Citation: Xin Feng, Kexin Guo, Chunguang Jia, Bowen Liu, Suqin Ci, Junxiang Chen, Zhenhai Wen. Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230305. doi: 10.3866/PKU.WHXB202303050 shu

Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer

  • Corresponding author: Suqin Ci, sqci@nchu.edu.cn Zhenhai Wen, wen@fjirsm.ac.cn
  • Received Date: 28 March 2023
    Revised Date: 31 May 2023
    Accepted Date: 1 June 2023
    Available Online: 25 June 2023

    Fund Project: the National Natural Science Foundation of China 22168025the Natural Science Foundation of Jiangxi Province 20192BAB203013the Natural Science Foundation of Jiangxi Province 20202ACBL203003

  • Owing to its high energy density, sustainability, and pollution-free combustion, hydrogen is considered one of the most promising emerging energy carriers to replace conventional fossil fuels. Among the various hydrogen production technologies, electrolytic water splitting has gained significant attention thanks to its high efficiency and environmentally friendly characteristics. However, the large-scale application of electrolytic water splitting is often hindered by the limitations imposed by the anodic oxygen evolution reaction (OER). To overcome this challenge, a promising alternative approach is to replace the OER with the electrocatalytic glycerol oxidation reaction (GOR) at the anode. This substitution can lead to energy savings and enhanced efficiency of electrolytic water splitting for hydrogen production, thereby further promoting the development of hydrogen as a clean energy source. However, the application of the GOR at anode requires efficient, cost-effective, and highly selective electrocatalysts. To this end, we report the development of a novel acid-alkaline dual-electrolyte flow electrolyzer (AADEF-electrolyzer) by coupling the GOR at the alkaline anode with the hydrogen evolution reaction (HER) at the acidic cathode. A self-supported NiCo2O4 nanoneedle electrode material (NiCo2O4/NF) has been in situ grown on nickel foam (NF) using a simple hydrothermal-calcination method. The electrode demonstrates excellent electrocatalytic performance for the GOR, achieving high electrolysis current density at low potentials and exhibiting high selectivity for formate production, with the Faraday efficiency exceeding 85%. Density functional theory (DFT) calculations imply that NiCo2O4 has a lower energy barrier for the reaction and that the presence of Ni facilitates the reduction of the Co state density, thereby promoting the GOR. An innovative AADEF-electrolyzer was constructed by utilizing NiCo2O4/NF as the anode for the GOR and an acidic cathode for the HER. Experimental results indicate that the AADEF-electrolyzer exhibits excellent GOR performance with a low overpotential and high selectivity toward formate production. It requires a voltage of only 0.36 V to achieve a current density of 10 mA·cm−2 and long-term stability with a Faraday efficiency close to 100% for hydrogen production. The low-cost and easily fabricated self-supported electrode material, together with the acid-alkaline dual-electrolyte flow electrolyzer, provide an innovative strategy for developing hybrid electrolysis systems.
  • 加载中
    1. [1]

      Su, H.; Jiang, J.; Song, S.; An, B.; Li, N.; Gao, Y.; Ge, L. Chin. J. Catal. 2023, 44, 7. doi: 10.1016/s1872-2067(22)64149-4  doi: 10.1016/s1872-2067(22)64149-4

    2. [2]

      Chen, H.; Chen, J.; He, H.; Chen, X.; Jia, C.; Chen, D.; Liang, J.; Yu, D.; Yao, X.; Qin, L.; et al. Appl. Catal. B 2023, 323, 122187. doi: 10.1016/j.apcatb.2022.122187  doi: 10.1016/j.apcatb.2022.122187

    3. [3]

      Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys.-Chim. Sin. 2023, 39 (11), 2212062.  doi: 10.3866/PKU.WHXB202212062

    4. [4]

      Moreira, R.; Bimbela, F.; Gandía, L. M.; Ferreira, A.; Sánchez, J. L.; Portugal, A. Renew. Sust. Energ. Rev. 2021, 148, 111299. doi: 10.1016/j.rser.2021.111299  doi: 10.1016/j.rser.2021.111299

