Citation:
Yameen Ahmed, Xiangxiang Feng, Yuanji Gao, Yang Ding, Caoyu Long, Mustafa Haider, Hengyue Li, Zhuan Li, Shicheng Huang, Makhsud I. Saidaminov, Junliang Yang. Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica,
;2024, 40(6): 230305.
doi:
10.3866/PKU.WHXB202303057
-
Formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have attracted significant attention owing to their outstanding optoelectronic properties, but long-term device stability is still a crucial issue related to FAPbI3 PSCs. FAPbI3 undergoes phase transition from black perovskite phase to yellow non-perovskite phase at room temperature, and moisture triggers this phase transition. One of the most widely used methods to improve the stability of PSCs is interface engineering. Being green functional solvents, ionic liquids (ILs) have been regarded as potential alternatives to toxic interface modifiers, thereby increasing their commercial viability and accelerating their adoption in the renewable energy market. In this study, an IL, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM[BF4]) was used to modify the interface between the electron transport layer and perovskite layer due to its low volatility, low toxicity, high conductivity, and high thermal stability. The introduction of IL not only reduces interface defects but also improves perovskite film quality. Density functional theory (DFT) calculations show that there is a strong interface interaction between the IL and perovskite surface that is beneficial to decrease the density of defect states of the perovskite surface and stabilize the perovskite lattice. Apart from the defects in the perovskite film, solution-processed SnO2 also suffers from surface imperfections. Defects on the SnO2 surface generate defect states, which cause band alignment issues and stability issues. DFT calculations show that the surface gap states with IL are smaller than those without IL. Such weakened surface gap states indicate reduced carrier recombination at the surface region, which improves the device performance. Consequently, we achieved a power conversion efficiency exceeding 22% for the IL-modified FAPbI3 PSCs (control ~21%). After storing for over 1800 h in a dry box (relative humidity (RH) ~20%), the champion device retained ~90% of its initial efficiency, while the control devices degraded into non-perovskite yellow hexagonal phase (δ-FAPbI3).
-
Keywords:
- FAPbI3,
- Phase stability,
- SnO2,
- Perovskite solar cells,
- Ionic liquid,
- Interface engineering
-
-
-
[1]
Wang, K.; Wu, C.; Hou, Y.; Yang, D.; Ye, T.; Yoon, J.; Sanghadasa, M.; Priya, S. Energy Environ. Sci. 2020, 13, 3412. doi: 10.1039/D0EE01967D doi: 10.1039/D0EE01967D
-
[2]
Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Nat. Rev. Mater. 2016, 1, 15007. doi: 10.1038/natrevmats.2015.7 doi: 10.1038/natrevmats.2015.7
-
[3]
Yang, D.; Zhang, X.; Hou, Y.; Wang, K.; Ye, T.; Yoon, J.; Wu, C.; Sanghadasa, M.; Liu, S. F.; Priya, S. Nano Energy 2021, 84, 105934. doi: 10.1016/j.nanoen.2021.105934 doi: 10.1016/j.nanoen.2021.105934
-
[4]
Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Nat. Commun. 2016, 7, 11755. doi: 10.1038/ncomms11755 doi: 10.1038/ncomms11755
