Citation: Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230203. doi: 10.3866/PKU.WHXB202302037 shu

Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction

  • Corresponding author: Jinli Qiao, qiaojl@dhu.edu.cn
  • Received Date: 23 February 2023
    Revised Date: 28 March 2023
    Accepted Date: 28 March 2023
    Available Online: 4 April 2023

    Fund Project: the "Scientific and Technical Innovation Action Plan" Hong Kong, Macao and Taiwan Science & Technology Cooperation Project of Shanghai Science and Technology Committee, China 19JC1410500the National Natural Science Foundation of China 91645110

  • Human activities primarily rely on the consumption of the fossil energy, which has led to an energy crisis and environmental pollution. Since the industrial revolution, the atmospheric CO2 concentration has been continuously increasing, and reached 414 × 10−6 in 2020, which has resulted in global warming and glacial ablation. Converting CO2 into high-value-added fuels and chemicals can alleviate environmental problems, enable the storage of intermittent renewable energy (wind and solar power), and provide a new route for fuel synthesis. The electrochemical CO2 reduction reaction (CO2RR) has attracted extensive attention owing to its mild reaction conditions, controllability, environmental friendliness, and the ability to generate various products. There are four key steps in a typical CO2RR: (1) charge transport (electrons are transported from the conductive substrate to the electrocatalyst); (2) surface conversion (CO2 is adsorbed and activated on the surface of the catalyst); (3) charge transfer (electrons are transferred from the catalyst surface to the CO2 intermediate); and (4) mass transfer (CO2 diffuses from the electrolyte to the catalyst surface, and the products diffuse in the reverse pathway). The former two steps depend on the type of membrane and the development of highly conductive catalysts with abundant active sites, while the latter two steps rely on the properties of the electrolyte and the optimization of the electrolytic cell configuration. To meet the high-selectivity (> 90%), superior-activity (> 200 mA·cm−2), and excellent-stability (> 1000 h) requirements of the CO2RR as per industrial standards, the design of efficient electrocatalysts has been a key research area in recent decades. However, other factors have rarely been investigated. In this review, we systematically summarize the development of electrocatalysts, effect of the electrolyte, progress in the development of the reactor, and type of membrane in the CO2RR from industrial and commercial perspectives. First, we discuss how first-principles calculations can be used to determine the chemical rate for CO2 reduction. Additionally, we discuss how in situ or operando techniques such as X-ray absorption measurements can reveal the theoretically proposed reaction pathway. The microenvironment (e.g., pH, anions, and cations) at the three-phase interface plays a vital role in achieving a high CO2RR performance, which can be controlled by changing the electrolyte properties. Further, the suitable design and development of the reactor is very critical for commercial CO2RR technology because CO2RR reactors must efficiently utilize the CO2 feedstock to minimize the cost of upstream CO2 capture. Finally, different types of membranes based on different ion-transfer mechanisms can affect the CO2RR performance. The development opportunities and challenges toward the practical application of the CO2RR are also highlighted.
  • 加载中
    1. [1]

      Liang, L.; Sun, J.; Yue, M.; Geng, H. World Petroleum Ind.2020,(3), 7.

    2. [2]

      https://www.carbonmonitor.org.cn (accessed on Jul 02, 2022).

    3. [3]

      https://www.noaa.gov (accessed on Jul 02, 2022).

    4. [4]

      Hö nisch, B.; Ridgwell, A.; Schmidt, D. N.; Thomas, E.; Gibbs, S. J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R. C.; Greene, S. E.; et al. Science 2012, 335 (6072), 1058. doi: 10.1126/science.1208277  doi: 10.1126/science.1208277

    5. [5]

      Dautzenberg, F. M.; Lu, Y.; Xu, B. Acta Phys.-Chim. Sin. 2021, 37 (5), 2008066.  doi: 10.3866/PKU.WHXB202008066

    6. [6]

      http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm (accessed on Jul 02, 2022).

