Citation: Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230204. doi: 10.3866/PKU.WHXB202302049 shu

Function of Electron Spin Effect in Electrocatalysts

  • Corresponding author: Jia-Nan Zhang, zjn@zzu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 27 February 2023
    Revised Date: 20 March 2023
    Accepted Date: 20 March 2023
    Available Online: 28 March 2023

    Fund Project: the National Natural Science Foundation of China U22A20107the National Natural Science Foundation of China U1967215the Distinguished Young Scholars Innovation Team of Zhengzhou University 32320275the Academic Degrees & Graduate Education Reform Project of Henan Province 2021SJGLX093Ythe Science and Technology Research Support Plan in Henan Province 222301420001

  • With the continuous consumption of non-renewable energy and increasing exacerbation in associated environmental problems, there is a growing demand for clean renewable energy. This demand has led to the development of many energy conversion technologies to alleviate the energy crisis and related environmental problems. The development of high-efficiency electrocatalysts is crucial for the progress of renewable energy conversion and storage technologies. Over the past decade, researchers have gradually understood the intrinsic reaction mechanism and structure-performance relationships in electrocatalysis, and made significant progress in synthesizing high-performance electrocatalysts. Detailed analysis of the relationship between the intrinsic activity and electronic structure of active sites, including the deeper levels of electronic spin distribution of catalyst active sites, has been the focus of electrocatalysis research. Spin is an inherent property of particles and can have a unique impact on chemical reactions. Therefore, using electron spin to further study the electronic structure of active sites is expected to bring new development opportunities to catalyst design theory. Spin control in electrocatalysts is undoubtedly an effective method to improve catalytic performance. This review article introduces the progress status of electron spin in electrocatalysis, summarizes the common strategies for controlling electron spin at the active sites in electrocatalysis, and expound the mechanism of spin effect in electrocatalysis from both thermodynamic and kinetic aspects. Further, the article reviews the latest research progress concerning the spin effect on several reactions such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR) and carbon dioxide reduction reaction (CO2RR). It explains the important role of spin in catalyst activity and catalyst promotion of the aforementioned reactions, and then discusses the spin stability of the catalyst active sites in ORR. In addition, the article reviews the advanced methods widely used for characterizing electron spin in electrocatalysis, such as vibrating sample magnetometry, electron paramagnetic resonance spectroscopy, Mossbauer spectroscopy, and X-ray spectroscopy, and discusses the first-principle calculation methods employed in spin catalysis. Finally, the article summarizes the current development of spin electronics in electrocatalysis and proposes future development directions regarding the spin effect in electrocatalysis. In summary, understanding the role of spin effect is instrumental for improving the understanding of the mechanism of electrocatalytic reaction, and can guide the design of high-efficiency catalysts, which has broad research prospects. This review presents for the first time a comprehensive summary of the latest research progress on the spin effect in the field of electrocatalysis, which provides theoretical guidance for the design of spin-regulated high-efficiency electrocatalysts.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Luo, M. C.; Guo, S. J. Nat. Rev. Mater. 2017, 2, 17059. doi: 10.1038/natrevmats.2017.59  doi: 10.1038/natrevmats.2017.59

    3. [3]

      Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110 (11), 6474. doi: 10.1021/cr100246c  doi: 10.1021/cr100246c

    4. [4]

      Wang, B, Y.; Li, L.; Li, Q.; Jin, K. Y.; Zhang, S. Q.; Zhang, J. N.; Yan, W. F. Chem. J. Chin. Univ. 2021, 42, 40.  doi: 10.7503/cjcu20200362

    5. [5]

      Wang, L. G.; Wang, D. S.; Li, Y. D. Carbon Energy 2022, 4 (6), 1021. doi: 10.1002/cey2.194  doi: 10.1002/cey2.194

    6. [6]

      Fang, Y.; Hou, Y.; Fu, X.; Wang, X. Chem. Rev. 2022, 122 (3), 4204. doi: 10.1021/acs.chemrev.1c00686  doi: 10.1021/acs.chemrev.1c00686

    7. [7]

    8. [8]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46 (2), 337. doi: 10.1039/c6cs00328a  doi: 10.1039/c6cs00328a

    9. [9]

      Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2 (7), 578. doi: 10.1038/s41929-019-0304-9  doi: 10.1038/s41929-019-0304-9

    10. [10]

      Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44 (8), 2168. doi: 10.1039/c4cs00484a  doi: 10.1039/c4cs00484a

    11. [11]

      Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340. doi: 10.1021/acs.chemrev.7b00542  doi: 10.1021/acs.chemrev.7b00542

    12. [12]

      Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/d0cs00071j  doi: 10.1039/d0cs00071j

    13. [13]

      Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Chem. Soc. Rev. 2019, 48 (24), 5658. doi: 10.1039/c9cs00159j  doi: 10.1039/c9cs00159j

    14. [14]

      Zheng, C.; Zhang, X.; Zhou, Z.; Hu, Z. eScience 2022, 2 (2), 219. doi: 10.1016/j.esci.2022.02.009  doi: 10.1016/j.esci.2022.02.009

    15. [15]

      Li, J. J.; Zhang, L.; Doyle-Davis, K.; Li, R. Y.; Sun, X. L. Carbon Energy 2020, 2 (4), 488. doi: 10.1002/cey2.74  doi: 10.1002/cey2.74

    16. [16]

      Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.;et al. Nature 2021, 595 (7867), 361. doi: 10.1038/s41586-021-03482-7  doi: 10.1038/s41586-021-03482-7

