Citation: Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221205. doi: 10.3866/PKU.WHXB202212057 shu

Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction

  • Corresponding author: Qianrong Fang, qrfang@jlu.edu.cn
  • Received Date: 30 December 2022
    Revised Date: 30 January 2023
    Accepted Date: 31 January 2023
    Available Online: 3 February 2023

    Fund Project: the National Key R&D Program of China 2022YFB3704900the National Key R&D Program of China 2021YFF0500500National Natural Science Foundation of China 22025504National Natural Science Foundation of China 21621001National Natural Science Foundation of China 22105082the SINOPEC Research Institute of Petroleum Processing, "111" Project, China BP0719036the SINOPEC Research Institute of Petroleum Processing, "111" Project, China B17020

  • Increasing global energy consumption and the depletion of traditional energy sources pose severe challenges to environmental protection and energy supply security. Electrochemical decomposition of water is a green and promising technology and is also a key technology for efficient and sustainable energy production and storage by fuel cells and metal-air batteries. The electrocatalytic oxygen evolution reaction (OER), as the anode reaction for the electrolysis of water, requires large amounts of energy owing to multielectron participation, and to the breaking of O―H bonds and formation of O―O bonds. Many precious metal catalysts are expensive, and these are responsible for secondary environmental pollution, which is detrimental for the large-scale application of the OER. Therefore, it is necessary to develop a stable, clean, and efficient electrocatalyst to improve the efficiency of the OER. The application of covalent organic frameworks (COFs) to the electrocatalytic oxygen evolution reaction (OER) has received widespread attention. However, most metal-free covalent organic frameworks (COFs) have unsuitably poor conductivity for the OER. Herein, we report a 2D metal-free tetrathiafulvalene (TTF)-based COF, termed JUC-630. To improve the conductivity of COFs, we introduced TTF, which is a good electron donor, into the COF material. At the same time, compared with its analogue without TTF (Etta-Td COF), we found that JUC-630 has a large surface area, better crystallinity, and higher stability. Furthermore, we tested their OER performance in a 1 mol∙L−1 KOH solution, and the results show that JUC-630 has a higher current density than Etta-Td COF and TTF at the same potential. For example, at a current density of 10 mA∙cm−2, the overpotential of JUC-630 was 400 mV, which was significantly lower than that of Etta-Td COF (450 mV). This overpotential is comparable to or even better than those of the widely discussed carbon and graphene materials. The lower overpotential, Tafel slope values, and smaller electrochemical impedance illustrate that the introduction of TTF monomers into the COF material results in a significantly improved OER performance for JUC-630. This study proposes a strategy for the rational design of functional motifs that can greatly improve the OER catalytic activity of COF materials. Thus, the results should help to suggest new efficient approaches for the preparation of catalysts for energy conversion from water resources.
  • 加载中
    1. [1]

      You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev. 2013, 42, 2880. doi: 10.1039/C2CS35319A  doi: 10.1039/C2CS35319A

    2. [2]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    3. [3]

      Liu, X.; Dai, L. Nat. Rev. Mater. 2016, 1, 16064. doi: 10.1038/natrevmats.2016.64  doi: 10.1038/natrevmats.2016.64

    4. [4]

      Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Sci. Rep. 2017, 7, 8378. doi: 10.1038/s41598-017-08677-5  doi: 10.1038/s41598-017-08677-5

    5. [5]

      Teng, H.; Wang, W.; Han, X.; Hao, X.; Yang, R. Acta Phys. -Chim. Sin. 2023, 39 (1), 2107017.  doi: 10.3866/PKU.WHXB202107017

    6. [6]

      Yu, Y.; Feng, Y.; Guan, B.; Lou, W.; Paik, U. Energy Environ. Sci. 2016, 9 (4), 1246. doi: 10.1039/C6EE00100A  doi: 10.1039/C6EE00100A

    7. [7]

      Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2 (8), 1765. doi: 10.1021/cs3003098  doi: 10.1021/cs3003098

    8. [8]

      Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53 (41), 10960. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    9. [9]

      Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dan, H.; Strasser, P. Nat. Commun. 2015, 6, 8625. doi: 10.1038/ncomms9625  doi: 10.1038/ncomms9625

    10. [10]

      Tran Ngoc, H.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. , 2017, 56 (17), 4792. doi: 10.1002/anie.201700388  doi: 10.1002/anie.201700388

    11. [11]

      Liu, X.; Wang, L.; Yu, C.; Tian, C.; Sun, F.; Ma, J.; Li, L.; Fu, H.; Angew. Chem. Int. Ed. 2018, 57, 16166. doi: 10.1002/anie.201809009  doi: 10.1002/anie.201809009

    12. [12]

      Bhanja, P.; Mohanty, B.; Patra, A. K.; Ghosh, S.; Jena, B. K.; Bhaumik, A. ChemCatChem 2019, 11, 583. doi: 10.1002/cctc.201801312  doi: 10.1002/cctc.201801312

    13. [13]

      Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Aricò, A. S. Appl. Catal. B: Environ. 2015, 164, 488. doi: 10.1016/j.apcatb.2014.09.005  doi: 10.1016/j.apcatb.2014.09.005

    14. [14]

      Li, Y.; Li, M.; Jiang, L. Q.; Lin, L.; Cui, L.; He, Q. Phys. Chem. Chem. Phys. 2014, 16 (42), 23196. doi: 10.1039/C4CP02528H  doi: 10.1039/C4CP02528H

    15. [15]

      Wang, Q.; Lee, S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Chem. Mater. 2010, 22 (7), 2178. doi: 10.1021/cm100139d  doi: 10.1021/cm100139d

    16. [16]

      Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110 (4), 1787. doi: 10.1021/jp055150g  doi: 10.1021/jp055150g