    7. [7]

      Song, Y.; Xie, W.; Shao, M. Acta Phys.-Chim. Sin. 2021, 38 (6), 2101028.  doi: 10.3866/PKU.WHXB202101028

    8. [8]

      Wang, X.; Fan, M.; Guan, Y.; Liu, Y.; Liu, M.; Karsili, T. N.; Yi, J.; Zhou, X.-D. J. Mater. Chem. A 2021, 9 (40), 22710. doi: 10.1039/D1TA05960B  doi: 10.1039/D1TA05960B

    9. [9]

      Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W.Chem 2018, 4 (11), 2571. doi: 10.1016/j.chempr.2018.08.019  doi: 10.1016/j.chempr.2018.08.019

    10. [10]

      Lan, B. Y.; Shi, H. F.Acta Phys.-Chim. Sin. 2014, 30 (12), 20.  doi: 10.3866/PKU.WHXB201409303

    11. [11]

      Jiang, H.; Ji, X.; Si, W.; Pan, J.; Cai, L. J.Civ. Eng. Manag. 2015, 37 (3), 127.  doi: 10.11835/j.issn.1674-4764.2015.03.017

    12. [12]

      Wang, Y.; Zhong, Z.; Liu, T.; Liu, G.; Hong, X.Acta Phys.-Chim. Sin. 2021, 37 (5), 2007089.  doi: 10.3866/PKU.WHXB202007089

    13. [13]

      Shi, Y.; Hou, M.; Li, J.; Li, L.; Zhang, Z. Acta Phys.-Chim. Sin. 2022, 38 (11), 2206020.  doi: 10.3866/PKU.WHXB202206020

    14. [14]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43 (2), 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    15. [15]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Gö ttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4 (9), 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    16. [16]

      Zhao, Z.; Lu, G. J. Phys. Chem. C 2019, 123 (7), 4380. doi: 10.1021/acs.jpcc.8b12449  doi: 10.1021/acs.jpcc.8b12449

    17. [17]

      Mou, S.; Wu, T.; Xie, J.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y.; Xiong, X.; Tang, B.; et al. Adv. Mater. 2019, 31 (36), 1903499. doi: 10.1002/adma.201903499  doi: 10.1002/adma.201903499

    18. [18]

      Dong, H.; Li, Y.; Jiang, D. J. Phys. Chem. C 2018, 122 (21), 11392. doi: 10.1021/acs.jpcc.8b01928  doi: 10.1021/acs.jpcc.8b01928

    19. [19]

      Huang, B.; Wu, Y.; Luo, Y.; Zhou, N. Chem. Phys. Lett. 2020, 756, 137852. doi: 10.1016/j.cplett.2020.137852  doi: 10.1016/j.cplett.2020.137852

    20. [20]

      Qiu, X.-F.; Zhu, H.-L.; Huang, J.-R.; Liao, P.-Q.; Chen, X.-M. J. Am. Chem. Soc. 2021, 143 (19), 7242-7246. doi: 10.1021/jacs.1c01466  doi: 10.1021/jacs.1c01466

    21. [21]

      Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Angew. Chem. Int. Ed. 2021, 133 (48), 25689. doi: 10.1002/anie.202111136  doi: 10.1002/anie.202111136

    22. [22]

      Calle-Vallejo, F.; Koper, M. T. Angew. Chem. Int. Ed. 2013, 125 (28), 7423. doi: 10.1002/ange.201301470  doi: 10.1002/ange.201301470

    23. [23]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39 (11–12), 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    24. [24]

      Jin, H.; Xiong, L.; Zhang, X.; Lian, Y.; Chen, S.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys.-Chim. Sin. 2021, 37 (11), 2006017.  doi: 10.3866/PKU.WHXB202006017

    25. [25]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys.-Chim. Sin. 2021, 37 (5), 2006034.  doi: 10.3866/PKU.WHXB202006034

    26. [26]

      Zhang, X.; Liu, C.; Zhao, Y.; Li, L.; Chen, Y.; Raziq, F.; Qiao, L.; Guo, S.-X.; Wang, C.; Wallace, G. G. Appl. Catal. B 2021, 291, 120030. doi: 10.1016/j.apcatb.2021.120030  doi: 10.1016/j.apcatb.2021.120030

    27. [27]

      Zhang, Y.; Li, P.; Zhao, C.; Zhou, G.; Zhou, F.; Zhang, Q.; Su, C.; Wu, Y. Sci. Bull. 2022, 67 (16), 1679. doi: 10.1016/j.scib.2022.07.029  doi: 10.1016/j.scib.2022.07.029