    17. [17]

      Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Acta Phys.-Chim. Sin. 2021, 37 (9), 2007054.  doi: 10.3866/PKU.WHXB202007054

    18. [18]

      Xiao, M.; Chen, Y.; Zhu, J.; Zhang, H.; Zhao, X.; Gao, L.; Wang, X.; Zhao, J.; Ge, J.; Jiang, Z.;et al. J. Am. Chem. Soc. 2019, 141 (44), 17763. doi: 10.1021/jacs.9b08362  doi: 10.1021/jacs.9b08362

    19. [19]

      Cheng, Y.; Gong, X.; Tao, S.; Hu, L.; Zhu, W.; Wang, M.; Shi, J.; Liao, F.; Geng, H.; Shao, M. Nano Energy 2022, 98, 107341. doi: 10.1016/j.nanoen.2022.107341  doi: 10.1016/j.nanoen.2022.107341

    20. [20]

      Peng, L. S.; Shah, S. S.; Wei, Z. D. Chin. J. Catal. 2018, 39, 1575. doi: 10.1016/s1872-2067(18)63130-4  doi: 10.1016/s1872-2067(18)63130-4

    21. [21]

      Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D.;et al. Nat. Chem. 2021, 13 (9), 887. doi: 10.1038/s41557-021-00734-x  doi: 10.1038/s41557-021-00734-x

    22. [22]

      Yang, Z.; Zhang, J.; Kintner-Meyer, M.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111 (5), 3577. doi: 10.1021/cr100290v  doi: 10.1021/cr100290v

    23. [23]

      Xia, H.; Zan, L.; Yuan, P.; Qu, G.; Dong, H.; Wei, Y.; Yu, Y.; Wei, Z.; Yan, W.; Hu, J. S.;et al. Angew. Chem. Int. Ed. 2023,e202218282. doi: 10.1002/anie.202218282  doi: 10.1002/anie.202218282

    24. [24]

      Xu, S. R.; Wu, Q.; Lu, B. A.; Tang, T.; Zhang, J. N.; Hu, J. S. Acta Phys.-Chim. Sin. 2023, 39 (2), 2209001.  doi: 10.3866/PKU.WHXB202209001

    25. [25]

      Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Adv. Mater. 2017, 29 (23), 1606800. doi: 10.1002/adma.201606800  doi: 10.1002/adma.201606800

    26. [26]

      Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. ACS Catal. 2018, 8 (12), 11342. doi: 10.1021/acscatal.8b03489  doi: 10.1021/acscatal.8b03489

    27. [27]

      Agyeman, D. A.; Zheng, Y.; Lee, T.-H.; Park, M.; Tamakloe, W.; Lee, G.-H.; Jang, H. W.; Cho, K.; Kang, Y.-M. ACS Catal. 2020, 11 (1), 424. doi: 10.1021/acscatal.0c02608  doi: 10.1021/acscatal.0c02608

    28. [28]

      Zhou, Y.; Sun, S.; Wei, C.; Sun, Y.; Xi, P.; Feng, Z.; Xu, Z. J. Adv. Mater. 2019, 31 (41), 1902509. doi: 10.1002/adma.201902509  doi: 10.1002/adma.201902509

    29. [29]

      Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Small Methods 2019, 3 (9), 1800501. doi: 10.1002/smtd.201800501  doi: 10.1002/smtd.201800501

    30. [30]

      Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.;et al. Science 2018, 360 (6391), eaar6611. doi: 10.1126/science.aar6611  doi: 10.1126/science.aar6611

    31. [31]

      Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Nat. Catal. 2019, 2 (4), 290. doi: 10.1038/s41929-019-0252-4  doi: 10.1038/s41929-019-0252-4

    32. [32]

      Wang, X.; Qiu, S.; Feng, J.; Tong, Y.; Zhou, F.; Li, Q.; Song, L.; Chen, S.; Wu, K. H.; Su, P.;et al. Adv. Mater. 2020, 32 (40), e2004382. doi: 10.1002/adma.202004382  doi: 10.1002/adma.202004382

    33. [33]

      Zhang, L.; Cong, M.; Ding, X.; Jin, Y.; Xu, F.; Wang, Y.; Chen, L.; Zhang, L. Angew. Chem. Int. Ed. 2020, 59 (27), 10888. doi: 10.1002/anie.202003518  doi: 10.1002/anie.202003518

    34. [34]

      Li, C.; Xu, R. Z.; Ma, S. X.; Xie, Y. H.; Qu, K. G.; Bao, H. F.; Cai, W. W.; Yang, Z. H. Chem. Eng. J. 2021, 415, 129018. doi: 10.1016/j.cej.2021.129018  doi: 10.1016/j.cej.2021.129018

    35. [35]

      Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. J. Energy Chem. 2021, 60, 249. doi: 10.1016/j.jechem.2021.01.016  doi: 10.1016/j.jechem.2021.01.016

    36. [36]

      Ren, S.; Joulie, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Science 2019, 365 (6451), 367. doi: 10.1126/science.aax4608  doi: 10.1126/science.aax4608

    37. [37]

      Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.;et al. Nature 2019, 577 (7791), 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    38. [38]

      Lin, J.; Song, W.; Xiao, C.; Ding, J.; Huang, Z.; Zhong, C.; Ding, J.; Hu, W. Carbon Energy 2023. doi: 10.1002/cey2.313  doi: 10.1002/cey2.313

    39. [39]

