Citation: Yameen Ahmed, Xiangxiang Feng, Yuanji Gao, Yang Ding, Caoyu Long, Mustafa Haider, Hengyue Li, Zhuan Li, Shicheng Huang, Makhsud I. Saidaminov, Junliang Yang. Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230305. doi: 10.3866/PKU.WHXB202303057 shu

Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells

  • Corresponding author: Hengyue Li,  Junliang Yang, 
  • Received Date: 31 March 2023
    Revised Date: 23 May 2023
    Accepted Date: 24 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Key Research and Development Program of China 2022YFB3803300the National Natural Science Foundation of China 51673214the National Natural Science Foundation of China 52203250

  • Formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have attracted significant attention owing to their outstanding optoelectronic properties, but long-term device stability is still a crucial issue related to FAPbI3 PSCs. FAPbI3 undergoes phase transition from black perovskite phase to yellow non-perovskite phase at room temperature, and moisture triggers this phase transition. One of the most widely used methods to improve the stability of PSCs is interface engineering. Being green functional solvents, ionic liquids (ILs) have been regarded as potential alternatives to toxic interface modifiers, thereby increasing their commercial viability and accelerating their adoption in the renewable energy market. In this study, an IL, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM[BF4]) was used to modify the interface between the electron transport layer and perovskite layer due to its low volatility, low toxicity, high conductivity, and high thermal stability. The introduction of IL not only reduces interface defects but also improves perovskite film quality. Density functional theory (DFT) calculations show that there is a strong interface interaction between the IL and perovskite surface that is beneficial to decrease the density of defect states of the perovskite surface and stabilize the perovskite lattice. Apart from the defects in the perovskite film, solution-processed SnO2 also suffers from surface imperfections. Defects on the SnO2 surface generate defect states, which cause band alignment issues and stability issues. DFT calculations show that the surface gap states with IL are smaller than those without IL. Such weakened surface gap states indicate reduced carrier recombination at the surface region, which improves the device performance. Consequently, we achieved a power conversion efficiency exceeding 22% for the IL-modified FAPbI3 PSCs (control ~21%). After storing for over 1800 h in a dry box (relative humidity (RH) ~20%), the champion device retained ~90% of its initial efficiency, while the control devices degraded into non-perovskite yellow hexagonal phase (δ-FAPbI3).
  • 加载中
    1. [1]

      Wang, K.; Wu, C.; Hou, Y.; Yang, D.; Ye, T.; Yoon, J.; Sanghadasa, M.; Priya, S. Energy Environ. Sci. 2020, 13, 3412. doi: 10.1039/D0EE01967D  doi: 10.1039/D0EE01967D

    2. [2]

      Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Nat. Rev. Mater. 2016, 1, 15007. doi: 10.1038/natrevmats.2015.7  doi: 10.1038/natrevmats.2015.7

    3. [3]

      Yang, D.; Zhang, X.; Hou, Y.; Wang, K.; Ye, T.; Yoon, J.; Wu, C.; Sanghadasa, M.; Liu, S. F.; Priya, S. Nano Energy 2021, 84, 105934. doi: 10.1016/j.nanoen.2021.105934  doi: 10.1016/j.nanoen.2021.105934

    4. [4]

      Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Nat. Commun. 2016, 7, 11755. doi: 10.1038/ncomms11755  doi: 10.1038/ncomms11755

    5. [5]

      Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. ACS Energy Lett. 2022, 7, 1412. doi: 10.1021/acsenergylett.1c02768  doi: 10.1021/acsenergylett.1c02768

    6. [6]

      Huang, K.; Feng, X.; Li, H.; Long, C.; Liu, B.; Shi, J.; Meng, Q.; Weber, K.; Duong, T.; Yang, J. Adv. Sci. 2022, 9, 2204163. doi: 10.1002/advs.202204163  doi: 10.1002/advs.202204163

    7. [7]

      Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W. -Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. Science 2020, 367, 1352. doi: 10.1126/science.aba0893  doi: 10.1126/science.aba0893

    8. [8]

      Sha, Y.; Bi, E.; Zhang, Y.; Ru, P.; Kong, W.; Zhang, P.; Yang, X.; Chen, H.; Han, L. Adv. Energy Mater. 2021, 11, 2003301. doi: 10.1002/aenm.202003301  doi: 10.1002/aenm.202003301

    9. [9]

      Yu, X.; Li, Z.; Sun, X.; Zhong, C.; Zhu, Z.; Jen, A. K. -Y. Nano Energy 2021, 82, 105701. doi: 10.1016/j.nanoen.2020.105701  doi: 10.1016/j.nanoen.2020.105701

    10. [10]

      Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. -K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. -P. Nature 2021, 590, 587. doi: 10.1038/s41586-021-03285-w  doi: 10.1038/s41586-021-03285-w

    11. [11]

      Huang, K.; Peng, Y.; Gao, Y.; Shi, J.; Li, H.; Mo, X.; Huang, H.; Gao, Y.; Ding, L.; Yang, J. Adv. Energy Mater. 2019, 9, 1901419. doi: 10.1002/aenm.201901419  doi: 10.1002/aenm.201901419

    12. [12]

      Grä tzel, M. Nat. Mater. 2014, 13, 838. doi: 10.1038/nmat4065  doi: 10.1038/nmat4065

    13. [13]

      Yang, S.; Wang, Y.; Liu, P.; Cheng, Y. -B.; Zhao, H. J.; Yang, H. G. Nat. Energy 2016, 1, 15016. doi: 10.1038/NENERGY.2015.16  doi: 10.1038/NENERGY.2015.16

    14. [14]

      Feng, X.; Liu, B.; Peng, Y.; Gu, C.; Bai, X.; Long, M.; Cai, M.; Tong, C.; Han, L.; Yang, J. Small 2022, 18, 2201831. doi: 10.1002/smll.202201831  doi: 10.1002/smll.202201831

    15. [15]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/c3ee43822h  doi: 10.1039/c3ee43822h

    16. [16]

      Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Adv. Mater. 2016, 28, 2253. doi: 10.1002/adma.201505002  doi: 10.1002/adma.201505002

    17. [17]

      Park, J.; Kim, J.; Yun, H. -S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Nature 2023, 616, 724. doi: 10.1038/s41586-023-05825-y  doi: 10.1038/s41586-023-05825-y

    18. [18]

      Zhang, Y.; Kong, T.; Xie, H.; Song, J.; Li, Y.; Ai, Y.; Han, Y.; Bi, D. ACS Energy Lett. 2022, 7, 929. doi: 10.1021/acsenergylett.1c02545  doi: 10.1021/acsenergylett.1c02545

    19. [19]

      Li, Y.; Liu, F. Z.; Waqas, M.; Leung, T. L.; Tam, H. W.; Lan, X. Q.; Tu, B.; Chen, W.; Djurišić, A. B.; He, Z. B. Small Methods 2018, 2, 1700387. doi: 10.1002/smtd.201700387  doi: 10.1002/smtd.201700387

    20. [20]

      Liu, Z.; Liu, F.; Duan, C.; Yuan, L.; Zhu, H.; Li, J.; Wen, Q.; Waterhouse, G. I.; Yang, X.; Yan, K. Chem. Eng. J. 2021, 419, 129482. doi: 10.1016/j.cej.2021.129482  doi: 10.1016/j.cej.2021.129482

    21. [21]

      Gao, Y.; Feng, X.; Chang, J.; Long, C.; Ding, Y.; Li, H.; Huang, K.; Liu, B.; Yang, J. Appl. Phys. Lett. 2022, 121, 073902. doi: 10.1063/5.0097939  doi: 10.1063/5.0097939

    22. [22]

      Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. F. Nat. Commun. 2018, 9, 3239. doi: 10.1038/s41467-018-05760-x  doi: 10.1038/s41467-018-05760-x

