Citation: Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230303. doi: 10.3866/PKU.WHXB202303034 shu

Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation

  • Corresponding author: Rengui Li, rgli@dicp.ac.cn
  • Received Date: 16 March 2023
    Revised Date: 11 April 2023
    Accepted Date: 14 April 2023
    Available Online: 21 April 2023

    Fund Project: the National Key Research and Development Program of China 2021YFA1502300Fundamental Research Center of Artificial Photosynthesis (FReCAP) under National Natural Science Foundation of China 22088102R.L. thanks the support from National Natural Science Foundation of China 22090033R.L. thanks the support from National Natural Science Foundation of China 22272165

  • The conversion of renewable solar energy into chemical energy is an important topic in research. Recently, bismuth chromate (Bi2CrO6) has attracted attention in photocatalytic research, particularly for its potential applications in pollutant degradation and water splitting. This layered metal oxide exhibits a narrow optical band gap of approximately 1.9 eV and can utilize most of visible light in the solar spectrum. However, the photocatalytic activity of Bi2CrO6 is relatively low, and its poor charge separation properties restrict its practical applications. Herein, we report a microwave-assisted hydrothermal method for the fabrication of Bi2CrO6 crystals with high crystallinity and uniform morphology. Compared with the conventional preparations, microwave irradiation induces rapid volumetric heating and greatly accelerates nucleation and growth reactions, forming Bi2CrO6 crystals within minutes. Multiple characterization methods, including X-ray diffraction, Raman scattering, and scanning electron microscopy, were employed to examine the crystallinity and morphologies of the samples. Microwave-assisted synthesized Bi2CrO6 crystals showed better water oxidation activity in photocatalytic and photoelectrochemical tests than the conventional samples. Oxygen evolution rates were boosted 7.2 and 3.1 times using AgNO3 and Fe(NO3)3 as electron acceptors, respectively. Further investigations showed that microwave-assisted Bi2CrO6 crystals exhibited improved photogenerated charge separation. The average lifetime of photogenerated carriers, calculated from time-resolved photoluminescence results, also showed an increase. Furthermore, using photodeposition of metals and oxides as probes, the spatial separation of photogenerated electrons and holes was demonstrated to take place between {001} top and side facets of the Bi2CrO6 crystal samples. Loading reduction and oxidation cocatalysts onto different facets significantly enhanced the photocatalytic activities. These results enforce the promise of microwave-assisted Bi2CrO6 crystal synthesis for photocatalytic water-splitting applications and present a solution for efficient solar-energy conversion.
  • 加载中
    1. [1]

      Inoue, Y. Energy Environ. Sci. 2009, 2, 364. doi: 10.1039/B816677N  doi: 10.1039/B816677N

    2. [2]

      Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851. doi: 10.1021/jp070911w  doi: 10.1021/jp070911w

    3. [3]

      He, R.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2016, 32, 2841.  doi: 10.3866/PKU.WHXB201611021

    4. [4]

      He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022.  doi: 10.3866/PKU.WHXB202011022

    5. [5]

      Tao, X.; Zhao, Y.; Mu, L.; Wang, S.; Li, R.; Li, C. Adv. Energy Mater. 2018, 8, 1701392. doi: 10.1002/aenm.201701392  doi: 10.1002/aenm.201701392

    6. [6]

      He, R.; Xu, D.; Cheng, B.; Yu, J.; Ho, W. Nanoscale Horiz. 2018, 3, 464. doi: 10.1039/c8nh00062j  doi: 10.1039/c8nh00062j

    7. [7]

      Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Chem. Eng. J. 2020, 389, 124402. doi: 10.1016/j.cej.2020.124402  doi: 10.1016/j.cej.2020.124402

    8. [8]

      Hasanvandian, F.; Moradi, M.; Samani, S. A.; Kakavandi, B.; Setayesh, S. R.; Noorisepehr, M. Chemosphere 2022, 287, 132273. doi: 10.1016/j.chemosphere.2021.132273  doi: 10.1016/j.chemosphere.2021.132273

    9. [9]

      Li, Z.; Zhang, Z.; Wang, L.; Meng, X. J. Catal. 2020, 382, 40. doi: 10.1016/j.jcat.2019.12.001  doi: 10.1016/j.jcat.2019.12.001