      Zhang, X. Y.; Xue, D. P.; Du, Y.; Jiang, S.; Wei, Y. F.; Yan, W. F.; Xia, H. C.; Zhang, J. N. Chem. J. Chin. Univ. 2022, 43 (3), 12.  doi: 10.7503/cjcu20210689

    40. [40]

      Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Nano Res. 2021, 14 (12), 4471. doi: 10.1007/s12274-021-3448-2  doi: 10.1007/s12274-021-3448-2

    41. [41]

      Liu, M.; Liu, S.; Xu, Q.; Miao, Q.; Yang, S.; Hanson, S.; Chen, G. Z.; He, J.; Jiang, Z.; Zeng, G. Carbon Energy 2023. doi: 10.1002/cey2.300  doi: 10.1002/cey2.300

    42. [42]

      Jeon, I. Y.; Zhang, S.; Zhang, L.; Choi, H. J.; Seo, J. M.; Xia, Z.; Dai, L.; Baek, J. B. Adv. Mater. 2013, 25 (42), 6138. doi: 10.1002/adma.201302753  doi: 10.1002/adma.201302753

    43. [43]

      Zhang, Y. K.; Lin, Y. X.; Duan, T.; Song, L. Mater. Today 2021, 48, 115. doi: 10.1016/j.mattod.2021.02.004  doi: 10.1016/j.mattod.2021.02.004

    44. [44]

      Hu, H.; Wang, J. L.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T.; Wu, J. B. J. Mater. Chem. A 2022, 10 (11), 5835. doi: 10.1039/d1ta08582d  doi: 10.1039/d1ta08582d

    45. [45]

      Hammer, B.; Nørskov, J. K. Surf. Sci. 1995, 343 (3), 211. doi: 10.1016/0039-6028(96)80007-0  doi: 10.1016/0039-6028(96)80007-0

    46. [46]

      Rabi, I. I. Nature 1929, 123 (3092), 163. doi: 10.1038/123163b0  doi: 10.1038/123163b0

    47. [47]

      Eliezer, C. J. Nature 1951, 167 (4237), 78. doi: 10.1038/167078b0  doi: 10.1038/167078b0

    48. [48]

      Avsar, A.; Tan, J. Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Ozyilmaz, B. Nat. Phys. 2017, 13 (9), 888. doi: 10.1038/nphys4141  doi: 10.1038/nphys4141

    49. [49]

      Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N. Z.; Sun, Z.; Yi, Y.; Wu, Y. Z.; Wu, S.; Zhu, J.;et al. Nature 2018, 563 (7729), 94. doi: 10.1038/s41586-018-0626-9  doi: 10.1038/s41586-018-0626-9

    50. [50]

      Wang, C.; Dong, H.; Jiang, L.; Hu, W. Chem. Soc. Rev. 2018, 47 (2), 422. doi: 10.1039/c7cs00490g  doi: 10.1039/c7cs00490g

    51. [51]

      Ternberg, J. L. JAMA 1963, 183, 339. doi: 10.1001/jama.1963.63700050009013b  doi: 10.1001/jama.1963.63700050009013b

    52. [52]

      Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.; Zeng, J. Chem. Soc. Rev. 2021, 50 (17), 9817. doi: 10.1039/d1cs00330e  doi: 10.1039/d1cs00330e

    53. [53]

      Li, S.; Xia, L.; Li, J.; Chen, Z.; Zhang, W.; Zhu, J.; Yu, R.; Liu, F.; Lee, S.; Zhao, Y.;et al. Energy Environ. Mater. 2023. doi: 10.1002/eem2.12560  doi: 10.1002/eem2.12560

    54. [54]

      Yu, Y.; Xue, D.; Xia, H.; Zhang, X.; Zhao, S.; Wei, Y.; Du, Y.; Zhou, Y.; Yan, W.; Zhang, J. J. Phys. Condens. Mat. 2022, 34 (36), 364002. doi: 10.1088/1361-648x/ac7995  doi: 10.1088/1361-648x/ac7995

    55. [55]

      Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.; Zeng, J. Angew. Chem. Int. Ed. 2023. doi: 10.1002/anie.202216837  doi: 10.1002/anie.202216837

    56. [56]

      Naaman, R.; Paltiel, Y.; Waldeck, D. H. Nat. Rev. Chem. 2019, 3 (4), 250. doi: 10.1038/s41570-019-0087-1  doi: 10.1038/s41570-019-0087-1

    57. [57]

      Soulenm R.; Byers, J.; Osofsky, M.; Nadgorny, B.; Ambrose, T.; Cheng, S.; Broussard, P.; Tanaka, C.; Nowak, J.; Moodera, J.; et al. Science 1998, 282 (5386), 85. doi: 10.1126/science.282.5386.85  doi: 10.1126/science.282.5386.85

    58. [58]

      Akimitsu, J.; Takenawa, K.; Suzuki, K.; Harima, H.; Kuramoto, Y. Science 2001, 293 (5532), 1125. doi: 10.1126/science.1061501  doi: 10.1126/science.1061501

    59. [59]

      Zhukov, E. A.; Kirstein, E.; Kopteva, N. E.; Heisterkamp, F.; Yugova, I. A.; Korenev, V. L.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.; Greilich, A. Nat. Commun. 2018, 9 (1), 1941. doi: 10.1038/s41467-018-04359-6  doi: 10.1038/s41467-018-04359-6

    60. [60]