    5. [5]

      Li, X.; Hao, X.; Abudula, A.; Guan, G. J. Mater. Chem. A 2016, 4 (31), 11973. doi: 10.1039/c6ta02334g  doi: 10.1039/c6ta02334g

    6. [6]

      Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45 (9), 2603. doi: 10.1039/c5cs00838g  doi: 10.1039/c5cs00838g

    7. [7]

      Sun, L.; Dai, Z.; Zhong, L.; Zhao, Y.; Cheng, Y.; Chong, S.; Chen, G.; Yan, C.; Zhang, X.; Tan, H.; et al. Appl. Catal. B 2021, 297, 120477. doi: 10.1016/j.apcatb.2021.120477  doi: 10.1016/j.apcatb.2021.120477

    8. [8]

      Yang, S.; Du, R.; Yu, Y.; Zhang, Z.; Wang, F. Nano Energy 2020, 77, 105057. doi: 10.1016/j.nanoen.2020.105057  doi: 10.1016/j.nanoen.2020.105057

    9. [9]

      Ding, M.; Chen, J.; Jiang, M.; Zhang, X.; Wang, G. J. Mater. Chem. A 2019, 7 (23), 14163. doi: 10.1039/c9ta00708c  doi: 10.1039/c9ta00708c

    10. [10]

      Liu, Y.; Wang, Y.; Liu, B.; Amer, M.; Yan, K. Acta Phys.-Chim. Sin. 2023, 39 (2), 2205028.  doi: 10.3866/PKU.WHXB202205028

    11. [11]

      Lü, L.; Zhang, L.; He, X.; Yuan, H.; Ouyang, S.; Zhang, T. Acta Phys.-Chim. Sin. 2021, 37 (7), 2007079.  doi: 10.3866/PKU.WHXB202007079

    12. [12]

      Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179. doi: 10.1016/j.jechem.2021.02.026  doi: 10.1016/j.jechem.2021.02.026

    13. [13]

      Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400  doi: 10.1016/j.apcatb.2022.121400

    14. [14]

      Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. Adv. Funct. Mater. 2021, 31 (34), 2102886. doi: 10.1002/adfm.202102886  doi: 10.1002/adfm.202102886

    15. [15]

      Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y.; Cabot, A.; Cui, C. Angew. Chem. Int. Ed. 2020, 59 (47), 20826. doi: 10.1002/anie.202004301  doi: 10.1002/anie.202004301

    16. [16]

      Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60 (42), 22908. doi: 10.1002/anie.202109211  doi: 10.1002/anie.202109211

    17. [17]

      Zheng, D.; Li, J.; Ci, S.; Cai, P.; Ding, Y.; Zhang, M.; Wen, Z. Appl. Catal. B 2020, 277, 119178. doi: 10.1016/j.apcatb.2020.119178  doi: 10.1016/j.apcatb.2020.119178

    18. [18]

      Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. L.; Fu, X. Z. Adv. Funct. Mater. 2020, 30 (10), 1909610. doi: 10.1002/adfm.201909610  doi: 10.1002/adfm.201909610

    19. [19]

      Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; et al. Nat. Commun. 2020, 11 (1), 265. doi: 10.1038/s41467-019-14157-3  doi: 10.1038/s41467-019-14157-3

    20. [20]

      Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10 (12), 6741. doi: 10.1021/acscatal.0c01498  doi: 10.1021/acscatal.0c01498

    21. [21]

      Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723. doi: 10.1016/j.apcatb.2021.120723  doi: 10.1016/j.apcatb.2021.120723

    22. [22]

      Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Appl. Energy 2018, 230, 1347. doi: 10.1016/j.apenergy.2018.09.006  doi: 10.1016/j.apenergy.2018.09.006

    23. [23]

      Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A; Baawain, M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34 (2), 267. doi: 10.1515/revce-2016-0026  doi: 10.1515/revce-2016-0026

    24. [24]

      Deng, C.-Q.; Deng, J.; Fu, Y. Green Chem. 2022, 24 (21), 8477. doi: 10.1039/d2gc03235j  doi: 10.1039/d2gc03235j

    25. [25]

      Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am. Chem. Soc. 2022, 144 (16), 7224. doi: 10.1021/jacs.1c13740  doi: 10.1021/jacs.1c13740

    26. [26]

      Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. Energy Technol. 2020, 9 (2), 2000804. doi: 10.1002/ente.202000804  doi: 10.1002/ente.202000804

    27. [27]

      Duan, Y.; Liu, Z.; Zhao, B.; Liu, J. RSC Adv. 2020, 10 (27), 15769. doi: 10.1039/d0ra00564a  doi: 10.1039/d0ra00564a

    28. [28]

      Bai, J.; Huang, H.; Li, F.-M.; Zhao, Y.; Chen, P.; Jin, P.-J.; Li, S.-N.; Yao, H.-C.; Zeng, J.-H.; Chen, Y. J. Mater. Chem. A 2019, 7 (37), 21149. doi: 10.1039/c9ta08806g  doi: 10.1039/c9ta08806g

    29. [29]

      Brix, A. C.; Morales, D. M.; Braun, M.; Jambrec, D.; Junqueira, J. R.; Cychy, S.; Seisel, S.; Masa, J.; Muhler, M.; Andronescu, C.; et al. ChemElectroChem 2021, 8 (12), 2336. doi: 10.1002/celc.202100739  doi: 10.1002/celc.202100739

    30. [30]

      Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain Chem. Eng. 2017, 5 (8), 6626. doi: 10.1021/acssuschemeng.7b00868  doi: 10.1021/acssuschemeng.7b00868

    31. [31]

      Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8 (7), 6301. doi: 10.1021/acscatal.8b01317  doi: 10.1021/acscatal.8b01317

    32. [32]

      Alaba, P. A.; Lee, C. S.; Abnisa, F.; Aroua, M. K.; Cognet, P.; Pérès, Y.; Wan Daud, W. M. A. Rev. Chem. Eng. 2021, 37 (7), 779. doi: 10.1515/revce-2019-0013  doi: 10.1515/revce-2019-0013

    33. [33]

      Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.; Gu, L.; Wang, X. Adv. Funct. Mater. 2020, 30 (11), 1908235. doi: 10.1002/adfm.201908235  doi: 10.1002/adfm.201908235

    34. [34]

      Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19 (8), 1958. doi: 10.1039/c7gc00371d  doi: 10.1039/c7gc00371d

    35. [35]

      Lee, S.; Kim, H. J.; Lim, E. J.; Kim, Y.; Noh, Y.; Huber, G. W.; Kim, W. B. Green Chem. 2016, 18 (9), 2877. doi: 10.1039/c5gc02865e  doi: 10.1039/c5gc02865e

    36. [36]

      De Souza, M. B.; Vicente, R. A.; Yukuhiro, V. Y.; Pires, C. T.; Cheuquepán, W.; Bott-Neto, J. L.; Solla-Gullón, J.; Fernández, P. S. ACS Catal. 2019, 9 (6), 5104. doi: 10.1021/acscatal.9b00190  doi: 10.1021/acscatal.9b00190

    37. [37]

      Zhou, Z.; Chen, C.; Gao, M.; Xia, B.; Zhang, J. Green Chem. 2019, 21 (24), 6699. doi: 10.1039/c9gc02880c  doi: 10.1039/c9gc02880c

    38. [38]

      Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Adv. Mater. 2022, 34 (2), e2107185. doi: 10.1002/adma.202107185  doi: 10.1002/adma.202107185

    39. [39]

      Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12432. doi: 10.1021/acscatal.2c03162  doi: 10.1021/acscatal.2c03162

    40. [40]

      Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang, X.; Wang, G. ACS Catal. 2021, 14338. doi: 10.1021/acscatal.1c03960  doi: 10.1021/acscatal.1c03960

    41. [41]

      Zhou, H.; Zheng, M.; Pang, H. Chem. Eng. J. 2020, 38, 127884. doi: 10.1016/j.cej.2020.127884  doi: 10.1016/j.cej.2020.127884

    42. [42]

      Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C.C. Adv. Mater. 2010, 22 (3), 347. doi: 10.1002/adma.200902175  doi: 10.1002/adma.200902175

    43. [43]

      Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18 (13), e2106961. doi: 10.1002/smll.202106961  doi: 10.1002/smll.202106961

    44. [44]

      Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. J. Ind. Eng. Chem. 2020, 89, 485. doi: 10.1016/j.jiec.2020.06.028  doi: 10.1016/j.jiec.2020.06.028

    45. [45]

      Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Adv. Funct. Mater. 2012, 22 (5), 998. doi: 10.1002/adfm.201102155  doi: 10.1002/adfm.201102155

    46. [46]

      Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Chem. Rev. 2017, 117 (15), 10121. doi: 10.1021/acs.chemrev.7b00051  doi: 10.1021/acs.chemrev.7b00051

    47. [47]

      Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50 (3), 1495. doi: 10.1039/d0cs01239d  doi: 10.1039/d0cs01239d

    48. [48]

      Zhang, C.; Ci, S.; Peng, X.; Huang, J.; Cai, P.; Ding, Y.; Wen, Z. J. Energy Chem. 2021, 54, 30. doi: 10.1016/j.jechem.2020.04.073  doi: 10.1016/j.jechem.2020.04.073

    49. [49]

      Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. J. Mater. Chem. A 2018, 6 (36), 17763. doi: 10.1039/c8ta06827e  doi: 10.1039/c8ta06827e

    50. [50]

      Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Nano Energy 2019, 61, 576. doi: 10.1016/j.nanoen.2019.04.050  doi: 10.1016/j.nanoen.2019.04.050

    51. [51]

      Liu, B.; Wang, G.; Feng, X.; Dai, L.; Wen, Z.; Ci, S. Nanoscale 2022, 14, 12841. doi: 10.1039/d2nr02689a  doi: 10.1039/d2nr02689a

    52. [52]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10 (1), 5335. doi: 10.1038/s41467-019-13375-z  doi: 10.1038/s41467-019-13375-z

    53. [53]

      Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Appl. Catal. B 2021, 298, 120493. doi: 10.1016/j.apcatb.2021.120493  doi: 10.1016/j.apcatb.2021.120493

    54. [54]

      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. J. Phys. Condens. Matter 2009, 21 (39), 395502. doi: 10.1088/0953-8984/21/39/395502  doi: 10.1088/0953-8984/21/39/395502

    55. [55]

      Yan, X.; Zhang, W.-D.; Hu, Q.-T.; Liu, J.; Li, T.; Liu, Y.; Gu, Z.-G. Int. J. Hydrogen Energy 2019, 44 (51), 27664. doi: 10.1016/j.ijhydene.2019.09.004  doi: 10.1016/j.ijhydene.2019.09.004

    56. [56]

      Sun, B.; Miao, F.; Tao, B.; Wang, Y.; Zang, Y.; Chu, P. K. J. Phys. Chem. Solids 2021, 158, 110255. doi: 10.1016/j.jpcs.2021.110255  doi: 10.1016/j.jpcs.2021.110255

    57. [57]

      Qian, L.; Luo, S.; Wu, L.; Hu, X.; Chen, W.; Wang, X. Appl. Surf. Sci. 2020, 503, 144306. doi: 10.1016/j.apsusc.2019.144306  doi: 10.1016/j.apsusc.2019.144306

    58. [58]

      Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    59. [59]

      Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    11. [11]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    12. [12]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    15. [15]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    16. [16]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(0)
  • Abstract views(280)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return