    23. [23]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science. 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    24. [24]

      Jiang, Q.; Zhang, X.; You, J. Small. 2018, 14, 1801154. doi: 10.1002/smll.201801154  doi: 10.1002/smll.201801154

    25. [25]

      Chen, J.; Zhao, X.; Kim, S. G.; Park, N. G. Adv. Mater. 2019, 31, 1902902. doi: 10.1002/adma.201902902  doi: 10.1002/adma.201902902

    26. [26]

      Gao, Z. W.; Wang, Y.; Liu, H.; Sun, J.; Kim, J.; Li, Y.; Xu, B.; Choy, W. C. Adv. Funct. Mater. 2021, 31, 2101438. doi: 10.1002/adfm.202101438  doi: 10.1002/adfm.202101438

    27. [27]

      Zhang, Z.; Fang, Z.; Guo, T.; Zhao, R.; Deng, Z.; Zhang, J.; Shang, M.; Liu, X.; Liu, J.; Huang, L. Chem. Eng. J. 2022, 432, 134311. doi: 10.1016/j.cej.2021.134311  doi: 10.1016/j.cej.2021.134311

    28. [28]

      Ai, Y.; Zhang, Y.; Song, J.; Kong, T.; Li, Y.; Xie, H.; Bi, D. J. Phys. Chem. Lett. 2021, 12, 10567. doi: 10.1021/acs.jpclett.1c03002  doi: 10.1021/acs.jpclett.1c03002

    29. [29]

      Wageh, S.; Al-Ghamdi, A. A.; Zhao, L. Acta Phys. -Chim. Sin. 2022, 38, 2111009.  doi: 10.3866/PKU.WHXB202111009

    30. [30]

      Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2022, 38, 2007088.  doi: 10.3866/PKU.WHXB202007088

    31. [31]

      Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J.; et al. Nano Res. 2023, 16, 6849. doi: 10.1007/s12274-023-5403-x  doi: 10.1007/s12274-023-5403-x

    32. [32]

      Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. J. Power Sources 2021, 494, 229781. doi: 10.1016/j.jpowsour.2021.229781  doi: 10.1016/j.jpowsour.2021.229781

    33. [33]

      Liang, J.; Wang, C. X.; Zhao, P. Y.; Lu, Z. P.; Ma, Y.; Xu, Z. R.; Wang, Y. R.; Zhu, H. F.; Hu, Y.; Zhu, G. Y.; et al. Nanoscale 2017, 9, 11841. doi: 10.1039/c7nr03530f  doi: 10.1039/c7nr03530f

    34. [34]

      Xia, Y.; Zhu, M.; Qin, L.; Zhao, C.; Hong, D.; Tian, Y.; Yan, W.; Jin, Z. Energy Mater. 2023, 3, 300004. doi: 10.20517/energymater.2022.55  doi: 10.20517/energymater.2022.55

    35. [35]

      Wang, F.; Ge, C. Y.; Duan, D. W.; Lin, H. R.; Li, L.; Naumov, P.; Hu, H. L. Small Struct. 2022, 3, 2200048. doi: 10.1002/sstr.202200048  doi: 10.1002/sstr.202200048

    36. [36]

      Yang, D.; Zhou, X.; Yang, R. X.; Yang, Z.; Yu, W.; Wang, X. L.; Li, C.; Liu, S. Z.; Chang, R. P. H. Energy Environ. Sci. 2016, 9, 3071. doi: 10.1039/c6ee02139e  doi: 10.1039/c6ee02139e

    37. [37]

      Yang, D.; Yang, R. X.; Ren, X. D.; Zhu, X. J.; Yang, Z.; Li, C.; Liu, S. Z. Adv. Mater. 2016, 28, 5206. doi: 10.1002/adma.201600446  doi: 10.1002/adma.201600446

    38. [38]