      Chen, G.; Sun, Y.; Chen, R. R.; Biz, C.; Fisher, A. C.; Sherburne, M. P.; Ager Iii, J. W.; Gracia, J.; Xu, Z. J. J. Phys. Energy 2021, 3 (3), 031004. doi: 10.1088/2515-7655/abe039  doi: 10.1088/2515-7655/abe039

    61. [61]

      Kuemmeth, F.; Ilani, S.; Ralph, D. C.; McEuen, P. L. Nature 2008, 452 (7186), 448. doi: 10.1038/nature06822  doi: 10.1038/nature06822

    62. [62]

      Chen, R. R.; Sun, Y.; Ong, S. J. H.; Xi, S.; Du, Y.; Liu, C.; Lev, O.; Xu, Z. J. Adv. Mater. 2020, 32 (10), e1907976. doi: 10.1002/adma.201907976  doi: 10.1002/adma.201907976

    63. [63]

      Yan, R.; Zhao, Z.; Cheng, M.; Yang, Z.; Cheng, C.; Liu, X.; Yin, B.; Li, S. Angew. Chem. Int. Ed. 2022, 62 (1), e202215414. doi: 10.1002/anie.202215414  doi: 10.1002/anie.202215414

    64. [64]

      Lin, L.; Xin, R.; Yuan, M.; Wang, T.; Li, J.; Xu, Y.; Xu, X.; Li, M.; Du, Y.; Wang, J.;et al. ACS Catal. 2023, 13 (2), 1431. doi: 10.1021/acscatal.2c04983  doi: 10.1021/acscatal.2c04983

    65. [65]

      Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T. S.;et al. Angew. Chem. Int. Ed. 2022, 61 (32), e202206233. doi: 10.1002/anie.202206233  doi: 10.1002/anie.202206233

    66. [66]

      Nguyen, D. C.; Doan, T. L. L.; Prabhakaran, S.; Tran, D. T.; Kim, D.; Lee, J. H.; Kim, N. H. Nano Energy 2021, 82, 105750. doi: 10.1016/j.nanoen.2021.105750  doi: 10.1016/j.nanoen.2021.105750

    67. [67]

      Liu, M. M.; Zhu X. H.; Song, Y. J.; Huang, G. L.; Wei, J. M; Song, X. K.; Xiao, Q.; Zhao, T.; Jiang, W.; Li, X. P;et al. Adv. Funct. Mater. 2023. doi: 10.1002/adfm.202213395  doi: 10.1002/adfm.202213395

    68. [68]

      Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. ACS Nano 2022, 16 (10), 15994. doi: 10.1021/acsnano.2c03565  doi: 10.1021/acsnano.2c03565

    69. [69]

      Zhang, T.; Cheng, F.; Du, J.; Hu, Y.; Chen, J. Adv. Energy Mater. 2015, 5 (1), 1400654. doi: 10.1002/aenm.201400654  doi: 10.1002/aenm.201400654

    70. [70]

      Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.; Baldwin, J. K.; Zelenay, P. ACS Nano 2012, 6 (11), 9764. doi: 10.1021/nn303275d  doi: 10.1021/nn303275d

    71. [71]

      Jinli, H.; Wenda, Z.; Xingfang, L.; Yan, D.; Dongquan, P.; Mingyue, C.; Hang, Z.; Ce, H.; Cailei, Y.; Shouguo, W. Chem. Eng. J. 2022, 454, 140279. doi: 10.1016/j.cej.2022.140279  doi: 10.1016/j.cej.2022.140279

    72. [72]

      Li, Y. B.; Cheng, C. A. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. ACS Energy Lett. 2022, 7 (3), 1187. doi: 10.1021/acsenergylett.2c00207  doi: 10.1021/acsenergylett.2c00207

    73. [73]

      Zhang, Y. Y.; Liang, C.; Wu, J.; Liu, H.; Zhang, B.; Jiang, Z. X.; Li, S. W.; Xu, P. ACS Appl. Energy Mater. 2020, 3 (11), 10303. doi: 10.1021/acsaem.0c02104  doi: 10.1021/acsaem.0c02104

    74. [74]

      Chen, Z.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W.; Han, L.; Guo, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (48), 25404. doi: 10.1002/anie.202110243  doi: 10.1002/anie.202110243

    75. [75]

      Yang, Y.; Zhang, L.; Hu, Z.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R.; Qiu, K.; Mao, J.; Ling, T.;et al. Angew. Chem. Int. Ed. 2020, 59 (11), 4525. doi: 10.1002/anie.201915001  doi: 10.1002/anie.201915001

    76. [76]

      Zhang, Z.; Koppensteiner, J.; Schranz, W.; Prabhakaran, D.; Carpenter, M. A. J. Phys. Condens. Mat. 2011, 23 (14), 145401. doi: 10.1088/0953-8984/23/14/145401  doi: 10.1088/0953-8984/23/14/145401

    77. [77]

      Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.; Gracia, J.; Gao, H. J.; Yang, H.;et al. Nat. Commun. 2021, 12 (1), 2608. doi: 10.1038/s41467-021-22865-y  doi: 10.1038/s41467-021-22865-y

    78. [78]

      Zhou, G.; Wang, P.; Li, H.; Hu, B.; Sun, Y.; Huang, R.; Liu, L. Nat. Commun. 2021, 12 (1), 4827. doi: 10.1038/s41467-021-25095-4  doi: 10.1038/s41467-021-25095-4

    79. [79]