    28. [28]

      Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134 (49), 19969. doi: 10.1021/ja309317u  doi: 10.1021/ja309317u

    29. [29]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537(7620), 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    30. [30]

      Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2014, 136 (46), 16132. doi: 10.1021/ja5095099  doi: 10.1021/ja5095099

    31. [31]

      Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 128 (33), 9900. doi: 10.1002/anie.201604654  doi: 10.1002/anie.201604654

    32. [32]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. ACS Catal. 2015, 5 (7), 4293. doi: 10.1021/acscatal.5b00840  doi: 10.1021/acscatal.5b00840

    33. [33]

      Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. Nat. Commun. 2014, 5 (1), 1. doi: 10.1038/ncomms4242  doi: 10.1038/ncomms4242

    34. [34]

      Back, S.; Yeom, M. S.; Jung, Y. ACS Catal. 2015, 5 (9), 5089. doi: 10.1021/acscatal.5b00462  doi: 10.1021/acscatal.5b00462

    35. [35]

      Hao, J.; Zhu, H.; Li, Y.; Liu, P.; Du, M. Chem. Eng. J. 2020, 404, 126523. doi: 10.1016/j.cej.2020.126523  doi: 10.1016/j.cej.2020.126523

    36. [36]

      Dai, L.; Qin, Q.; Wang, P.; Zhao, X.; Hu, C.; Liu, P.; Qin, R.; Chen, M.; Ou, D.; Xu, C.; et al. Sci. Adv. 2017, 3 (9), e1701069. doi: 10.1126/sciadv.1701069  doi: 10.1126/sciadv.1701069

    37. [37]

      Woyessa, G. W.; Cruz, J.; Rameez, M.; Hung, C. H. Appl. Catal. B 2021, 29 (15), 120052. doi: 10.1016/j.apcatb.2021.120052  doi: 10.1016/j.apcatb.2021.120052

    38. [38]

      Zeng, J.; Bejtka, K.; Ju, W.; Castellino, M.; Chiodoni, A.; Sacco, A. Appl. Catal. B 2018, 236 (15) 475-482. doi: 10.1016/j.apcatb.2018.05.056  doi: 10.1016/j.apcatb.2018.05.056

    39. [39]

      Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.-J.; et al.J. Am. Chem. Soc.2017, 139 (12), 4290. doi: 10.1021/jacs.7b00261  doi: 10.1021/jacs.7b00261

    40. [40]

      Ju, W.; Jiang, F.; Ma, H.; Pan, Z.; Zhao, Y. B.; Pagani, F.; Rentsch, D.; Wang, J.; Battaglia, C. Adv. Energy Mater. 2019, 9 (32), 1901514. doi: 10.1002/aenm.201901514  doi: 10.1002/aenm.201901514

    41. [41]

      Chen, Y.; Wang, L.; Yao, Z.; Hao, L.; Tan, X.; Masa, J.; Robertson, A. W.; Sun, Z. Acta Phys.-Chim. Sin. 2022, 38 (11), 2207024.  doi: 10.3866/PKU.WHXB202207024

    42. [42]

      Nguyen, T. N.; Salehi, M.; Le, Q. V.; Seifitokaldani, A.; Dinh, C. T. ACS Catal. 2020, 10 (17), 10068. doi: 10.1021/acscatal.0c02643  doi: 10.1021/acscatal.0c02643

    43. [43]

      Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.;et al. J. Am. Chem. Soc. 2017, 139 (42), 14889. doi: 10.1021/jacs.7b09074  doi: 10.1021/jacs.7b09074

    44. [44]

      Huang, X.; Ma, Y.; Zhi, L.Acta Phys.-Chim. Sin. 2022, 38 (2), 2011050.  doi: 10.3866/PKU.WHXB202011050

    45. [45]

      Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S. Adv. Energy Mater. 2018, 8 (19), 1703487. doi: 10.1002/aenm.201703487  doi: 10.1002/aenm.201703487

    46. [46]

      Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140 (12), 4218-4221. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    47. [47]

      Vijay, S.; Ju, W.; Brückner, S.; Tsang, S.-C.; Strasser, P.; Chan, K. Nat. Catal. 2021, 4 (12), 1024. doi: 10.1038/s41929-021-00705-y  doi: 10.1038/s41929-021-00705-y

