Citation: Tao Xu, Wei Sun, Tianci Kong, Jie Zhou, Yitai Qian. Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230302. doi: 10.3866/PKU.WHXB202303021 shu

Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance

  • Corresponding author: Jie Zhou, zhj1991@ustc.edu.cn Yitai Qian, ytqian@ustc.edu.cn
  • Received Date: 8 March 2023
    Revised Date: 14 April 2023
    Accepted Date: 20 April 2023
    Available Online: 28 April 2023

    Fund Project: the National Natural Science Foundation of China 22201275the National Natural Science Foundation of China 21975244the National Natural Science Foundation of China 21831006the Fundamental Research Funds for the Central Universities WK2060000036the Anhui Provincial Natural Science Foundation 2208085QB32

  • Graphite has been extensively employed as commercial anode material in Li-ion batteries due to its high abundance, low cost, and negative electrode potential. Furthermore, it has demonstrated significant potential for use in K-ion batteries. However, distinct structural damage caused by the larger radius of K-ion (0.138 nm) compared to that of Li-ion (0.076 nm) leads to obvious capacity decay and unstable cycle life. It is crucial to improve the cycling stability of graphite in potassium ion batteries (PIBs). Herein, we design a stable interface of graphite anode by graphene coating with a simple and efficient microwave method. According to X-ray photoelectron spectroscopy (XPS), microwave reduction can effectively remove the oxygen group of graphene oxide (GO) within 10 s. The graphene coating can buffer the volume expansion of the graphite to suppress structural collapse; it can also accelerate electronic transmission to improve rate performance. As a result, the graphene-coating graphite anode, named GCG, exhibits super cycling stability with a capacity of 262 mAh∙g−1 after 3000 cycles at a current density of 0.2 A∙g−1, which means it can operate smoothly for one year. In contrast, at the same current density, graphite exhibits capacity fading to less than 150 mAh∙g−1 after 150 cycles. Moreover, compared to graphite, GCG demonstrates better rate performance achieving a capacity of 161.2 mAh∙g−1 at 500 mA∙g−1. Further electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) tests show that GCG exhibits faster electrical conductivity and ion diffusion compared to graphite. Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) images after cycling verify that the graphene buffer interface benefits the integrity of the electrode structure and improves the stability of the solid electrolyte interphase (SEI). Compared to graphite, the GCG anode exhibits better performance, as follows: 1) The graphene coating inhibits exfoliation of graphite during cycling, solving the problem of graphite anode' short cycling life, and 2) the graphene protective layer improves the ion diffusion rate, resulting in better rate performance of the GCG. In addition, this approach offers the advantages of simple operation and low cost, hopefully enabling large-scale applications of potassium-ion batteries.
  • 加载中
    1. [1]

      Goodenough, J. B. Nat. Electron. 2018, 1 (3), 204. doi: 10.1038/s41928-018-0048-6  doi: 10.1038/s41928-018-0048-6

    2. [2]

      Tarascon, J.-M. Nat. Chem. 2010, 2 (6), 510. doi: 10.1038/nchem.680  doi: 10.1038/nchem.680

    3. [3]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7 (1), 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    4. [4]

      Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9 (5), 4404. doi: 10.1021/acsami.6b07989  doi: 10.1021/acsami.6b07989

    5. [5]

      Wu, X.; Leonard, D. P.; Ji, X. Chem. Mater. 2017, 29 (12), 5031. doi: 10.1021/acs.chemmater.7b01764  doi: 10.1021/acs.chemmater.7b01764

    6. [6]

      Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. Adv. Energy Mater. 2017, 7 (24), 1602911. doi: 10.1002/aenm.201602911  doi: 10.1002/aenm.201602911

    7. [7]

      Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Adv. Funct. Mater. 2016, 26 (44), 8103. doi: 10.1002/adfm.201602248  doi: 10.1002/adfm.201602248

    8. [8]

      Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Electrochem. Commun. 2015, 60, 172. doi: 10.1016/j.elecom.2015.09.002  doi: 10.1016/j.elecom.2015.09.002

    9. [9]

      Kim, H.; Hyun, J. C.; Jung, J. I.; Lee, J. B.; Choi, J.; Cho, S. Y.; Jin, H.-J.; Yun, Y. S. J. Mater. Chem. A 2022, 10 (4), 2055. doi: 10.1039/d1ta08981a  doi: 10.1039/d1ta08981a

    10. [10]

      Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Adv. Energy Mater. 2016, 6 (3), 1501874. doi: 10.1002/aenm.201501874  doi: 10.1002/aenm.201501874

    11. [11]

      Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137 (36), 11566. doi: 10.1021/jacs.5b06809  doi: 10.1021/jacs.5b06809