      Gong, Y. N.; Zhong, W.; Li, Y.; Qiu, Y.; Zheng, L.; Jiang, J.; Jiang, H. L. J. Am. Chem. Soc. 2020, 142 (39), 16723. doi: 10.1021/jacs.0c07206  doi: 10.1021/jacs.0c07206

    80. [80]

      Wu, T.; Ren, X.; Sun, Y.; Sun, S.; Xian, G.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A.;et al. Nat. Commun. 2021, 12 (1), 3634. doi: 10.1038/s41467-021-23896-1  doi: 10.1038/s41467-021-23896-1

    81. [81]

      Biz, C.; Fianchini, M.; Gracia, J. ACS Appl. Nano Mater. 2020, 3 (1), 506. doi: 10.1021/acsanm.9b02067  doi: 10.1021/acsanm.9b02067

    82. [82]

      Fletcher, S.; Van Dijk, N. J.J. Phys. Chem. C 2016, 120 (46), 26225. doi: 10.1021/acs.jpcc.6b09099  doi: 10.1021/acs.jpcc.6b09099

    83. [83]

      Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. J. Electroanal. Chem. 2007, 607 (1–2), 83. doi: 10.1016/j.jelechem.2006.11.008  doi: 10.1016/j.jelechem.2006.11.008

    84. [84]

      Koshibae, W.; Maekawa, S. J. Magn. Magn. Mater. 2003, 258, 216. doi: 10.1016/s0304-8853(02)01016-8  doi: 10.1016/s0304-8853(02)01016-8

    85. [85]

      Gracia, J.; Munarriz, J.; Polo, V.; Sharpe, R.; Jiao, Y.; Niemantsverdriet, J. W. H.; Lim, T. ChemCatChem 2017, 9 (17), 3358. doi: 10.1002/cctc.201700302  doi: 10.1002/cctc.201700302

    86. [86]

      Gracia, J. Phys. Chem. Chem. Phys. 2017, 19 (31), 20451. doi: 10.1039/c7cp04289b  doi: 10.1039/c7cp04289b

    87. [87]

      Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3 (7), 546. doi: 10.1038/nchem.1069  doi: 10.1038/nchem.1069

    88. [88]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334 (6061), 1383. doi: 10.1126/science.1212858  doi: 10.1126/science.1212858

    89. [89]

      Gracia, J. J. Phy. Chem. C 2019, 123 (15), 9967. doi: 10.1021/acs.jpcc.9b01635  doi: 10.1021/acs.jpcc.9b01635

    90. [90]

      Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Nat. Energy 2019, 4 (6), 519. doi: 10.1038/s41560-019-0404-4  doi: 10.1038/s41560-019-0404-4

    91. [91]

      Halcrow, M. A. Chem. Soc. Rev. 2012, 42 (4), 1784. doi: 10.1039/c2cs35253b  doi: 10.1039/c2cs35253b

    92. [92]

      Bersuker, I. B. Chem. Rev. 2020, 121 (3), 1463. doi: 10.1021/acs.chemrev.0c00718  doi: 10.1021/acs.chemrev.0c00718

    93. [93]

      Biz, C.; Fianchini, M.; Gracia, J. ACS Catal. 2021, 11 (22), 14249. doi: 10.1021/acscatal.1c03135  doi: 10.1021/acscatal.1c03135

    94. [94]

      Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z. J. Adv. Mater. 2020, 32 (39), e2003297. doi: 10.1002/adma.202003297  doi: 10.1002/adma.202003297

    95. [95]

      Ulissi, Z. W.; Tang, M. T.; Xiao, J. P.; Liu, X. Y.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F.;et al. ACS Catal. 2017, 7 (10), 6600. doi: 10.1021/acscatal.7b01648  doi: 10.1021/acscatal.7b01648

    96. [96]

      Li, Z.; Zhuang, Z.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M.; Zhu, J.; Lang, Z.; Feng, S.; Chen, W.;et al. Adv. Mater. 2018, 30 (43), e1803220. doi: 10.1002/adma.201803220  doi: 10.1002/adma.201803220

    97. [97]

      Yang, Q.; Jia, Y.; Wei, F.; Zhuang, L.; Yang, D.; Liu, J.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. Angew. Chem. Int. Ed. 2020, 59 (15), 6122. doi: 10.1002/anie.202000324  doi: 10.1002/anie.202000324

    98. [98]

      Tian, Y.; Cao, H.; Yang, H.; Yao, W.; Wang, J.; Qiao, Z.; Cheetham, A. K. Angew. Chem. Int. Ed. 2023. doi: 10.1002/anie.202215295  doi: 10.1002/anie.202215295

    99. [99]

      Laing, M. J. Chem. Educ. 1989, 66 (6), 453. doi: 10.1021/ed066p453  doi: 10.1021/ed066p453

    100. [100]

      Paterson, M. J.; Christiansen, O.; Jensen, F.; Ogilby, P. R. Photochem. Photobiol. 2006, 82 (5), 1136. doi: 10.1562/2006-03-17-ir-851  doi: 10.1562/2006-03-17-ir-851

    101. [101]

      Huang, B.; Sun, Z.; Sun, G. eScience 2022, 2 (3), 243. doi: 10.1016/j.esci.2022.04.006  doi: 10.1016/j.esci.2022.04.006

    102. [102]

      Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B. A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.;et al. Nat. Commun. 2021, 12 (1), 1734. doi: 10.1038/s41467-021-21919-5  doi: 10.1038/s41467-021-21919-5