    48. [48]

      Du, Y.; Meng, X.; Wang, Z.; Zhao, X.; Qiu J. Acta Phys.-Chim. Sin. 2022, 38 (2), 2101009.  doi: 10.3866/PKU.WHXB202101009

    49. [49]

      Guo, B. D.; Liu, Q. A.; Chen, E. D.; Zhu, H. W.; Fang, L. A.; Gong, J. R. Nano Lett. 2010, 10 (12), 4975. doi: 10.1021/nl103079j  doi: 10.1021/nl103079j

    50. [50]

      Wu, J.; Yadav, R. M.; Liu, M.; Sharma, P. P.; Tiwary, C. S.; Ma, L.; Zou, X.; Zhou, X.-D.; Yakobson, B. I.; Lou, J.; et al. ACS Nano 2015, 9 (5), 5364. doi: 10.1021/acsnano.5b01079  doi: 10.1021/acsnano.5b01079

    51. [51]

      Li, H.; Xiao, N.; Hao, M.; Song, X.; Wang, Y.; Ji, Y.; Liu, C.; Li, C.; Guo, Z.; Zhang, F.; et al. Chem. Eng. J. 2018, 351, 613. doi: 10.1016/j.cej.2018.06.077  doi: 10.1016/j.cej.2018.06.077

    52. [52]

      Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819  doi: 10.1038/ncomms3819

    53. [53]

      Wang, Y.; Zhou, J.; Lv, W.; Fang, H.; Wang, W. Appl. Surf. Sci. 2016, 362, 394. doi: 10.1016/j.apsusc.2015.11.255  doi: 10.1016/j.apsusc.2015.11.255

    54. [54]

      Liu, S.; Pang, F.; Zhang, Q.; Guo, R.; Wang, Z.; Wang, Y.; Zhang, W.; Ou, J. Appl. Mater. Today 2018, 13, 135. doi: 10.1016/j.apmt.2018.08.014  doi: 10.1016/j.apmt.2018.08.014

    55. [55]

      Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Qiao, J.; Zhang, J.; Wilkinson, D. P. Appl. Energy 2016, 175, 536. doi: 10.1016/j.apenergy.2016.03.115  doi: 10.1016/j.apenergy.2016.03.115

    56. [56]

      Nguyen-Phan, T.-D.; Hu, L.; Howard, B. H.; Xu, W.; Stavitski, E.; Leshchev, D.; Rothenberger, A.; Neyerlin, K. C.; Kauffman, D. R. Sci. Rep. 2022, 12 (1), 1. doi: 10.1038/s41598-022-11890-6  doi: 10.1038/s41598-022-11890-6

    57. [57]

      Wang, X.; Zou, Y.; Zhang, Y.; Marchetti, B.; Liu, Y.; Yi, J.; Zhou, X.-D.; Zhang, J. J. Colloid Interface Sci. 2022, 626, 836. doi: 10.1016/j.jcis.2022.07.008  doi: 10.1016/j.jcis.2022.07.008

    58. [58]

      Wu, J.; Sharma, P. P.; Harris, B. H.; Zhou, X.-D. J. Power Sources 2014, 258, 189. doi: 10.1016/j.jpowsour.2014.02.014  doi: 10.1016/j.jpowsour.2014.02.014

    59. [59]

      Zou, J.; Lee, C. Y.; Wallace, G. G. Adv. Sci. 2021, 8 (15), 2004521. doi: 10.1002/advs.202004521  doi: 10.1002/advs.202004521

    60. [60]

      Li, Y.; Qiao, J.; Zhang, X.; Lei, T.; Girma, A.; Liu, Y.; Zhang, J. ChemElectroChem 2016, 3 (10), 1618. doi: 10.1002/celc.201600290  doi: 10.1002/celc.201600290

    61. [61]

      Zhang, Q.; Zhang, Y.; Mao, J.; Liu, J.; Zhou, Y.; Guay, D.; Qiao, J. ChemSusChem 2019, 12 (7), 1443. doi: 10.1002/cssc.201802725  doi: 10.1002/cssc.201802725

    62. [62]