    12. [12]

      Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C.-F. Angew. Chem. Int. Ed. 2019, 58 (46), 16474. doi: 10.1002/anie.201909202  doi: 10.1002/anie.201909202

    13. [13]

      Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8 (8), 2277. doi: 10.1021/nl800957b  doi: 10.1021/nl800957b

    14. [14]

      Liang, K.; Li, M.; Hao, Y.; Yan, W.; Cao, M.; Fan, S.; Han, W.; Su, J. Chem. Eng. J. 2020, 394, 124956. doi: 10.1016/j.cej.2020.124956  doi: 10.1016/j.cej.2020.124956

    15. [15]

      Liu, C.; Fang, Z.; Li, X.; Zhou, J.; Yang, G.; Peng, L.; Guo, X.; Ding, W.; Hou, W. Nano Res. 2022, 16 (2), 2463. doi: 10.1007/s12274-022-4994-y  doi: 10.1007/s12274-022-4994-y

    16. [16]

      Wang, J.; Yin, B.; Gao, T.; Wang, X.; Li, W.; Hong, X.; Wang, Z.; He, H. Acta Phys. -Chim. Sin. 2022, 38 (2), 2012088.  doi: 10.3866/PKU.WHXB202012088

    17. [17]

      Liu, W.; Li, H.; Jin, J.; Wang, Y.; Zhang, Z.; Chen, Z.; Wang, Q.; Chen, Y.; Paek, E.; Mitlin, D. Angew. Chem. Int. Ed. 2019, 58 (46), 16590. doi: 10.1002/anie.201906612  doi: 10.1002/anie.201906612

    18. [18]

      Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. Science 2016, 353 (6306), 1413. doi: 10.1126/science.aah3398  doi: 10.1126/science.aah3398

    19. [19]

      Zhang, Y.; Chen, X.; Cen, W.; Ren, W.; Guo, H.; Vvu, S.; Xiao, Y.; Chen, S.; Guo, Y.; Xiao, D.; et al. Nano Res. 2022, 15 (5), 4083. doi: 10.1007/s12274-021-4023-6  doi: 10.1007/s12274-021-4023-6

    20. [20]

      Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Chem. Rev. 2010, 110 (3), 1278. doi: 10.1021/cr800344k  doi: 10.1021/cr800344k

    21. [21]

      Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    22. [22]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy. 2018, 3 (9), 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    23. [23]

      Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80. doi: 10.1016/j.jpowsour.2017.06.023  doi: 10.1016/j.jpowsour.2017.06.023

    24. [24]

      Kim, H.; Hong, J.; Park, Y.-U.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25 (4), 534. doi: 10.1002/adfm.201402984  doi: 10.1002/adfm.201402984

    25. [25]

      Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7 (5), 1597. doi: 10.1039/c3ee44164d  doi: 10.1039/c3ee44164d

    26. [26]

      Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Adv. Energy Mater. 2019, 9 (44), 1902618. doi: 10.1002/aenm.201902618  doi: 10.1002/aenm.201902618

    27. [27]

      Lin, X.; Dong, Y.; Chen, X.; Liu, H.; Liu, Z.; Xing, T.; Li, A.; Song, H. J. Mater. Chem. A 2021, 9 (10), 6423. doi: 10.1039/d1ta00178g  doi: 10.1039/d1ta00178g

    28. [28]

      Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. J. Electrochem Soc. 2004, 151 (9), A1324. doi: 10.1149/1.1775218  doi: 10.1149/1.1775218

    29. [29]

      Funabiki, A.; Inaba, M.; Ogumi, Z.; Yuasa, S.; Otsuji, J.; Tasaka, A. J. Electrochem. Soc. 1998, 145 (1), 172. doi: 10.1149/1.1838231  doi: 10.1149/1.1838231

    30. [30]

      Meng, C.; Yuan, M.; Cao, B.; Lin, X.; Zhang, J.; Li, A.; Chen, X.; Jia, M.; Song, H. Carbon 2022, 192, 347. doi: 10.1016/j.carbon.2022.02.039  doi: 10.1016/j.carbon.2022.02.039

    31. [31]

      Li, Q.; Zhang, Y.; Chen, Z.; Zhang, J.; Tao, Y.; Yang, Q.-H. Adv. Energy Mater. 2022, 12 (35), 2201574. doi: 10.1002/aenm.202201574  doi: 10.1002/aenm.202201574

    32. [32]

      Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Angew. Chem. Int. Ed. 2019, 58 (31), 10500. doi: 10.1002/anie.201904258  doi: 10.1002/anie.201904258

  • 加载中
    1. [1]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    17. [17]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    18. [18]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(1)
  • Abstract views(291)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return