    103. [103]

      He, T.; Chen, Y.; Liu, Q.; Lu, B.; Song, X.; Liu, H.; Liu, M.; Liu, Y. N.; Zhang, Y.; Ouyang, X.;et al. Angew. Chem. Int. Ed. 2022, 61, e202201007. doi: 10.1002/anie.202201007  doi: 10.1002/anie.202201007

    104. [104]

      Dongping, X.; Pengfei, Y.; Su, J.; Yifan, W.; Ying, Z.; Chung-Li, D.; Wenfu, Y.; Shichun, M.; Jia-Nan, Z. Nano Energy 2022, 105, 108020. doi: 10.1016/j.nanoen.2022.108020  doi: 10.1016/j.nanoen.2022.108020

    105. [105]

      Yan, J.; Wang, Y.; Zhang, Y.; Xia, S.; Yu, J.; Ding, B. Adv. Mater. 2020, 33 (5), e2007525. doi: 10.1002/adma.202007525  doi: 10.1002/adma.202007525

    106. [106]

      Liu, S.; Li, C.; Zachman, M. J.; Zeng, Y.; Yu, H.; Li, B.; Wang, M.; Braaten, J.; Liu, J.; Meyer, H. M.;et al. Nat. Energy 2022, 7 (7), 652. doi: 10.1038/s41560-022-01062-1  doi: 10.1038/s41560-022-01062-1

    107. [107]

      Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H.;et al. Nat. Catal. 2020, 3 (12), 1044. doi: 10.1038/s41929-020-00546-1  doi: 10.1038/s41929-020-00546-1

    108. [108]

      Li, J.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.;et al. Nat. Catal. 2020, 4 (1), 10. doi: 10.1038/s41929-020-00545-2  doi: 10.1038/s41929-020-00545-2

    109. [109]

      Chen, Z.; Ju, M.; Sun, M.; Jin, L.; Cai, R.; Wang, Z.; Dong, L.; Peng, L.; Long, X.; Huang, B.;et al. Angew. Chem. Int. Ed. 2021, 60 (17), 9699. doi: 10.1002/anie.202016064  doi: 10.1002/anie.202016064

    110. [110]

      Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S. L.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Appl. Catal. B 2021, 286, 119869. doi: 10.1016/j.apcatb.2020.119869  doi: 10.1016/j.apcatb.2020.119869

    111. [111]

      Sun, Z.; Lin, L.; He, J.; Ding, D.; Wang, T.; Li, J.; Li, M.; Liu, Y.; Li, Y.; Yuan, M.;et al. J. Am. Chem. Soc. 2022, 144 (18), 8204. doi: 10.1021/jacs.2c01153  doi: 10.1021/jacs.2c01153

    112. [112]

      Kang, J. X.; Qiu, X. Y.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wang, C. Z; Liu, L. M.; Duan, X. F; Guo, L. Nat. Catal. 2021, 4 (12), 1050. doi: 10.1038/s41929-021-00715-w  doi: 10.1038/s41929-021-00715-w

    113. [113]

      Wang, X.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S.; Zhang, J. Chem. Eng. J. 2021, 403, 126297. doi: 10.1016/j.cej.2020.126297  doi: 10.1016/j.cej.2020.126297

    114. [114]

      Tao, H. B.; Fang, L.; Chen, J.; Yang, H. B.; Gao, J.; Miao, J.; Chen, S.; Liu, B. J. Am. Chem. Soc. 2016, 138 (31), 9978. doi: 10.1021/jacs.6b05398  doi: 10.1021/jacs.6b05398

    115. [115]

      Sun, Y.; Ren, X.; Sun, S.; Liu, Z.; Xi, S.; Xu, Z. J. Angew. Chem. Int. Ed. 2021, 60 (26), 14536. doi: 10.1002/anie.202102452  doi: 10.1002/anie.202102452

    116. [116]

      Liu, Y.; Ye, C.; Zhao, S.-N.; Wu, Y.; Liu, C.; Huang, J.; Xue, L.; Sun, J.; Zhang, W.; Wang, X.;et al. Nano Energy 2022, 99, 107344. doi: 10.1016/j.nanoen.2022.107344  doi: 10.1016/j.nanoen.2022.107344

    117. [117]

      Zhang, J.; Geng, S.; Li, R.; Zhang, X.; Zhou, Y.; Yu, T.; Wang, Y.; Song, S.; Shao, Z. Chem. Eng. J. 2021, 420, 130492. doi: 10.1016/j.cej.2021.130492  doi: 10.1016/j.cej.2021.130492

    118. [118]

      Qian, S.-J.; Cao, H.; Chen, J.-W.; Chen, J.-C.; Wang, Y.-G.; Li, J. ACS Catal. 2022, 12 (18), 11530. doi: 10.1021/acscatal.2c03186  doi: 10.1021/acscatal.2c03186

    119. [119]

      Liu, C.; Hao, D.; Ye, J.; Ye, S.; Zhou, F.; Xie, H.; Qin, G.; Xu, J.; Liu, J.; Li, S.;et al. Adv. Energy Mater. 2023, 13 (8), 2204126. doi: 10.1002/aenm.202204126  doi: 10.1002/aenm.202204126

    120. [120]

      Wang, Y.; Cheng, W.; Yuan, P.; Yang, G.; Mu, S.; Liang, J.; Xia, H.; Guo, K.; Liu, M.; Zhao, S.;et al. Adv. Sci. 2021, 8 (20), 2102915. doi: 10.1002/advs.202102915  doi: 10.1002/advs.202102915