      Liu, H.; Su, Y.; Liu, Z.; Chuai, H.; Zhang, S.; Ma, X. Nano Energy 2023, 105, 108031. doi: 10.1016/j.nanoen.2022.108031  doi: 10.1016/j.nanoen.2022.108031

    63. [63]

      Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2020, 59 (12), 4814. doi: 10.1002/anie.201916538  doi: 10.1002/anie.201916538

    64. [64]

      Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. J. Am. Chem. Soc. 2017, 139 (5), 1885. doi: 10.1021/jacs.6b10435  doi: 10.1021/jacs.6b10435

    65. [65]

      Hou, X.; Cai, Y.; Zhang, D.; Li, L.; Zhang, X.; Zhu, Z.; Peng, L.; Liu, Y.; Qiao, J. J. Mater. Chem. A 2019, 7 (7), 3197. doi: 10.1039/c8ta10650a  doi: 10.1039/c8ta10650a

    66. [66]

      Liu, H.; Xia, J.; Zhang, N.; Cheng, H.; Bi, W.; Zu, X.; Chu, W.; Wu, H.; Wu, C.; Xie, Y. Nat. Catal. 2021, 4 (3), 202. doi: 10.1038/s41929-021-00576-3  doi: 10.1038/s41929-021-00576-3

    67. [67]

      Ye, K.; Cao, A.; Shao, J.; Wang, G.; Si, R.; Ta, N.; Xiao, J.; Wang, G. Sci. Bull. 2020, 65 (9), 711. doi: 10.1016/j.scib.2020.01.020  doi: 10.1016/j.scib.2020.01.020

    68. [68]

      Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 129 (40), 12387. doi: 10.1002/anie.201707098  doi: 10.1002/anie.201707098

    69. [69]

      Koh, J. H.; Won, D. H.; Eom, T.; Kim, N.-K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. ACS Catal. 2017, 7 (8), 5071. doi: 10.1021/acscatal.7b00707  doi: 10.1021/acscatal.7b00707

    70. [70]

      Chen, J.; Chen, S.; Li, Y.; Liao, X.; Zhao, T.; Cheng, F.; Wang, H. Small 2022,2201633. doi: 10.1002/smll.202201633  doi: 10.1002/smll.202201633

    71. [71]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Zhao, P.; Xue, X.; Chen, R.; Yang, S.; Ma, J.; Liu, J. Nano Energy 2018, 53, 808. doi: 10.1016/j.nanoen.2018.09.053  doi: 10.1016/j.nanoen.2018.09.053

    72. [72]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9 (1), 1. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    73. [73]

      Duan, J.; Liu, T.; Zhao, Y.; Yang, R.; Zhao, Y.; Wang, W.; Liu, Y.; Li, H.; Li, Y.; Zhai, T. Nat. Commun. 2022, 13 (1), 2039. doi: 10.1038/s41467-022-29699-2  doi: 10.1038/s41467-022-29699-2

    74. [74]

      Guan, Y.; Zhang, X.; Zhang, Y.; Karsili, T. N.; Fan, M.; Liu, Y.; Marchetti, B.; Zhou, X.-D. J. Colloid Interface Sci. 2022, 612, 235. doi: 10.1016/j.jcis.2021.12.174  doi: 10.1016/j.jcis.2021.12.174

    75. [75]

      Zhang, X.; Lei, T.; Liu, Y.; Qiao, J. Appl. Catal. B 2017, 218, 46. doi: 10.1016/j.apcatb.2017.06.032  doi: 10.1016/j.apcatb.2017.06.032

    76. [76]

      Zhang, X.; Hou, X.; Zhang, Q.; Cai, Y.; Liu, Y.; Qiao, J.J. Catal. 2018, 365, 63. doi: 10.1016/j.jcat.2018.06.019  doi: 10.1016/j.jcat.2018.06.019

    77. [77]

      Huang, Y.; Mao, X.; Yuan, G.; Zhang, D.; Pan, B.; Deng, J.; Shi, Y.; Han, N.; Li, C.; Zhang, L.; et al.Angew. Chem. Int. Ed. 2021, 133 (29), 15978. doi: 10.1002/anie.202105256  doi: 10.1002/anie.202105256

    78. [78]

