Citation: Qian Yin, Huiting Song, Ming Xu, Hong Yan, Yufei Zhao, Xue Duan. Thermal Decomposition of Carbonates Coupled with Dry Reforming of Methane to Synthesize High-Value Products: A Perspective[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221002. doi: 10.3866/PKU.WHXB202210026 shu

Thermal Decomposition of Carbonates Coupled with Dry Reforming of Methane to Synthesize High-Value Products: A Perspective

  • Corresponding author: Hong Yan, zhaoyufei@mail.buct.edu.cn Yufei Zhao, yanhong@buct.edu.cn
  • Received Date: 20 October 2022
    Revised Date: 28 November 2022
    Accepted Date: 29 November 2022
    Available Online: 2 December 2022

    Fund Project: the National Natural Science Foundation of China 22288102the National Natural Science Foundation of China 21922801Beijing Natural Science Foundation, China 2202036

  • Traditional industries, such as the production of cement, steel, refractory materials, and calcium carbide, involve the thermal decomposition of carbonates. Large amounts of carbon dioxide (CO2) emitted by these processes comprise more than 50% of the total industrial carbon emissions in China. Furthermore, to ensure the complete decomposition of carbonates, the input of excess heat is required, leading to the generation of residual heat. Notably, the reduction in CO2 emissions and complete utilization of the produced residual heat in the above processes are considerable challenges. However, co-thermal coupling of carbonate decomposition with H2, CH4, and other gases containing hydrogen molecules enables the production of high-value-added products such as syngas. Furthermore, this approach is environmentally friendly and economical, with potential for realization in the near future. This paper summarizes recent advances in the coupling of the thermal decomposition of carbonates with dry reforming of methane, dry reforming of alcohols, and CO2 capture. Combining CO2-emitting thermal decomposition of carbonates with the CO2-consuming methane reforming reaction allows the simultaneous reduction of CO2 emissions and syngas production. Although many experimental studies have been conducted on the coupling of the thermal decomposition of carbonates with dry reforming of methane, few reports have revealed the mechanism theoretically. At present, the theoretical research is limited to the adsorption of methane on carbonate surfaces without a clearly understood mechanism; this paper briefly introduces recent research progress in the thermal decomposition of carbonates coupled with H2 reduction and dry reforming of methane. Notably, alcohols are promising hydrogen donors for coupling with the thermal decomposition of carbonates because they can be produced by fermentation of biomass or renewable raw materials, including energy plants, waste materials from agro-industry or forestry residue materials, and organic municipal solid waste. In addition, CO2 can also be captured and converted using metal oxides (e.g., CaO, MgO); these are typical CO2 solid sorbents, which can capture CO2 by calcium looping and be regenerated in CH4. Our group has also recently made progress in the co-thermal coupling of the decomposition of carbonates with dry reforming of methane. By regulating the concentration of CH4, adding O2 to the CH4 atmosphere, and using catalysts, CO2 emissions can be decreased with the evolution of syngas. In this perspective, we summarize the latest results on the coupling of the thermal decomposition of carbonates with dry reforming of methane, including the results obtained by our research group, which allows efficient utilization of CO2 and emissions reduction.
  • 加载中
    1. [1]

      Wu, S. Q.; Wang, J. B.; Li, Q. C.; Huang, Z. A.; Rao, Z. Q.; Zhou, Y. Trans. Tianjin Univ. 2021, 27, 155. doi: 10.1007/s12209-020-00280-6  doi: 10.1007/s12209-020-00280-6

    2. [2]

      Ning, C. J.; Wang, Z. L.; Bai, S.; Tan, L.; Dong, H. L.; Xu, Y. Q.; Hao, X. J.; Shen, T. Y.; Zhao, J. W.; Zhao, P.; et al. Chem. Eng. J. 2021, 412, 128362. doi: 10.1016/j.cej.2020.128362  doi: 10.1016/j.cej.2020.128362

    3. [3]

      Tan, L.; Xu, S. -M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; et al. Angew. Chem. Int. Ed. 2019, 58, 11860. doi: 10.1002/anie.201904246  doi: 10.1002/anie.201904246

    4. [4]

      Bai, S.; Li, T.; Wang, H. J.; Tan, L.; Zhao, Y.; Song, Y. -F. Chem. Eng. J. 2021, 419, 129390. doi: 10.1016/j.cej.2021.129390  doi: 10.1016/j.cej.2021.129390

    5. [5]

      Li, H.; Li, F.; Yu, J. G.; Wu, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    6. [6]

      Cai, X.; Sui, X.; Xu, J. Y.; Tang, A. C.; Liu, X.; Chen, M. Y.; Zhu, Y. CCS Chem. 2021, 3, 408. doi: 10.31635/ccschem.021.202000730  doi: 10.31635/ccschem.021.202000730

    7. [7]

      Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971. doi: 10.1039/c1ee02156g  doi: 10.1039/c1ee02156g

    8. [8]

      Zhang, L. Y.; Sun, N. N.; Wang, M. Q.; Wu, T.; Wei, W.; Pang, C. H. Int. J. Energy Res. 2021, 45, 19789. doi: 10.1002/er.7076  doi: 10.1002/er.7076