-
[5]
Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. ACS Energy Lett. 2022, 7, 1412. doi: 10.1021/acsenergylett.1c02768 doi: 10.1021/acsenergylett.1c02768
-
[6]
Huang, K.; Feng, X.; Li, H.; Long, C.; Liu, B.; Shi, J.; Meng, Q.; Weber, K.; Duong, T.; Yang, J. Adv. Sci. 2022, 9, 2204163. doi: 10.1002/advs.202204163 doi: 10.1002/advs.202204163
-
[7]
Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W. -Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. Science 2020, 367, 1352. doi: 10.1126/science.aba0893 doi: 10.1126/science.aba0893
-
[8]
Sha, Y.; Bi, E.; Zhang, Y.; Ru, P.; Kong, W.; Zhang, P.; Yang, X.; Chen, H.; Han, L. Adv. Energy Mater. 2021, 11, 2003301. doi: 10.1002/aenm.202003301 doi: 10.1002/aenm.202003301
-
[9]
Yu, X.; Li, Z.; Sun, X.; Zhong, C.; Zhu, Z.; Jen, A. K. -Y. Nano Energy 2021, 82, 105701. doi: 10.1016/j.nanoen.2020.105701 doi: 10.1016/j.nanoen.2020.105701
-
[10]
Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. -K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. -P. Nature 2021, 590, 587. doi: 10.1038/s41586-021-03285-w doi: 10.1038/s41586-021-03285-w
-
[11]
Huang, K.; Peng, Y.; Gao, Y.; Shi, J.; Li, H.; Mo, X.; Huang, H.; Gao, Y.; Ding, L.; Yang, J. Adv. Energy Mater. 2019, 9, 1901419. doi: 10.1002/aenm.201901419 doi: 10.1002/aenm.201901419
-
[12]
Grä tzel, M. Nat. Mater. 2014, 13, 838. doi: 10.1038/nmat4065 doi: 10.1038/nmat4065
-
[13]
Yang, S.; Wang, Y.; Liu, P.; Cheng, Y. -B.; Zhao, H. J.; Yang, H. G. Nat. Energy 2016, 1, 15016. doi: 10.1038/NENERGY.2015.16 doi: 10.1038/NENERGY.2015.16
-
[14]
Feng, X.; Liu, B.; Peng, Y.; Gu, C.; Bai, X.; Long, M.; Cai, M.; Tong, C.; Han, L.; Yang, J. Small 2022, 18, 2201831. doi: 10.1002/smll.202201831 doi: 10.1002/smll.202201831
-
[15]
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/c3ee43822h doi: 10.1039/c3ee43822h
-
[16]
Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Adv. Mater. 2016, 28, 2253. doi: 10.1002/adma.201505002 doi: 10.1002/adma.201505002
-
[17]
Park, J.; Kim, J.; Yun, H. -S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Nature 2023, 616, 724. doi: 10.1038/s41586-023-05825-y doi: 10.1038/s41586-023-05825-y
-
[18]
Zhang, Y.; Kong, T.; Xie, H.; Song, J.; Li, Y.; Ai, Y.; Han, Y.; Bi, D. ACS Energy Lett. 2022, 7, 929. doi: 10.1021/acsenergylett.1c02545 doi: 10.1021/acsenergylett.1c02545
-
[19]
Li, Y.; Liu, F. Z.; Waqas, M.; Leung, T. L.; Tam, H. W.; Lan, X. Q.; Tu, B.; Chen, W.; Djurišić, A. B.; He, Z. B. Small Methods 2018, 2, 1700387. doi: 10.1002/smtd.201700387 doi: 10.1002/smtd.201700387
-
[20]
Liu, Z.; Liu, F.; Duan, C.; Yuan, L.; Zhu, H.; Li, J.; Wen, Q.; Waterhouse, G. I.; Yang, X.; Yan, K. Chem. Eng. J. 2021, 419, 129482. doi: 10.1016/j.cej.2021.129482 doi: 10.1016/j.cej.2021.129482
-
[21]
Gao, Y.; Feng, X.; Chang, J.; Long, C.; Ding, Y.; Li, H.; Huang, K.; Liu, B.; Yang, J. Appl. Phys. Lett. 2022, 121, 073902. doi: 10.1063/5.0097939 doi: 10.1063/5.0097939
-
[22]
Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. F. Nat. Commun. 2018, 9, 3239. doi: 10.1038/s41467-018-05760-x doi: 10.1038/s41467-018-05760-x
-
[23]