      Pan, B.; Yuan, G.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y.; et al.Small Sci. 2021, 1 (10), 2100029. doi: 10.1002/smsc.202100029  doi: 10.1002/smsc.202100029

    79. [79]

      Du, X.; Qin, Y.; Gao, B.; Wang, K.; Li, D.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Xiao, C. Appl. Surf. Sci. 2021, 563, 150405. doi: 10.1016/j.apsusc.2021.150405  doi: 10.1016/j.apsusc.2021.150405

    80. [80]

      Grigioni, I.; Sagar, L. K.; Li, Y. C.; Lee, G.; Yan, Y.; Bertens, K.; Miao, R. K.; Wang, X.; Abed, J.; Won, D. H.; et al.ACS Energy Lett. 2020, 6 (1), 79. doi: 10.1021/acsenergylett.0c02165  doi: 10.1021/acsenergylett.0c02165

    81. [81]

      Chi, L.-P.; Niu, Z.-Z.; Zhang, X.-L.; Yang, P.-P.; Liao, J.; Gao, F.-Y.; Wu, Z.-Z.; Tang, K.-B.; Gao, M.-R. Nat. Commun. 2021, 12 (1), 5835. doi: 10.1038/s41467-021-26124-y  doi: 10.1038/s41467-021-26124-y

    82. [82]

      Wang, H.; Wu, Y.; Zhao, Y.; Liu, Z. Acta Phys.-Chim. Sin. 2020, 37 (5), 2010022.  doi: 10.3866/PKU.WHXB202010022

    83. [83]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Perkin Trans. 1989, 85 (8), 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    84. [84]

      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8 (8), 7445. doi: 10.1021/acscatal.8b01200  doi: 10.1021/acscatal.8b01200

    85. [85]

      Yuan, Q.; Yang, H.; Xie, M.; Cheng T. Acta Phys.-Chim. Sin. 2020, 37 (5), 2010040.  doi: 10.3866/PKU.WHXB202010040

    86. [86]

      Raciti, D.; Mao, M.; Wang, C. Nanotechnology 2017, 29 (4), 044001. doi: 10.1088/1361-6528/aa9bd7  doi: 10.1088/1361-6528/aa9bd7

    87. [87]

      Huang, J. E.; Li, F.; Ozden, A.; Sedighian Rasouli, A.; García de Arquer, F. P.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; et al. Science 2021, 372 (6546), 1074. doi: 10.1126/science.abg6582  doi: 10.1126/science.abg6582

    88. [88]

      Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Zhou, X.; Qiao, J. Chin. J. Catal. 2016, 37 (7), 1081. doi: 10.1016/S1872-2067(15)61048-8  doi: 10.1016/S1872-2067(15)61048-8

    89. [89]

      Murata, A.; Hori, Y. Bull. Chem. Soc. Jpn. 1991, 64 (1), 123. doi: 10.1246/Bcsj.64.123  doi: 10.1246/Bcsj.64.123

    90. [90]

      Wu, J. J.; Risalvato, F. G.; Ke, F. S.; Pellechia, P. J.; Zhou, X. D. J. Electrochem. Soc. 2012, 159 (7), F353. doi: 10.1149/2.049207jes  doi: 10.1149/2.049207jes

    91. [91]

      Schizodimou, A.; Kyriacou, G. Electrochim. Acta 2012, 78, 171. doi: 10.1016/j.electacta.2012.05.118  doi: 10.1016/j.electacta.2012.05.118

    92. [92]

      Peng, L.; Wang, Y.; Masood, I.; Zhou, B.; Wang, Y.; Lin, J.; Qiao, J.; Zhang, F.-Y. Appl. Catal. B 2020, 264, 118447. doi: 10.1016/j.apcatb.2019.118447  doi: 10.1016/j.apcatb.2019.118447

    93. [93]

      Zhu, S.; Jiang, B.; Cai, W.-B.; Shao, M. J. Am. Chem. Soc. 2017, 139 (44), 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    94. [94]

      Xu, B.; Hasan, I. M. U.; Peng, L.; Liu, J.; Xu, N.; Fan, M.; Niazi, N. K.; Qiao, J. Mater. Rep. Energy 2022, 2 (3), 100139. doi: 10.1016/j.matre.2022.100139  doi: 10.1016/j.matre.2022.100139