    9. [9]

      Jiang, J. T.; Liu, Z. Y.; Liu, Q. Y. Energy Fuels 2016, 31, 198. doi: 10.1021/acs.energyfuels.6b02026  doi: 10.1021/acs.energyfuels.6b02026

    10. [10]

      Halmann, M.; Steinfeld, A. Energy 2006, 31, 1533. doi: 10.1016/j.energy.2005.05.012  doi: 10.1016/j.energy.2005.05.012

    11. [11]

      Reller, A.; Padeste, C.; Hug, P. Nature 1987, 329, 527. doi: 10.1038/329527a0  doi: 10.1038/329527a0

    12. [12]

      Baldauf-Sommerbauer, G.; Lux, S.; Siebenhofer, M. Green Chem. 2016, 18, 6255. doi: 10.1039/c6gc02160c  doi: 10.1039/c6gc02160c

    13. [13]

      Xu, M.; Shao, M. F.; Liu, Q. Y.; Duan, X. Chem. Ind. Eng. Prog. 2022, 41, 1211.  doi: 10.16085/j.issn.1000-6613.2021-2345

    14. [14]

      Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056. doi: 10.1002/adfm.202204056  doi: 10.1002/adfm.202204056

    15. [15]

      Li, T.; Tan, L.; Zhao, Y.; Song, Y. -F. Chem. Eng. Sci. 2021, 245, 116839. doi: 10.1016/j.ces.2021.116839  doi: 10.1016/j.ces.2021.116839

    16. [16]

      Dang, C. X.; Luo, J. L.; Yang, W. W.; Li, H. K.; Cai, W. Q. Ind. Eng. Chem. Res. 2021, 60, 18361. doi: 10.1021/acs.iecr.1c04010  doi: 10.1021/acs.iecr.1c04010

    17. [17]

      Steinfeld, A.; Thomson, G. Energy 1994, 19, 1077. doi: 10.1016/0360-5442(94)90096-5  doi: 10.1016/0360-5442(94)90096-5

    18. [18]

      Halmann, M.; Steinfeld, A. Energy Fuels 2003, 17, 774. doi: 10.1021/ef020219u  doi: 10.1021/ef020219u

    19. [19]

      Nikulshina, V.; Halmann, M.; Steinfeld, A. Energy Fuels 2009, 23, 6207. doi: 10.1021/ef9007246  doi: 10.1021/ef9007246

    20. [20]

      Xiao, H. Study on the Reaction Enhancement of the Decomposition of Calcium Carbonate Coupled with Methane Dry Reforming. M. S. Dissertation, Zhejiang University, Zhejiang, 2020.

    21. [21]

      Zhang, M.; Li, J.; Zhao, J.; Cui, Y.; Luo, X. ACS Omega 2020, 5, 11369. doi: 10.1021/acsomega.0c00345  doi: 10.1021/acsomega.0c00345

    22. [22]

      Onawole, A. T.; Hussein, I. A.; Carchini, G.; Sakhaee-Pour, A.; Berdiyorov, G. R. RSC Adv. 2020, 10, 16669. doi: 10.1039/d0ra02471f  doi: 10.1039/d0ra02471f

    23. [23]

      López Ortiz, A.; Pallares Sámano, R. B.; Meléndez Zaragoza, M. J.; Collins-Martínez, V. Int. J. Hydrog. Energy 2015, 40, 17172. doi: 10.1016/j.ijhydene.2015.07.115  doi: 10.1016/j.ijhydene.2015.07.115

    24. [24]

      Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892. doi: 10.1021/acs.accounts.9b00324  doi: 10.1021/acs.accounts.9b00324

    25. [25]

      Kim, S. M.; Abdala, P. M.; Broda, M.; Hosseini, D.; Copéret, C.; Müller, C. ACS Catal. 2018, 8, 2815. doi: 10.1021/acscatal.7b03063  doi: 10.1021/acscatal.7b03063

    26. [26]

      Dang, C. X.; Wu, S. J.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Chem. Eng. J. 2019, 360, 47. doi: 10.1016/j.cej.2018.11.203  doi: 10.1016/j.cej.2018.11.203

    27. [27]

      Xiao, H.; Wu, S. F. Chem. React. Eng. Technol. 2021, 37, 89. doi: 10.11730/j.issn.1001-7631.2021.01.0089.08  doi: 10.11730/j.issn.1001-7631.2021.01.0089.08

    28. [28]

      Zhao, Y. F.; Yin, Q.; Shen, T. Y.; Li, J. X.; Kong, X. G.; Song, Y. -F.; Duan, X. A Light-Driven Method for Thermal Decomposition of Carbonates Coupling with Hydrocarbon Reforming to Synthesize High Added-value Products. CN patent 202210684268.6, 2022-06-17.

  • 加载中
    1. [1]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    4. [4]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    13. [13]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

    14. [14]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    15. [15]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    18. [18]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    19. [19]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(30)
  • Abstract views(1551)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return