    10. [10]

      Lai, K.; Wei, W.; Dai, Y.; Zhang, R.; Huang, B. Rare Metals 2011, 30, 166. doi: 10.1007/s12598-011-0262-0  doi: 10.1007/s12598-011-0262-0

    11. [11]

      Liu, Y. H.; Li, J. B.; Liang, J. K.; Luo, J.; Ji, L. N.; Zhang, J. Y.; Rao, G. H. Mater. Chem. Phys. 2008, 112, 239. doi: 10.1016/j.matchemphys.2008.05.038  doi: 10.1016/j.matchemphys.2008.05.038

    12. [12]

      Zhang, Q.; Huang, B.; Wang, P.; Zhang, X.; Qin, X.; Wang, Z. Int. J. Photoenergy 2012, 2012, 461291. doi: 10.1155/2012/461291  doi: 10.1155/2012/461291

    13. [13]

      Chawla, H.; Chandra, A.; Ingole, P. P.; Garg, S. J. Ind. Eng. Chem. 2021, 95, 1. doi: 10.1016/j.jiec.2020.12.028  doi: 10.1016/j.jiec.2020.12.028

    14. [14]

      Tao, X.; Zhou, H.; Zhang, C.; Ta, N.; Li, R.; Li, C. Adv. Mater. 2023, 35, 2211182. doi: 10.1002/adma.202211182  doi: 10.1002/adma.202211182

    15. [15]

      Jiang, W.; Ni, C.; Zhang, L.; Shi, M.; Qu, J.; Zhou, H.; Zhang, C.; Chen, R.; Wang, X.; Li, C.; et al. Angew. Chem. Int. Ed. 2022, 61, e202207161. doi: 10.1002/anie.202207161  doi: 10.1002/anie.202207161

    16. [16]

      Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; et al. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/C6EE00526H  doi: 10.1039/C6EE00526H

    17. [17]

      Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E. A.; Li, R.; Li, C. Angew. Chem. Int. Ed. 2020, 59, 6590. doi: 10.1002/anie.201916510  doi: 10.1002/anie.201916510

    18. [18]

      Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. Angew. Chem. Int. Ed. 2020, 59, 9653. doi: 10.1002/anie.202001438  doi: 10.1002/anie.202001438

    19. [19]

      Zhao, Y.; Li, R.; Mu, L.; Li, C. Cryst. Growth Des. 2017, 17, 2923. doi: 10.1021/acs.cgd.7b00291  doi: 10.1021/acs.cgd.7b00291

    20. [20]

      Rodrigues, B. S.; Branco, C. M.; Corio, P.; Souza, J. S. Cryst. Growth Des. 2020, 20, 3673. doi: 10.1021/acs.cgd.9b01517  doi: 10.1021/acs.cgd.9b01517

    21. [21]

      Xie, J.; Shevlin, S. A.; Ruan, Q.; Moniz, S. J. A.; Liu, Y.; Liu, X.; Li, Y.; Lau, C. C.; Guo, Z. X.; Tang, J. Energy Environ. Sci. 2018, 11, 1617. doi: 10.1039/C7EE02981K  doi: 10.1039/C7EE02981K

    22. [22]

      Mei, Z. H.; Wang, G. H.; Yan, S. D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/pku.Whxb202009097

    23. [23]

      Huang, C.; Wen, Y.; Ma, J.; Dong, D.; Shen, Y.; Liu, S.; Ma, H.; Zhang, Y. Nat. Commun. 2021, 12, 320. doi: 10.1038/s41467-020-20521-5  doi: 10.1038/s41467-020-20521-5

    24. [24]

      Wu, L.; Bi, J.; Li, Z.; Wang, X.; Fu, X. Catal. Today 2008, 131, 15. doi: 10.1016/j.cattod.2007.10.089  doi: 10.1016/j.cattod.2007.10.089

    25. [25]

      Wang, J.; Wu, W.; Kondo, H.; Fan, T.; Zhou, H. Nanotechnology 2022, 33, 342002. doi: 10.1088/1361-6528/ac6c97  doi: 10.1088/1361-6528/ac6c97