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science. 2014, 345, 542. doi: 10.1126/science.1254050 doi: 10.1126/science.1254050
-
[24]
Jiang, Q.; Zhang, X.; You, J. Small. 2018, 14, 1801154. doi: 10.1002/smll.201801154 doi: 10.1002/smll.201801154
-
[25]
Chen, J.; Zhao, X.; Kim, S. G.; Park, N. G. Adv. Mater. 2019, 31, 1902902. doi: 10.1002/adma.201902902 doi: 10.1002/adma.201902902
-
[26]
Gao, Z. W.; Wang, Y.; Liu, H.; Sun, J.; Kim, J.; Li, Y.; Xu, B.; Choy, W. C. Adv. Funct. Mater. 2021, 31, 2101438. doi: 10.1002/adfm.202101438 doi: 10.1002/adfm.202101438
-
[27]
Zhang, Z.; Fang, Z.; Guo, T.; Zhao, R.; Deng, Z.; Zhang, J.; Shang, M.; Liu, X.; Liu, J.; Huang, L. Chem. Eng. J. 2022, 432, 134311. doi: 10.1016/j.cej.2021.134311 doi: 10.1016/j.cej.2021.134311
-
[28]
Ai, Y.; Zhang, Y.; Song, J.; Kong, T.; Li, Y.; Xie, H.; Bi, D. J. Phys. Chem. Lett. 2021, 12, 10567. doi: 10.1021/acs.jpclett.1c03002 doi: 10.1021/acs.jpclett.1c03002
-
[29]
Wageh, S.; Al-Ghamdi, A. A.; Zhao, L. Acta Phys. -Chim. Sin. 2022, 38, 2111009. doi: 10.3866/PKU.WHXB202111009
-
[30]
Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2022, 38, 2007088. doi: 10.3866/PKU.WHXB202007088
-
[31]
Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J.; et al. Nano Res. 2023, 16, 6849. doi: 10.1007/s12274-023-5403-x doi: 10.1007/s12274-023-5403-x
-
[32]
Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. J. Power Sources 2021, 494, 229781. doi: 10.1016/j.jpowsour.2021.229781 doi: 10.1016/j.jpowsour.2021.229781
-
[33]
Liang, J.; Wang, C. X.; Zhao, P. Y.; Lu, Z. P.; Ma, Y.; Xu, Z. R.; Wang, Y. R.; Zhu, H. F.; Hu, Y.; Zhu, G. Y.; et al. Nanoscale 2017, 9, 11841. doi: 10.1039/c7nr03530f doi: 10.1039/c7nr03530f
-
[34]
Xia, Y.; Zhu, M.; Qin, L.; Zhao, C.; Hong, D.; Tian, Y.; Yan, W.; Jin, Z. Energy Mater. 2023, 3, 300004. doi: 10.20517/energymater.2022.55 doi: 10.20517/energymater.2022.55
-
[35]
Wang, F.; Ge, C. Y.; Duan, D. W.; Lin, H. R.; Li, L.; Naumov, P.; Hu, H. L. Small Struct. 2022, 3, 2200048. doi: 10.1002/sstr.202200048 doi: 10.1002/sstr.202200048
-
[36]
Yang, D.; Zhou, X.; Yang, R. X.; Yang, Z.; Yu, W.; Wang, X. L.; Li, C.; Liu, S. Z.; Chang, R. P. H. Energy Environ. Sci. 2016, 9, 3071. doi: 10.1039/c6ee02139e doi: 10.1039/c6ee02139e
-
[37]
Yang, D.; Yang, R. X.; Ren, X. D.; Zhu, X. J.; Yang, Z.; Li, C.; Liu, S. Z. Adv. Mater. 2016, 28, 5206. doi: 10.1002/adma.201600446 doi: 10.1002/adma.201600446
-
[38]
Wu, Q. L.; Zhou, W. R.; Liu, Q.; Zhou, P. C.; Chen, T.; Lu, Y. L.; Qiao, Q. Q.; Yang, S. F. ACS Appl. Mater. Interfaces 2016, 8, 34464. doi: 10.1021/acsami.6b12683 doi: 10.1021/acsami.6b12683
-
[39]
Ye, X.; Cai, H.; Xu, T.; Ni, J.; Zhang, J. J. Chem. Phys. 2023, 158, 134706. doi: 10.1063/5.0139669 doi: 10.1063/5.0139669
-
[40]
Caprioglio, P.; Cruz, D. S.; Caicedo-Dávila, S.; Zu, F.; Sutanto, A. A.; Peñ a-Camargo, F.; Kegelmann, L.; Meggiolaro, D.; Gregori, L.; Wolff, C. M. Energy Environ. Sci. 2021, 14, 4508. doi: 10.1039/D1EE00869B doi: 10.1039/D1EE00869B
-
[41]
Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J. T. -W. Nature 2019, 571, 245. doi: 10.1038/s41586-019-1357-2 doi: 10.1038/s41586-019-1357-2
-
[42]