    121. [121]

      Song, G.; Gao, R.; Zhao, Z.; Zhang, Y.; Tan, H.; Li, H.; Wang, D.; Sun, Z.; Feng, M. Appl. Catal. B 2022, 301, 120809. doi: 10.1016/j.apcatb.2021.120809  doi: 10.1016/j.apcatb.2021.120809

    122. [122]

      Zhang, Y.; Zhang, Q.; Liu, D.-X.; Wen, Z.; Yao, J.-X.; Shi, M.-M.; Zhu, Y.-F.; Yan, J.-M.; Jiang, Q. Appl. Catal. B 2021, 298, 120592. doi: 10.1016/j.apcatb.2021.120592  doi: 10.1016/j.apcatb.2021.120592

    123. [123]

      Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Adv. Mater. 2023. doi: 10.1002/adma.202205814  doi: 10.1002/adma.202205814

    124. [124]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Adv. Sci. 2017, 5 (1), 1700275. doi: 10.1002/advs.201700275  doi: 10.1002/advs.201700275

    125. [125]

      Luo, T.; Liu, K.; Fu, J.; Chen, S.; Li, H.; Hu, J.; Liu, M. J. Energy Chem. 2022, 70, 219. doi: 10.1016/j.jechem.2022.02.050  doi: 10.1016/j.jechem.2022.02.050

    126. [126]

      Wang, J.; Wang, G.; Zhang, J.; Wang, Y.; Wu, H.; Zheng, X.; Ding, J.; Han, X.; Deng, Y.; Hu, W. Angew. Chem. Int. Ed. 2021, 60 (14), 7602. doi: 10.1002/anie.202016022  doi: 10.1002/anie.202016022

    127. [127]

      Wang, J.; Huang, Y.-C.; Wang, Y.; Deng, H.; Shi, Y.; Wei, D.; Li, M.; Dong, C.-L.; Jin, H.; Mao, S. S.;et al. ACS Catal. 2023, 13 (4), 2374. doi: 10.1021/acscatal.2c05249  doi: 10.1021/acscatal.2c05249

    128. [128]

      Sun, M. Z.; Wong, H. H; Wu, T.; Lu, Q. Y.; Lu, L.; Chan, C. H.; Chen, B.; Dougherty, A. W.; Huang, B. L. Adv. Energy Mater. 2022, 13 (7), 2203858. doi: 10.1002/aenm.202203858  doi: 10.1002/aenm.202203858

    129. [129]

      Zhu, Y.; Yang, X.; Peng, C.; Priest, C.; Mei, Y.; Wu, G. Small 2021, 17 (16), e2005148. doi: 10.1002/smll.202005148  doi: 10.1002/smll.202005148

    130. [130]

      Ren, M.; Guo, X.; Huang, S. Chem. Eng. J. 2022, 433, 134270. doi: 10.1016/j.cej.2021.134270  doi: 10.1016/j.cej.2021.134270

    131. [131]

      Cao, S.; Wei, S.; Wei, X.; Zhou, S.; Chen, H.; Hu, Y.; Wang, Z.; Liu, S.; Guo, W.; Lu, X. Small 2021, 17 (29), 2100949. doi: 10.1002/smll.202100949  doi: 10.1002/smll.202100949

    132. [132]

      Zhu, J.; Xiao, M.; Ren, D.; Gao, R.; Liu, X.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A.;et al. J. Am. Chem. Soc. 2022, 144 (22), 9661. doi: 10.1021/jacs.2c00937  doi: 10.1021/jacs.2c00937

    133. [133]

      Zhang, Y.; Wang, J.-Z.; Li, K.; Shi, M.-M.; Wen, Z.; Jiao, M.-G.; Bao, D. J. Mater. Chem. A 2022, 10 (6), 2819. doi: 10.1039/d1ta10534e  doi: 10.1039/d1ta10534e

    134. [134]

      Phokha, S.; Pinitsoontorn, S.; Maensiri, S. Nano-Micro. Lett. 2013, 5 (4), 223. doi: 10.1007/bf03353753  doi: 10.1007/bf03353753

    135. [135]

      Zhou, G.; Wang, P.; Hu, B.; Shen, X.; Liu, C.; Tao, W.; Huang, P.; Liu, L. Nat. Commun. 2022, 13 (1), 4106. doi: 10.1038/s41467-022-31874-4  doi: 10.1038/s41467-022-31874-4

    136. [136]

      Zhang, Y.; Guo, P.; Li, S.; Sun, J.; Wang, W.; Song, B.; Yang, X.; Wang, X.; Jiang, Z.; Wu, G.;et al. J. Mater. Chem. A 2022, 10 (4), 1760. doi: 10.1039/d1ta09444k  doi: 10.1039/d1ta09444k

    137. [137]

      Gong, X.; Jiang, Z.; Zeng, W.; Hu, C.; Luo, X.; Lei, W.; Yuan, C. Nano Lett. 2022, 22 (23), 9411. doi: 10.1021/acs.nanolett.2c03359  doi: 10.1021/acs.nanolett.2c03359

    138. [138]

      Bruckner, A. Chem. Soc. Rev. 2010, 39 (12), 4673. doi: 10.1039/b919541f  doi: 10.1039/b919541f

    139. [139]