    95. [95]

      Gao, D.; Wei, P.; Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys.-Chim. Sin. 2020, 37 (5), 2009021.  doi: 10.3866/PKU.WHXB202009021

    96. [96]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5 (5), 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    97. [97]

      Liu, P.-X.; Peng, L.-W.; He, R.-N.; Li, L.-L.; Qiao, J.-L. J. Electrochem. 2022, 28 (1), 2104231. doi: 10.13208/j.electrochem.210423  doi: 10.13208/j.electrochem.210423

    98. [98]

      Whipple, D. T.; Finke, E. C.; Kenis, P. J. Electrochem. Solid-State Lett. 2010, 13 (9), B109. doi: 10.1149/1.3456590  doi: 10.1149/1.3456590

    99. [99]

      Tornow, C. E.; Thorson, M. R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. J. Am. Chem. Soc. 2012, 134 (48), 19520. doi: 10.1021/ja308217w  doi: 10.1021/ja308217w

    100. [100]

      Jhong, H. R. M.; Brushett, F. R.; Kenis, P. J. Adv. Energy Mater. 2013, 3 (5), 589. doi: 10.1002/aenm.201200759  doi: 10.1002/aenm.201200759

    101. [101]

      Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al.Science 2018, 360 (6390), 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    102. [102]

      Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C. Prog. Energy Combust. Sci. 2017, 62, 133. doi: 10.1016/j.pecs.2017.05.005  doi: 10.1016/j.pecs.2017.05.005

    103. [103]

      Lu, X.; Wu, Y.; Yuan, X.; Huang, L.; Wu, Z.; Xuan, J.; Wang, Y.; Wang, H. ACS Energy Lett. 2018, 3 (10), 2527. doi: 10.1021/acsenergylett.8b01681  doi: 10.1021/acsenergylett.8b01681

    104. [104]

      Burdyny, T.; Smith, W. A. Energy Environ. Sci. 2019, 12 (5), 1442. doi: 10.1039/C8EE03134G  doi: 10.1039/C8EE03134G

    105. [105]

      Li, G.; Yan, T.; Chen, X.; Liu, H.; Zhang, S.; Ma, X.Energy Fuels 2022, 36 (8), 4234. doi: 10.1021/acs.energyfuels.2c00271  doi: 10.1021/acs.energyfuels.2c00271

    106. [106]

      Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. Nat. Commun. 2021, 12 (1), 136. doi: 10.1038/s41467-020-20397-5  doi: 10.1038/s41467-020-20397-5

    107. [107]

      Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B.; et al. Nat. Energy 2022, 7 (2), 130. doi: 10.1038/s41560-021-00973-9  doi: 10.1038/s41560-021-00973-9

    108. [108]

      Sacco, A.; Zeng, J.; Bejtka, K.; Chiodoni, A. J. Catal. 2019, 372, 39. doi: 10.1016/j.jcat.2019.02.016  doi: 10.1016/j.jcat.2019.02.016

    109. [109]

      Liu, C.; Wang, X.; Xu, J.; Wang, C.; Chen, H.; Liu, W.; Chen, Z.; Du, X.; Wang, S.; Wang, Z. Int. J. Hydrog. Energy 2020, 45 (1), 945. doi: 10.1016/j.ijhydene.2019.10.166  doi: 10.1016/j.ijhydene.2019.10.166

    110. [110]

      Ma, S.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. J. Mater. Chem. A 2016, 4 (22), 8573. doi: 10.1039/C6TA00427J  doi: 10.1039/C6TA00427J

    111. [111]

      Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2019, 12 (8), 2455. doi: 10.1039/C9EE01204D  doi: 10.1039/C9EE01204D

    112. [112]

      Blommaert, M. A.; Subramanian, S.; Yang, K.; Smith, W. A.; Vermaas, D. A. ACS Appl. Mater. Interfaces 2021, 14 (1), 557. doi: 10.1021/acsami.1c16513  doi: 10.1021/acsami.1c16513

    113. [113]

      Liu, J.; Peng, L.; Zhou, Y.; Lv, L.; Fu, J.; Lin, J.; Guay, D.; Qiao, J. ACS Sustain. Chem. Eng. 2019, 7 (18), 15739. doi: 10.1021/acssuschemeng.9b03892  doi: 10.1021/acssuschemeng.9b03892

