. Energy Mater. 2021, 11, 2101281. doi: 10.1002/aenm.202101281  doi: 10.1002/aenm.202101281

    82. [82]

      Li, B.; Zhang, S.; Tang, C.; Cui, X.; Zhang, Q. Small 2017, 13, 1700610. doi: 10.1002/smll.201700610  doi: 10.1002/smll.201700610

    83. [83]

      Zhang, B.; Zhu, C.; Wu, Z.; Stavitski, E.; Lui, Y.; Kim T.; Liu, H.; Huang, L.; Luan, X.; Zhou, L.; et al. Nano Lett. 2019, 20, 136. doi: 10.1021/acs.nanolett.9b03460  doi: 10.1021/acs.nanolett.9b03460

    84. [84]

      Ding, L.; Li, K.; Xie, Z.; Yang, G.; Yu, S.; Wang, W.; Yu, H.; Baxter, J.; Meyer, H. M.; Cullen, D. A.; et al. ACS Appl. Mater. Interfaces 2021, 13, 20070. doi: 10.1021/acsami.1c01815.  doi: 10.1021/acsami.1c01815

    85. [85]

      Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; et al. Nano Energy 2017, 35, 350. doi: 10.1016/j.nanoen.2017.04.011  doi: 10.1016/j.nanoen.2017.04.011

    86. [86]

      Chen, J.; Zheng, F.; Zhang, S.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.; Li, J.; Sun, S. ACS Catal. 2018, 8, 11342. doi: 10.1021/acscatal.8b03489  doi: 10.1021/acscatal.8b03489

    87. [87]

      Liu, C.; Han, Y.; Yao, L.; Liang, L.; He, J.; Hao, Q.; Zhang, J.; Li, Y.; Liu, H. Small 2021, 17, 2007334. doi: 10.1002/smll.202007334  doi: 10.1002/smll.202007334

    88. [88]

      Zhang, J.; Zhang, H.; Huang, Y. Appl. Catal. B-Environ. 2021, 297, 120453. doi: 10.1016/j.apcatb.2021.120453  doi: 10.1016/j.apcatb.2021.120453

    89. [89]

      Kwon, N.; Kim, M.; Jin, X.; Lim, J.; Kim, I.; Lee, N.; Kim, H.; HWang, S. NPG Asia Mater. 2018, 10, 659. doi: 10.1038/s41427-018-0060-3  doi: 10.1038/s41427-018-0060-3

    90. [90]

      Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M.; Hong, M.; Yan, X.; Qian, G.; et al. Adv. Mater. 2017, 29, 1700017. doi: 10.1002/adma.201700017  doi: 10.1002/adma.201700017

    91. [91]

      Chen, Z.; Ju, M.; Sun, M.; Jin, L.; Cai, R.; Wang, Z.; Dong, L.; Peng, L.; Long, X.; Huang, B.; et al. Angew. Chem. Int. Ed. 2021, 60, 9699. doi: 10.1002/anie.202016064  doi: 10.1002/anie.202016064

    92. [92]

      Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; M. Lange, K.; Zhang, B. J. Am. Chem. Soc. 2018, 140, 3876. doi: 10.1021/jacs.8b00752  doi: 10.1021/jacs.8b00752

    93. [93]

      Huang, G.; Li, Y.; Chen, R.; Xiao, Z.; Du, S.; Huang, Y.; Xie, C.; Dong, C.; Yi, H.; Wang, S. Chin. J. Catal. 2022, 43, 1101. doi: 10.1016/S1872-2067(21)63926-8  doi: 10.1016/S1872-2067(21)63926-8

    94. [94]

      Gao, Z.; Liu, J.; Chen, X.; Zheng, X.; Mao, J.; Liu, H.; Ma, T.; Li, L.; Wang, W.; Du, X. Adv. Mater. 2019, 31, 1804769. doi: 10.1002/adma.201804769  doi: 10.1002/adma.201804769

    95. [95]

      Liao, H.; Luo, T.; Tan, P.; Chen, K.; Lu, L.; Liu, Y.; Liu, M.; Pan, J. Adv. Funct. Mater. 2021, 31, 2102772. doi: 10.1002/adfm.202102772  doi: 10.1002/adfm.202102772

    96. [96]

      Carrasco, J. A.; Sanchis-Gual, R.; Seijas-Da Silva, A.; Abellan, G.; Coronado, E. Chem. Mater. 2019, 31, 6798. doi: 10.1021/acs.chemmater.9b01263  doi: 10.1021/acs.chemmater.9b01263

    97. [97]

      Dang, L.; Liang, H.; Zhuo, J.; K. Lamb, B.; Sheng, H.; Yang, Y.; Jin, S. Chem. Mater. 2018, 30, 4321. doi: 10.1021/acs.chemmater.8b01334  doi: 10.1021/acs.chemmater.8b01334

    98. [98]

      Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Energy Environ. Sci. 2016, 9, 1734. doi: 10.1039/c6ee00377j  doi: 10.1039/c6ee00377j

    99. [99]

      Asnavandi, M.; Yin, Y.; Li, Y.; Sun, C.; Zhao, C. ACS Energy Lett. 2018, 3, 1515. doi: 10.1021/acsenergylett.8b00696  doi: 10.1021/acsenergylett.8b00696

    100. [100]

      Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Adv. Energy Mater. 2019, 9, 1900881. doi: 10.1002/aenm.201900881  doi: 10.1002/aenm.201900881

    101. [101]

      Peng, L.; Yang, N.; Yang, Y.; Wang, Q.; Xie, X.; Sun, D.; Shang, L.; Zhang, T.; Waterhouse, G. I. N. Angew. Chem. Int. Ed. 2021, 60, 24612. doi: 10.1002/anie.202109938  doi: 10.1002/anie.202109938

    102. [102]

      Wu, C.; Li, H.; Xia, Z.; Zhang, X.; Deng, R.; Wang, S.; Sun, G. ACS Catal. 2020, 10, 11127. doi: 10.1021/acscatal.0c02501  doi: 10.1021/acscatal.0c02501

    103. [103]

      Wang, Y.; Tao, S.; Lin, H.; Wang, G.; Zhao, K.; Cai, R.; Tao, K.; Zhang, C.; Sun, M.; Hu, J.; et al. Nano Energy 2020, 81, 105606. doi: 10.1016/j.nanoen.2020.105606  doi: 10.1016/j.nanoen.2020.105606

    104. [104]

      Wang, Y.; Qiao, M.; Li, Y.; Wang, S. Small 2018, 14, 1800136. doi: 10.1002/smll.201800136  doi: 10.1002/smll.201800136

    105. [105]

      Zhang, H.; Wu, L.; Feng, R.; Wang, S.; Hsu, C.; Ni, Y.; Ahmad, A.; Zhang, C.; Wu, H.; Chen, H.; et al. ACS Catal. 2023, 13, 6000. doi: 10.1021/acscatal.2c05783  doi: 10.1021/acscatal.2c05783

    106. [106]

      Jiao, S.; Yao, Z.; Li, M.; Mu, C.; Liang, H.; Zeng, Y.; Huang, H. Nanoscale 2019, 11, 18894. doi: 10.1039/c9nr07465a  doi: 10.1039/c9nr07465a

    107. [107]

      Chen, G.; Zhu, Y.; Chen, H.; Hu, Z.; Hung, S.; Ma, N.; Dai, J.; Lin, H.; Chen, C.; Zhou, W.; et al. Adv. Mater. 2019, 31, 1900883. doi: 10.1002/adma.201900883  doi: 10.1002/adma.201900883

    108. [108]

      Zhou, D.; Wang, S.; Jia, Y.; Xiong, X.; Yang, H.; Liu, S.; Tang, J.; Zhang, J.; Liu, D.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2018, 58, 736. doi: 10.1002/anie.201809689  doi: 10.1002/anie.201809689

    109. [109]

      Zhou, D.; Jia, Y.; Duan, X.; Tang, J.; Xu, J.; Liu, D.; Xiong, X.; Zhang, J.; Luo, J.; Zheng, L.; et al. Nano Energy 2019, 60, 661. doi: 10.1016/j.nanoen.2019.04.014  doi: 10.1016/j.nanoen.2019.04.014

    110. [110]

      Zhao, J.; Shi, Z.; Li, C.; Gu, L.; Li, G. Chem. Sci. 2020, 12, 650. doi: 10.1039/d0sc04196c  doi: 10.1039/d0sc04196c

    111. [111]

      Tang, Y.; Liu, Q.; Dong, L.; Wu, H.; Yu, X. Appl. Catal. B-Environ. 2020, 266, 118627. doi: 10.1016/j.apcatb.2020.118627  doi: 10.1016/j.apcatb.2020.118627

    112. [112]

      Zhang, H.; Li, X.; Hahnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Adv. Funct. Mater. 2018, 28, 1706847. doi: 10.1002/adfm.201706847  doi: 10.1002/adfm.201706847

    113. [113]

      Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Energy Environ. Sci. 2017, 10, 1820. doi: 10.1039/c7ee01571b  doi: 10.1039/c7ee01571b

    114. [114]

      Zhang, J.; Yu, L.; Chen, Y.; Lu, X.; Gao, S.; Lou, X. Adv. Mater. 2020, 32, 1906432. doi: 10.1002/adma.201906432  doi: 10.1002/adma.201906432

    115. [115]

      Xu, Z.; Ying, Y.; Zhang, G.; Li, K.; Liu, Y.; Fu, N.; Guo X.; Yu, F.; Huang, H. J. Mater. Chem. A 2020, 8, 26130. doi: 10.1039/d0ta08815c  doi: 10.1039/d0ta08815c

    116. [116]

      Chung, D. Y.; Lopes, P. P.; Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Nat. Energy 2020, 5, 222. doi: 10.1038/s41560-020-0576-y  doi: 10.1038/s41560-020-0576-y

    117. [117]

      Lopes, P. P.; Chung, D. Y.; Rui, X.; Zheng, H.; He, H.; Martins, P.; Strmcnik, D.; Stamenkovic, V. R.; Zapol, P.; Mitchell, J. F.; et al. J. Am. Chem. Soc. 2021, 143, 2741. doi: 10.1021/jacs.0c08959  doi: 10.1021/jacs.0c08959

    118. [118]

      Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Sci. Rep. 2015, 5, 12167. doi: 10.1038/srep12167  doi: 10.1038/srep12167

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    10. [10]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    11. [11]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    12. [12]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    17. [17]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(5)
  • Abstract views(419)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return