Citation: Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221101. doi: 10.3866/PKU.WHXB202211017 shu

Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries

  • Corresponding author: Jinping Liu, liujp@whut.edu.cn
  • Received Date: 8 November 2022
    Revised Date: 5 December 2022
    Accepted Date: 12 December 2022
    Available Online: 19 December 2022

    Fund Project: the National Natural Science Foundation of China 51972257the National Natural Science Foundation of China 52172229the Fundamental Research Funds for the Central Universities 2022IVA197

  • With the rapid development of electric vehicles and intelligent electronics, Li-based batteries are required to have a higher specific capacity and better safety. To develop batteries with higher energy densities, Li may be used as an anode material owing to its higher theoretical capacity (3860 mAh·g−1, 10 times higher than graphite) and low redox potential (−3.04 V vs. the standard hydrogen electrode). However, uncontrolled Li dendrite growth may occur during electrochemical Li plating/stripping in the liquid electrolyte and may penetrate the separator, resulting in a short circuit of the battery. In addition, the conventional liquid organic electrolyte is flammable and easy to leak, posing safety concerns regarding fire and explosion risks. To address these issues, solid-state electrolytes are considered as a particularly ideal alternative because of their desirable mechanical properties, highly reduced flammability, and reduced risk of leakage. Such properties are expected to prevent Li dendrite growth, mitigate structural damage of the Li anode, and improve battery safety. Nonetheless, it is still a great challenge to manufacture solid-state batteries with high areal capacity and good rate performance stems from the high interfacial resistance between the electrolyte and electrode, which hinders Li-ion transport. Therefore, understanding and addressing the general interface issues in solid-state batteries is key to manufacturing high-performance solid-state lithium batteries. Interface issues in solid-state batteries are highly complex and may be broadly categorized into chemical/electrochemical interface and physical interface problems. The chemical/electrochemical interface problem comprises the narrow electrochemical stability window, elemental interdiffusion, and space charge layers, while the physical interface problem can be divided into rigid interfacial contact, volume change during cycling, and fracture and pulverization caused by stress accumulation. Previous reports represent a relatively comprehensive summary of the methods to solve the chemical/electrochemical interface problems but do not discuss in detail the influence of physical interfaces in solid-state batteries of different structures and the related addressing strategies. First, this review will briefly introduce the chemical/electrochemical interface problems and their solutions. Then, solid-state lithium batteries are divided into divided into the sandwich structure, powder composite structure, and 3D integrated structure, according to the key structural characteristics; the physical interface characteristics and optimization strategies of different battery structures are further analyzed in detail, and the advantages and disadvantages of each system are compared and analyzed. Finally, the future research direction of the electrode/electrolyte interface in solid-state lithium batteries is presented.
  • 加载中
    1. [1]

      Liu, L.; Wu, Z. C.; Zheng, Z.; Zhou, Q. J.; Chen, K.; Yin, P. C. Chin. Chem. Lett. 2022, 33, 4326. doi: 10.1016/j.cclet.2021.12.031  doi: 10.1016/j.cclet.2021.12.031

    2. [2]

      Song, K. M.; Chen, W. H. Chem 2021, 7, 3195. doi: 10.1016/j.chempr.2021.11.016  doi: 10.1016/j.chempr.2021.11.016

    3. [3]

      Deysher, G.; Ridley, P.; Ham, S. Y.; Doux, J. M.; Chen, Y. T.; Wu, E. A.; Tan, D. H. S.; Cronk, A.; Jang, J.; Meng, Y. S. Mater. Today Phys. 2022, 24, 2542. doi: 10.1016/j.mtphys.2022.100679  doi: 10.1016/j.mtphys.2022.100679

    4. [4]

      Zhao, B. L.; Ma, L. X.; Wu, K.; Cao, M. X.; Xu, M. G.; Zhang, X. X.; Liu, W.; Chen, J. T. Chin. Chem. Lett. 2021, 32, 125. doi: 10.1016/j.cclet.2020.10.045  doi: 10.1016/j.cclet.2020.10.045

    5. [5]

      Zhao, T.; Li, S. W.; Liu, F.; Wang, Z. Q.; Wang, H. L.; Liu, Y. J.; Tang, X. Y.; Bai, M.; Zhang, M.; Ma, Y. Energy Storage Mater. 2022, 45, 796. doi: 10.1016/j.ensm.2021.12.032  doi: 10.1016/j.ensm.2021.12.032

    6. [6]

      Zhou, B. X.; Bonakdarpour, A.; Stosevski, I.; Fang, B. Z.; Wilkinson, D. P. Prog. Mater. Sci. 2022, 130, 79. doi: 10.1016/j.pmatsci.2022.100996  doi: 10.1016/j.pmatsci.2022.100996