    26. [26]

      Yang, G.; Park, S. -J. Materials 2019, 12, 1177. doi: 10.3390/ma12071177  doi: 10.3390/ma12071177

    27. [27]

      Anumol, E. A.; Kundu, P.; Deshpande, P. A.; Madras, G.; Ravishankar, N. ACS Nano 2011, 5, 8049. doi: 10.1021/nn202639f  doi: 10.1021/nn202639f

    28. [28]

      Chen, Y.; Yang, W.; Gao, S.; Zhu, L.; Sun, C.; Li, Q. ChemSusChem 2018, 11, 1521. doi: 10.1002/cssc.201800180  doi: 10.1002/cssc.201800180

    29. [29]

      Yang, Z.; Shen, M.; Dai, K.; Zhang, X.; Chen, H. Appl. Surf. Sci. 2018, 430, 505. doi: 10.1016/j.apsusc.2017.08.072  doi: 10.1016/j.apsusc.2017.08.072

    30. [30]

      Hamza, M. A.; El-Shazly, A. N.; Allam, N. K. Mater. Lett. 2020, 262, 127188. doi: 10.1016/j.matlet.2019.127188  doi: 10.1016/j.matlet.2019.127188

    31. [31]

      Bandiello, E.; Errandonea, D.; Martinez-Garcia, D.; Santamaria-Perez, D.; Manjón, F. J. Phys. Rev. B 2012, 85, 024108. doi: 10.1103/PhysRevB.85.024108  doi: 10.1103/PhysRevB.85.024108

    32. [32]

      Frost, R. L. J. Raman Spectrosc. 2004, 35, 153. doi: 10.1002/jrs.1121  doi: 10.1002/jrs.1121

    33. [33]

      Leandro, M. K. D. N. S.; Moura, J. V. B.; Freire, P. D. T. C.; Vega, M. L.; Lima, C. D. L.; Hidalgo, Á. A.; Araújo, A. C. J. D.; Freitas, P. R.; Paulo, C. L. R.; Sousa, A. K. D.; et al. Antibiotics 2021, 10, 1068. doi: 10.3390/antibiotics10091068  doi: 10.3390/antibiotics10091068

    34. [34]

      Chaves, M. D. S.; Lima, G. D.; De Assis, M.; Mendonca, C. D. S.; Pinatti, I. M.; Gouveia, A. F.; Rosa, I. L. V.; Longo, E.; Almeida, M. A. P.; Franco, T. J. Solid State Chem. 2019, 274, 270. doi: 10.1016/j.jssc.2019.03.031  doi: 10.1016/j.jssc.2019.03.031

    35. [35]

      Lu, J.; Zhou, W.; Zhang, X.; Xiang, G. J. Phys. Chem. Lett. 2020, 11, 1038. doi: 10.1021/acs.jpclett.9b03575  doi: 10.1021/acs.jpclett.9b03575

    36. [36]

      Chen, X.; Xu, Y.; Ma, X.; Zhu, Y. Natl. Sci. Rev. 2020, 7, 652. doi: 10.1093/nsr/nwz198  doi: 10.1093/nsr/nwz198

    37. [37]

      Meng, X.; Zhang, Z. J. Photochem. Photobiol. A 2015, 310, 33. doi: 10.1016/j.jphotochem.2015.04.024  doi: 10.1016/j.jphotochem.2015.04.024

    38. [38]

      Gao, X.; Huang, K.; Zhang, Z.; Meng, X. Chem. Commun. 2022, 58, 2014. doi: 10.1039/D1CC06734F  doi: 10.1039/D1CC06734F

    39. [39]

      Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038/ncomms2401  doi: 10.1038/ncomms2401

    40. [40]

      Li, R.; Tao, X.; Chen, R.; Fan, F.; Li, C. Chem. Eur. J. 2015, 21, 14337. doi: 10.1002/chem.20150256  doi: 10.1002/chem.20150256

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    3. [3]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    4. [4]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    5. [5]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    14. [14]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    19. [19]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    20. [20]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

Metrics
  • PDF Downloads(14)
  • Abstract views(2009)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return