    17. [17]

      Liu, W.; Peng, F.; Wang, J.; Yu, H.; Zheng, X.; Yang, A. Angew. Chem. Int. Ed. 2011, 50 (14), 3257. doi: 10.1002/ange.201006768  doi: 10.1002/ange.201006768

    18. [18]

      Gong, P.; Du, F.; Xia, H.; Durstock, M.; Dai, M. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    19. [19]

      Yang, J.; Jiang, J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50 (31), 7270 doi: 10.1002/ange.201101287  doi: 10.1002/ange.201101287

    20. [20]

      Wu, K.; Zhang, Y.; Yong, Z.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38 (9), 2106034.  doi: 10.3866/PKU.WHXB202106034

    21. [21]

      Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A 2016, 4, 18470. doi: 10.1039/C6TA08335H  doi: 10.1039/C6TA08335H

    22. [22]

      Kone, I.; Xie, A.; Tang, Y.; Chen, Y.; Liu, J.; Chen, Y.; Sun, Y.; Yang, X.; Wan, P. ACS Appl. Mater. Interfaces 2017, 9, 20963. doi: 10.1021/acsami.7b02306  doi: 10.1021/acsami.7b02306

    23. [23]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411  doi: 10.1126/science.1120411

    24. [24]

      Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1801410. doi: 10.1002/advs.201801410  doi: 10.1002/advs.201801410

    25. [25]

      Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2017, 139 (49), 17741. doi: 10.1021/jacs.7b11283  doi: 10.1021/jacs.7b11283

    26. [26]

      Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. J. Am. Chem. Soc. 2019, 141 (34), 13324. doi: 10.1021/jacs.9b06908  doi: 10.1021/jacs.9b06908

    27. [27]

      Liu, X.; Guan, X.; Fang, Q.; Jin, Y. Chem. J. Chin. Univ. 2019, 40 (7), 1341.  doi: 10.7503/cjcu20190086

    28. [28]

      Yan, Y.; Guan, X.; Li, H.; Fang, Q.; Qiu, S. Natl. Sci. Rev. 2020, 7, 170. doi: 10.1093/nsr/nwz122  doi: 10.1093/nsr/nwz122

    29. [29]

      Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48, 4375. doi: 10.1039/C9CS00258H  doi: 10.1039/C9CS00258H

    30. [30]

      Liang, Y.; Feng, L.; Liu, X.; Zhao, Y.; Chen, Q.; Sui, Z.; Wang, N. Chem. Eng. J. 2021, 404, 127095. doi: 10.1016/j.cej.2020.127095  doi: 10.1016/j.cej.2020.127095

    31. [31]

      Shan, Z.; Wu, M.; Du, Y.; Xu, B.; He, B.; Wu, X.; Zhang, G. Chem. Mater. 2021, 33, 5058. doi: 10.1021/acs.chemmater.1c00978  doi: 10.1021/acs.chemmater.1c00978

    32. [32]

      Lu, Y.; Liang, Y.; Zhao, Y.; Xia, M.; Liu, X.; Shen, T.; Feng, L.; Yuan, N.; Chen, Q. ACS Appl. Mater. Interfaces 2021, 13, 1644. doi: 10.1021/acsami.0c20203  doi: 10.1021/acsami.0c20203

    33. [33]

      Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. ACS Catal. 2020, 10, 8717. doi: 10.1021/acscatal.0c01242  doi: 10.1021/acscatal.0c01242

    34. [34]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    35. [35]

      Wu, Q.; Xie, R.; Mao, M.; Chai, G.; Yi, J.; Zhao, S. ACS Energy Lett. 2020, 5, 1005. doi: 10.1021/acsenergylett.9b02756  doi: 10.1021/acsenergylett.9b02756

    36. [36]

      Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; et al. Chem. Eur. J. 2014, 20, 14614. doi: 10.1002/chem.201405330  doi: 10.1002/chem.201405330

    37. [37]

      Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Mor-iyama, M.; Ito, K.; Kato, T. J. Am. Chem. Soc. 2005, 127, 14769. doi: 10.1021/ja053496z  doi: 10.1021/ja053496z

    38. [38]

      Tao, S.; Jiang, D. CCS Chem. 2020, 2, 2003. doi: 10.31635/ccschem.020.202000491  doi: 10.31635/ccschem.020.202000491

    39. [39]

      Liu, Y.; Ren, J.; Wang, Y.; Zhu, X.; Guan, X.; Wang, Z.; Zhou, Y.; Zhu, L.; Qiu, S.; Xiao, S.; et al. CCS Chem. 2022, doi: 10.31635/ccschem.022.202202352  doi: 10.31635/ccschem.022.202202352

    40. [40]

      Li, M.; Liu, J.; Li, Y.; Xing, G.; Yu, X.; Peng, C.; Chen, L. CCS Chem. 2020, 2, 696. doi: 10.31635/ccschem.020.202000257  doi: 10.31635/ccschem.020.202000257

    41. [41]

      Song, J.; Wang, Z.; Liu, Y.; Tuo, C.; Wang, Y.; Fang, Q.; Qiu, S. Chem. Res. Chin. Univ. 2022, 38, 834. doi: 10.1007/s40242-022-2060-7  doi: 10.1007/s40242-022-2060-7

    42. [42]

      He, C.; Wu, Q.; Mao, M.; Zou, Y.; Liu, B.; Huang, Y.; Cao, R. CCS Chem. 2020, 2, 2368. doi: 10.31635/ccschem.020.202000460  doi: 10.31635/ccschem.020.202000460

  • 加载中
    1. [1]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    11. [11]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    17. [17]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

Metrics
  • PDF Downloads(19)
  • Abstract views(1235)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return