    7. [7]

      Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Chem. Rev. 2020, 120, 6878. doi: 10.1021/acs.chemrev.0c00101  doi: 10.1021/acs.chemrev.0c00101

    8. [8]

      Wang, H.; An, H, W.; Shan, H. M. .; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 36, 2007070.  doi: 10.3866/PKU.WHXB202007070

    9. [9]

      Zhang, Z. H.; Wu, L. P.; Zhou, D.; Weng, W.; Yao, X. Y. Nano Lett. 2021, 21, 5233. doi: 10.1021/acs.nanolett.1c01344  doi: 10.1021/acs.nanolett.1c01344

    10. [10]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    11. [11]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    12. [12]

      Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.Q.; Chen, J. Joule 2018, 2, 1747. doi: 10.1016/j.joule.2018.07.028  doi: 10.1016/j.joule.2018.07.028

    13. [13]

      Wang, H. C.; Zhu, J. P.; Su, Y.; Gong, Z. L.; Yang, Y. Sci. China-Chem. 2021, 64, 879. doi: 10.1007/s11426-021-9985-x  doi: 10.1007/s11426-021-9985-x

    14. [14]

      Goodenough, J. B.; Kim, Y. Chem. Mat. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    15. [15]

      Wenzel, S.; Leichtweiss, T.; Kruger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    16. [16]

      Rehnlund, D.; Wang, Z. H.; Nyholm, L. Adv. Mater. 2022, 34, 2108827. doi: 10.1002/adma.202108827  doi: 10.1002/adma.202108827

    17. [17]

      Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286. doi: 10.1021/acsami.6b08435  doi: 10.1021/acsami.6b08435

    18. [18]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2010, 22, 949. doi: 10.1021/cm901819c  doi: 10.1021/cm901819c

    19. [19]

      Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mat. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870  doi: 10.1021/acs.chemmater.6b03870

    20. [20]

      Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mat. 2016, 28, 266. doi: 10.1021/acs.chemmater.5b04082  doi: 10.1021/acs.chemmater.5b04082

    21. [21]

      Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14, 25556. doi: 10.1021/acsami.2c05239  doi: 10.1021/acsami.2c05239

    22. [22]

      Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z. L.; Zhang, X. Y.; He, P.; Zhou, H. S.; Wagemaker, M. Joule 2020, 4, 131. doi: 10.1016/j.joule.2020.04.002  doi: 10.1016/j.joule.2020.04.002

    23. [23]

      Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2022, 2110423. doi: 10.1002/adma.202110423  doi: 10.1002/adma.202110423

    24. [24]

      Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015  doi: 10.1016/j.ensm.2021.03.015

    25. [25]

      Kitsche, D.; Tang, Y. S.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T. ACS Appl. Energ. Mater. 2021, 4, 7338. doi: 10.1021/acsaem.1c01487  doi: 10.1021/acsaem.1c01487

    26. [26]

      Ma, Y.; Teo, J. H.; Walther, F.; Ma, Y. J.; Zhang, R. Z.; Mazilkin, A.; Tang, Y. S.; Goonetilleke, D.; Janek, J.; Bianchini, M.; et al. Adv. Funct. Mater. 2022, 15, 2111829. doi: 10.1002/adfm.202111829  doi: 10.1002/adfm.202111829

    27. [27]

      Peng, L. F.; Ren, H. T.; Zhang, J. Z.; Chen, S. J.; Yu, C.; Miao, X. F.; Zhang, Z. Q.; He, Z. Y.; Yu, M.; Zhang, L.; et al. Energy Storage Mater. 2021, 43, 53. doi: 10.1016/j.ensm.2021.08.028  doi: 10.1016/j.ensm.2021.08.028

    28. [28]

      Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W.; et al. ACS Energy Lett. 2019, 4, 2480. doi: 10.1021/acsenergylett.9b01676  doi: 10.1021/acsenergylett.9b01676

    29. [29]

      Liu, Y. L.; Sun, Q.; Liu, J. R.; Banis, M. N.; Zhao, Y.; Wang, B. Q.; Adair, K.; Hu, Y. F.; Xiao, Q. F.; Zhang, C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 2293. doi: 10.1021/acsami.9b16343  doi: 10.1021/acsami.9b16343

    30. [30]

      Tsai, W. Y.; Thundat, T.; Nanda, J. Matter 2021, 4, 2119. doi: 10.1016/j.matt.2021.06.014  doi: 10.1016/j.matt.2021.06.014

    31. [31]