    114. [114]

      Yang, H.; Kaczur, J. J.; Sajjad, S. D.; Masel, R. I. J. CO2 Util. 2017, 20, 208. doi: 10.1016/j.jcou.2017.04.011  doi: 10.1016/j.jcou.2017.04.011

    115. [115]

      Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W.; Stavitski, E.; Alshareef, H. N.; Wang, H. Nat. Energy 2019, 4 (9), 776. doi: 10.1038/s41560-019-0451-x  doi: 10.1038/s41560-019-0451-x

    116. [116]

      Delacourt, C.; Ridgway, P. L.; Kerr, J. B.; Newman, J. J. Electrochem. Soc. 2007, 155 (1), B42. doi: 10.1149/1.2801871  doi: 10.1149/1.2801871

    117. [117]

      Kutz, R. B.; Chen, Q.; Yang, H.; Sajjad, S. D.; Liu, Z.; Masel, I. R. Energy Technol. 2017, 5 (6), 929. doi: 10.1002/ente.201600636  doi: 10.1002/ente.201600636

    118. [118]

      Peng, L.; Wang, Y.; Wang, Y.; Xu, N.; Lou, W.; Liu, P.; Cai, D.; Huang, H.; Qiao, J. Appl. Catal. B 2021, 288, 120003. doi: 10.1016/j.apcatb.2021.120003  doi: 10.1016/j.apcatb.2021.120003

    119. [119]

      Wang, M.; Preston, N.; Xu, N.; Wei, Y.; Liu, Y.; Qiao, J. ACS Appl. Mater. Interfaces 2019, 11(7), 6881. doi: 10.1021/acsami.8b11845  doi: 10.1021/acsami.8b11845

    120. [120]

      Wang, M.; Zou, Q.; Dong, X.; Xu, N.; Shao, R.; Ding, J.; Zhang, Y.; Qiao, J. Green Energy Environ. 2021, 8 (3), 893. doi: 10.1016/j.gee.2021.12.003  doi: 10.1016/j.gee.2021.12.003

    121. [121]

      Wu, H.; Guo, X.; Gao, L.; Zhou, T.; Niu, Z.; Dong, X.; Zhou, Y.; Li, Z.; Hong, F. F.; Qiao, J. Chem. Eng. J. 2023, 454, 139807. doi: 10.1016/j.cej.2022.139807  doi: 10.1016/j.cej.2022.139807

    122. [122]

      Wang, M.; Xu, B.; Zou, Q.; Dong, X.; Shao, R.; Qiao, J. Sep. Purif. Technol. 2023, 307, 122792. doi: 10.1016/j.seppur.2022.122792  doi: 10.1016/j.seppur.2022.122792

    123. [123]

      Vargas-Barbosa, N. M.; Geise, G. M.; Hickner, M. A.; Mallouk, T. E. ChemSusChem 2014, 7 (11), 3017. doi: 10.1002/cssc.201402535  doi: 10.1002/cssc.201402535

    124. [124]

      Simons, R. Electrochim. Acta 1986, 31 (9), 1175. doi: 10.1016/0013-4686(86)80130-X  doi: 10.1016/0013-4686(86)80130-X

    125. [125]

      Yan, Z.; Hitt, J. L.; Zeng, Z.; Hickner, M. A.; Mallouk, T. E. Nat. Chem. 2021, 13 (1), 33. doi: 10.1038/s41557-020-00602-0  doi: 10.1038/s41557-020-00602-0

    126. [126]

      Vermaas, D. A.; Smith, W. A. ACS Energy Lett. 2016, 1 (6), 1143. doi: 10.1021/acsenergylett.6b00557  doi: 10.1021/acsenergylett.6b00557

    127. [127]

      Peng, L.; Chen, C.; He, R.; Xu, N.; Qiao, J.; Lin, Z.; Zhu, Y.; Huang, H. EcoMat 2022, 4 (6), e12260. doi: 10.1002/eom2.12260  doi: 10.1002/eom2.12260

  • 加载中
    1. [1]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    2. [2]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    7. [7]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(76)
  • Abstract views(4823)
  • HTML views(764)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return