      Seifert, T. S.; Kovarik, S.; Juraschek, D. M.; Spaldin, N. A.; Gambardella, P.; Stepanow, S. Sci. Adv. 2020, 6 (40), eabc5511. doi: 10.1126/sciadv.abc5511  doi: 10.1126/sciadv.abc5511

    140. [140]

      Pilbrow, J. R.; Lowrey, M. R. Rep. Prog. Phys. 1980, 43 (4), 433. doi: 10.1088/0034-4885/43/4/002  doi: 10.1088/0034-4885/43/4/002

    141. [141]

      Klasovsky, F.; Hohmeyer, J.; Brückner, A.; Bonifer, M.; Arras, J.; Steffan, M.; Lucas, M.; Radnik, J.; Roth, C.; Claus, P.J. Phys. Chem. C 2008, 112 (49), 19555. doi: 10.1021/jp805970e  doi: 10.1021/jp805970e

    142. [142]

      Wang, Z.; Shen, S.; Lin, Z.; Tao, W.; Zhang, Q.; Meng, F.; Gu, L.; Zhong, W. Adv. Funct. Mater. 2022, 32 (18), 2112832. doi: 10.1002/adfm.202112832  doi: 10.1002/adfm.202112832

    143. [143]

      Li, X.; Zhu, K.; Pang, J.; Tian, M.; Liu, J.; Rykov, A. I.; Zheng, M.; Wang, X.; Zhu, X.; Huang, Y.;et al. Appl. Catal. B 2017, 224, 518. doi: 10.1016/j.apcatb.2017.11.004  doi: 10.1016/j.apcatb.2017.11.004

    144. [144]

      Cini, A.; Mannini, M.; Totti, F.; Fittipaldi, M.; Spina, G.; Chumakov, A.; Rüffer, R.; Cornia, A.; Sessoli, R. Nat. Commun. 2018, 9 (1), 480. doi: 10.1038/s41467-018-02840-w  doi: 10.1038/s41467-018-02840-w

    145. [145]

      Kramm, U. I.; Ni, L.; Wagner, S. Adv. Mater. 2019, 31 (31), e1805623. doi: 10.1002/adma.201805623  doi: 10.1002/adma.201805623

    146. [146]

      Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. J. Am. Chem. Soc. 2017, 139 (31), 10790. doi: 10.1021/jacs.7b05130  doi: 10.1021/jacs.7b05130

    147. [147]

      Pollock, C. J.; Delgado-Jaime, M. U.; Atanasov, M.; Neese, F.; DeBeer, S. J. Am. Chem. Soc. 2014, 136 (26), 9453. doi: 10.1021/ja504182n  doi: 10.1021/ja504182n

    148. [148]

      Glatzel, P.; Bergmann, U. Coordin. Chem. Rev. 2005, 249 (1–2), 65. doi: 10.1016/j.ccr.2004.04.011  doi: 10.1016/j.ccr.2004.04.011

    149. [149]

      Cutsail Iii, G. E.; DeBeer, S. ACS Catal. 2022, 12 (10), 5864. doi: 10.1021/acscatal.2c01016  doi: 10.1021/acscatal.2c01016

    150. [150]

      Hocking, R. K.; Wasinger, E. C.; de Groot, F. M. F.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. J. Am. Chem. Soc. 2006, 128 (32), 10442. doi: 10.1021/ja061802i  doi: 10.1021/ja061802i

    151. [151]

      Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B Condens. Matter. 1991, 44 (3), 943. doi: 10.1103/physrevb.44.943  doi: 10.1103/physrevb.44.943

    152. [152]

      Hu, Z.; Wu, H.; Haverkort, M. W.; Hsieh, H. H.; Lin, H. J.; Lorenz, T.; Baier, J.; Reichl, A.; Bonn, I.; Felser, C.;et al. Phys. Rev. Lett. 2004, 92 (20), 207402. doi: 10.1103/PhysRevLett.92.207402  doi: 10.1103/PhysRevLett.92.207402

    153. [153]

      Saveleva, V. A.; Ebner, K.; Ni, L.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli, E.; Li, J.; Medarde, M.; Safonova, O. V.;et al. Angew. Chem. Int. Ed. 2021, 60 (21), 11707. doi: 10.1002/anie.202016951  doi: 10.1002/anie.202016951

    154. [154]

      Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K. Chem. Rev. 2021, 122 (12), 10777. doi: 10.1021/acs.chemrev.1c00675  doi: 10.1021/acs.chemrev.1c00675

    155. [155]

      Szuromi, P. Science 2014, 345 (6193), 175. doi: 10.1126/science.345.6193.175-m  doi: 10.1126/science.345.6193.175-m

    156. [156]

      Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. R.;et al. Adv. Mater. 2022, 34 (13), 2107053. doi: 10.1002/adma.202107053  doi: 10.1002/adma.202107053

    157. [157]

      He, F.; Zhao, Y.; Yang, X.; Zheng, S.; Yang, B.; Li, Z.; Kuang, Y.; Zhang, Q.; Lei, L.; Qiu, M.;et al. ACS Nano 2022, 16 (6), 9523. doi: 10.1021/acsnano.2c02685  doi: 10.1021/acsnano.2c02685

    158. [158]

      Sun, F.; Li, F.; Tang, Q. J. Phys. Chem. C 2022, 126 (31), 13168. doi: 10.1021/acs.jpcc.2c03518  doi: 10.1021/acs.jpcc.2c03518

  • 加载中
    1. [1]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    2. [2]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    19. [19]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(93)
  • Abstract views(5237)
  • HTML views(787)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return