Deng, X.; Xie, L.; Wang, S.; Li, C.; Wang, A.; Yuan, Y.; Cao, Z.; Li, T.; Ding, L.; Hao, F. Chem. Eng. J. 2020, 398, 125594. doi: 10.1016/j.cej.2020.125594 doi: 10.1016/j.cej.2020.125594
-
[43]
Hafner, J. J. Comput. Chem. 2008, 29, 2044. doi: 10.1002/jcc.21057 doi: 10.1002/jcc.21057
-
[44]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865 doi: 10.1103/PhysRevLett.77.3865
-
[45]
Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H.; Lebègue, S.; Paier, J.; Vydrov, O. A.; Ángyán, J. G. Phys. Rev. B 2009, 79, 155107. doi: 10.1103/PhysRevB.79.155107 doi: 10.1103/PhysRevB.79.155107
-
[46]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344 doi: 10.1063/1.3382344
-
[47]
Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Nano Energy 2021, 80, 105564. doi: 10.1016/j.nanoen.2020.105564 doi: 10.1016/j.nanoen.2020.105564
-
[48]
Södergren, S.; Siegbahn, H.; Rensmo, H.; Lindström, H.; Hagfeldt, A.; Lindquist, S. -E. J. Phys. Chem. B 1997, 101, 3087. doi: 10.1021/jp9639399 doi: 10.1021/jp9639399
-
[49]
Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.Y.; Park, T.; Choi, J. ACS Energy Lett. 2017, 2, 2667. doi: 10.1021/acsenergylett.7b00888 doi: 10.1021/acsenergylett.7b00888
-
[50]
Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z. D. Nano Energy 2017, 31, 462. doi: 10.1016/j.nanoen.2016.11.028 doi: 10.1016/j.nanoen.2016.11.028
-
[51]
Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. Nature 2021, 598, 444. doi: 10.1038/s41586-021-03964-8 doi: 10.1038/s41586-021-03964-8
-
[52]
Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y. -B.; Huang, F. Nat. Commun. 2018, 9, 4609. doi: 10.1038/s41467-018-07099-9 doi: 10.1038/s41467-018-07099-9
-
[53]
Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G. -W.; Choi, H.; Park, S.; Park, S. A.; Park, T. Energy Environ. Sci. 2018, 11, 3238. doi: 10.1039/c8ee02242a doi: 10.1039/c8ee02242a
-
[54]
Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432. doi: 10.1021/jz502703p doi: 10.1021/jz502703p
-
[55]
Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L. ACS Energy Lett. 2021, 6, 3824. doi: 10.1021/acsenergylett.1c01763 doi: 10.1021/acsenergylett.1c01763
-
[1]
-
-
-
[1]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[2]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[3]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[4]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[5]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[8]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[9]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[10]
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
-
[11]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[12]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[13]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[14]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[15]
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
-
[16]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[17]
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082
-
[18]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024
-
[19]
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021
-
[20]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(800)
- HTML views(83)