      Wu, Q. L.; Zhou, W. R.; Liu, Q.; Zhou, P. C.; Chen, T.; Lu, Y. L.; Qiao, Q. Q.; Yang, S. F. ACS Appl. Mater. Interfaces 2016, 8, 34464. doi: 10.1021/acsami.6b12683  doi: 10.1021/acsami.6b12683

    39. [39]

      Ye, X.; Cai, H.; Xu, T.; Ni, J.; Zhang, J. J. Chem. Phys. 2023, 158, 134706. doi: 10.1063/5.0139669  doi: 10.1063/5.0139669

    40. [40]

      Caprioglio, P.; Cruz, D. S.; Caicedo-Dávila, S.; Zu, F.; Sutanto, A. A.; Peñ a-Camargo, F.; Kegelmann, L.; Meggiolaro, D.; Gregori, L.; Wolff, C. M. Energy Environ. Sci. 2021, 14, 4508. doi: 10.1039/D1EE00869B  doi: 10.1039/D1EE00869B

    41. [41]

      Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J. T. -W. Nature 2019, 571, 245. doi: 10.1038/s41586-019-1357-2  doi: 10.1038/s41586-019-1357-2

    42. [42]

      Deng, X.; Xie, L.; Wang, S.; Li, C.; Wang, A.; Yuan, Y.; Cao, Z.; Li, T.; Ding, L.; Hao, F. Chem. Eng. J. 2020, 398, 125594. doi: 10.1016/j.cej.2020.125594  doi: 10.1016/j.cej.2020.125594

    43. [43]

      Hafner, J. J. Comput. Chem. 2008, 29, 2044. doi: 10.1002/jcc.21057  doi: 10.1002/jcc.21057

    44. [44]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    45. [45]

      Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H.; Lebègue, S.; Paier, J.; Vydrov, O. A.; Ángyán, J. G. Phys. Rev. B 2009, 79, 155107. doi: 10.1103/PhysRevB.79.155107  doi: 10.1103/PhysRevB.79.155107

    46. [46]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    47. [47]

      Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Nano Energy 2021, 80, 105564. doi: 10.1016/j.nanoen.2020.105564  doi: 10.1016/j.nanoen.2020.105564

    48. [48]

      Södergren, S.; Siegbahn, H.; Rensmo, H.; Lindström, H.; Hagfeldt, A.; Lindquist, S. -E. J. Phys. Chem. B 1997, 101, 3087. doi: 10.1021/jp9639399  doi: 10.1021/jp9639399

    49. [49]

      Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.Y.; Park, T.; Choi, J. ACS Energy Lett. 2017, 2, 2667. doi: 10.1021/acsenergylett.7b00888  doi: 10.1021/acsenergylett.7b00888

    50. [50]

      Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z. D. Nano Energy 2017, 31, 462. doi: 10.1016/j.nanoen.2016.11.028  doi: 10.1016/j.nanoen.2016.11.028

    51. [51]

      Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. Nature 2021, 598, 444. doi: 10.1038/s41586-021-03964-8  doi: 10.1038/s41586-021-03964-8

    52. [52]

      Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y. -B.; Huang, F. Nat. Commun. 2018, 9, 4609. doi: 10.1038/s41467-018-07099-9  doi: 10.1038/s41467-018-07099-9

    53. [53]

      Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G. -W.; Choi, H.; Park, S.; Park, S. A.; Park, T. Energy Environ. Sci. 2018, 11, 3238. doi: 10.1039/c8ee02242a  doi: 10.1039/c8ee02242a

    54. [54]

      Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432. doi: 10.1021/jz502703p  doi: 10.1021/jz502703p

    55. [55]

      Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L. ACS Energy Lett. 2021, 6, 3824. doi: 10.1021/acsenergylett.1c01763  doi: 10.1021/acsenergylett.1c01763

  • 加载中
    1. [1]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    18. [18]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    20. [20]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

Metrics
  • PDF Downloads(4)
  • Abstract views(800)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return