      Gao, Y.; Du, X. Q.; Hou, Z.; Shen, X.; Mai, Y. W.; Tarascon, J. M.; Zhang, B. A. Joule 2021, 5, 1860. doi: 10.1016/j.joule.2021.05.015  doi: 10.1016/j.joule.2021.05.015

    32. [32]

      Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Chem. Rev. 2020, 120, 7745. doi: 10.1021/acs.chemrev.0c00431  doi: 10.1021/acs.chemrev.0c00431

    33. [33]

      Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N.; et al. J. Am. Chem. Soc. 2021, 143, 6542. doi: 10.1021/jacs.1c00752  doi: 10.1021/jacs.1c00752

    34. [34]

      Mi, J.S.; Ma, J.B.; Chen, L.K.; Lai, C.; Yang, K.; Biao, J.; Xia, H.Y.; Song, X.; Lv, W.; Zhong, G.M. Energy Storage Mater. 2022, 48, 375. doi: 10.1016/j.ensm.2022.02.048  doi: 10.1016/j.ensm.2022.02.048

    35. [35]

      Arrese-Igor, M.; Martinez-Ibanez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H.; Armand, M.; Aguesse, F.; Lopez-Aranguren, P. ACS Energy Lett. 2022, 7, 1473. doi: 10.1021/acsenergylett.2c00488  doi: 10.1021/acsenergylett.2c00488

    36. [36]

      Wang, P.; Qu, W. J.; Song, W. L.; Chen, H. S.; Chen, R. J.; Fang, D. N. Adv. Funct. Mater. 2019, 29, 29. doi: 10.1002/adfm.201900950  doi: 10.1002/adfm.201900950

    37. [37]

      Tian, H. K.; Qi, Y. J. Electrochem. Soc. 2017, 16, 3512. doi: 10.1149/2.0481711jes  doi: 10.1149/2.0481711jes

    38. [38]

      Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6, 984. doi: 10.1016/j.joule.2022.04.001  doi: 10.1016/j.joule.2022.04.001

    39. [39]

      Liu, Y. Y.; Tzeng, Y. K.; Lin, D. C.; Pei, A.; Lu, H. Y.; Melosh, N. A.; Shen, Z. X.; Chu, S.; Cui, Y. Joule 2018, 2, 1595. doi: 10.1016/j.joule.2018.05.007  doi: 10.1016/j.joule.2018.05.007

    40. [40]

      Kasemchainan, J.; Zekoll, S.; Jolly, D. S.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-9  doi: 10.1038/s41563-019-0438-9

    41. [41]

      Yamada, H.; Ito, T.; Basappa, R. H.; Bekarevich, R.; Mitsuishi, K. J. Power Sources 2017, 368, 97. doi: 10.1016/j.jpowsour.2017.09.076  doi: 10.1016/j.jpowsour.2017.09.076

    42. [42]

      Zhang, W. B.; Schroder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. J. Mater. Chem. A 2017, 5, 9929. doi: 10.1039/c7ta02730c  doi: 10.1039/c7ta02730c

    43. [43]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517  doi: 10.1021/jacs.9b03517

    44. [44]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 14, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    45. [45]

      Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Adv. Mater. 2022, 34, 2202780. doi: 10.1002/adma.202202780  doi: 10.1002/adma.202202780

    46. [46]

      Deng, C. L.; Chen, N.; Hou, C. Y.; Liu, H. X.; Zhou, Z. M.; Chen, R. J. Small 2021, 17, 9. doi: 10.1002/smll.202006578  doi: 10.1002/smll.202006578

    47. [47]

      Guo, S. J.; Li, Y. T.; Li, B.; Grundish, N. S.; Cao, A. M.; Sun, Y. G.; Xu, Y. S.; Ji, Y. L. M.; Qiao, Y.; Zhang, Q. H.; et al. J. Am. Chem. Soc. 2022, 144, 2179. doi: 10.1021/jacs.1c10872  doi: 10.1021/jacs.1c10872

    48. [48]

      Liu, Y. Q.; Wang, X.; Ghosh, S. K.; Zou, M.; Zhou, H.; Xiao, X. H.; Meng, X. B. Dalton Trans. 2022, 51, 2737. doi: 10.1039/d1dt03600a  doi: 10.1039/d1dt03600a

    49. [49]

      Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L.; et al. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030  doi: 10.1002/adma.202000030

    50. [50]

      Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H.; et al. ACS Energy Lett. 2018, 3, 1212. doi: 10.1021/acsenergylett.8b00453  doi: 10.1021/acsenergylett.8b00453

    51. [51]

      Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2104003.  doi: 10.3866/PKU.WHXB202104003

    52. [52]

      Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A. Y.; Janek, J.; Hartmann, P.; Brezesinski, T. ACS Energy Lett. 2018, 3, 992. doi: 10.1021/acsenergylett.8b00275  doi: 10.1021/acsenergylett.8b00275

    53. [53]

      Shi, T.; Tu, Q. S.; Tian, Y. S.; Xiao, Y. H.; Miara, L. J.; Kononova, O.; Ceder, G. Adv. Energy Mater. 2020, 10, 1902881. doi: 10.1002/aenm.201902881  doi: 10.1002/aenm.201902881

    54. [54]

      Zhao, J.; Zhao, C.; Zhu, J. P.; Liu, X. S.; Yao, J. M.; Wang, B.; Dai, Q. S.; Wang, Z. F.; Chen, J. Z.; Jia, P.; et al. Nano Lett. 2022, 2, 411. doi: 10.1021/acs.nanolett.1c04076  doi: 10.1021/acs.nanolett.1c04076

    55. [55]

      Jiang, W.; Zhu, X. X.; Huang, R. Z.; Zhao, S.; Fan, X. M.; Ling, M.; Liang, C. D.; Wang, L. G. Adv. Energy Mater. 2022, 2103473. doi: 10.1002/aenm.202103473  doi: 10.1002/aenm.202103473

    56. [56]

      Yang, C.P.; Wu, Q.S.; Xie, W.Q.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.M.; He, S.M.; et al. Nature 2021, 598, 590. doi: 10.1038/s41586-021-03885-6  doi: 10.1038/s41586-021-03885-6

    57. [57]

      Li, Z.; Zhou, X. Y.; Guo, X. Energy Storage Mater. 2020, 29, 149. doi: 10.1016/j.ensm.2020.04.015  doi: 10.1016/j.ensm.2020.04.015

    58. [58]

      Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi: 10.1016/j.ensm.2020.11.038  doi: 10.1016/j.ensm.2020.11.038

    59. [59]

      Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energ. Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280  doi: 10.1021/acsaem.8b00280

    60. [60]

      Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Nat. Mater. 2021, 20, 984. doi: 10.1038/s41563-021-00943-2  doi: 10.1038/s41563-021-00943-2

    61. [61]

      Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. Nano Energy 2022, 91, 2211. doi: 10.1016/j.nanoen.2021.106679  doi: 10.1016/j.nanoen.2021.106679

    62. [62]

      Gao, X.W.; Liu, B.Y.; Hu, B.K.; Ning, Z.Y.; Jolly, D. S.; Zhang, S.M.; Perera, J.; Bu, J.; Liu, J.L.; Doerrer, C.; et al. Joule 2022, 6, 636. doi: 10.1016/j.joule.2022.02.008  doi: 10.1016/j.joule.2022.02.008

    63. [63]

      Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003.  doi: 10.3866/PKU.WHXB202005003

    64. [64]

      Doux, J. M.; Yang, Y. Y. C.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X. F.; Banerjee, A.; Meng, Y. S. J. Mater. Chem. A 2020, 8, 5049. doi: 10.1039/c9ta12889a  doi: 10.1039/c9ta12889a

    65. [65]

      Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 20204959. doi: 10.1002/adma.202004959  doi: 10.1002/adma.202004959

    66. [66]

      Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Cell Rep. Phys. Sci. 2022, 3, 100851. doi: 10.1016/j.xcrp.2022.100851  doi: 10.1016/j.xcrp.2022.100851

    67. [67]

      Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Edit. 2021, 60, 12931. doi: 10.1002/anie.202101537  doi: 10.1002/anie.202101537

    68. [68]

      Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J.; et al. Adv. Mater. 2021, 33, 2003524. doi: 10.1002/adma.202003524  doi: 10.1002/adma.202003524

    69. [69]

      Salian, G. D.; Lebouin, C.; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, T. J. Power Sources 2017, 340, 242. doi: 10.1016/j.jpowsour.2016.11.078  doi: 10.1016/j.jpowsour.2016.11.078

    70. [70]

      Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ion. 2018, 320, 38. doi: 10.1016/j.ssi.2018.02.024  doi: 10.1016/j.ssi.2018.02.024

    71. [71]

      Zhou, X.; Zhang, Y.; Shen, M.; Fang, Z.; Kong, T. Y.; Feng, W. L.; Xie, Y. H.; Wang, F.; Hu, B. W.; Wang, Y. G. Adv. Energy Mater. 2022, 12, 2103932. doi: 10.1002/aenm.202103932  doi: 10.1002/aenm.202103932

  • 加载中
    1. [1]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    4. [4]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    5. [5]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    6. [6]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    9. [9]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    11. [11]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    12. [12]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    13. [13]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    20. [20]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(27)
  • Abstract views(1053)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return