Citation: Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220702. doi: 10.3866/PKU.WHXB202207024 shu

Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction

  • Corresponding author: Xinyi Tan, monica950521@126.com Zhenyu Sun, 
  • Received Date: 12 July 2022
    Revised Date: 29 July 2022
    Accepted Date: 29 July 2022
    Available Online: 3 August 2022

    Fund Project: the National Natural Science Foundation of China 21972010the Beijing Natural Science Foundation 2192039

  • The combustion of fossil fuels increases atmospheric carbon dioxide (CO2) concentrations, leading to adverse impacts on the planetary radiation balance and, consequently, on the climate. Fossil fuel utilization has contributed to a marked rise in global temperatures, now at least 1.2 ℃ above 'pre-industrial' levels. To meet the 2015 Paris Agreement target of 1.5 ℃ above pre-industrial levels, considerable efforts are required to efficiently capture and utilize CO2. Among the different strategies developed for converting CO2, electrochemical CO2 reduction (ECR) to valuable chemicals using renewable energy is expected to revolutionize the manufacture of sustainable "green" chemicals, thereby achieving a closed anthropogenic carbon cycle. However, CO2 is a thermodynamically stable and kinetically inert molecule that requires high electrical energy to bend the linear O=C=O bond by attacking the C atom. To facilitate the ECR with good energy efficiency, it is essential to lower the reaction overpotential as well as maintain a high current density and desirable product selectivity; therefore, the design and development of advanced electrocatalysts are crucial. A plethora of heterogeneous and homogeneous materials has been explored in the ECR. Among these materials, single-atom catalysts (SACs) have been the focus of most extensive research in the context of ECR. A SAC with isolated metal atoms dispersed on a supporting host exhibits a unique electronic structure, well-defined coordination environment, and an extremely high atom utilization maximum; thus, SACs have emerged as promising materials over the last two decades. Single-atom catalysis has covered the periodic table from d-block and ds-block metals to p-block metals. The types of support materials for SACs, ranging from metal oxides to tailored carbon materials, have also expanded. The adsorption strength and catalytic activity of SACs can be effectively tuned by modulating the central metal and local coordination structure of the SACs. In this article, we discuss the progress made to date in the field of single-atom catalysis for promoting ECR. We provide a comprehensive review of state-of-the-art SACs for the ECR in terms of product distribution, selectivity, partial current density, and performance stability. Special attention is paid to the modification of SACs to improve the ECR efficiency. This includes tailoring the coordination of the heteroatom, constructing bimetallic sites, engineering the morphologies and surface defects of supports, and regulating surface functional groups. The correlation of the coordination structure of SACs and metal-support interactions with ECR performance is analyzed. Finally, development opportunities and challenges for the application of SACs in the ECR, especially to form multi-carbon products, are presented.
  • 加载中
    1. [1]

      Josep, G. C.; Corinne, L. Q.; Michael R. R.; Christopher, B. F.; Erik, T. B.; Philippe, C.; Thomas, J. C.; Nathan, P. G.; Houghton, R. A. Gregg, M. Proc. Natl. Acad. Sci. 2007, 104, 47. doi: 10.1073/pnas.0702737104  doi: 10.1073/pnas.0702737104

    2. [2]

      Mcglade, C.; Ekins, P. Nature 2015, 517, 7533. doi: 10.1038/nature14016  doi: 10.1038/nature14016

    3. [3]

      Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Nature 2012, 484, 7392. doi: 10.1038/nature10915  doi: 10.1038/nature10915

    4. [4]

      Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yang, C. Chem. Soc. Rev. 2015, 44, 17. doi: 10.1039/c5cs00182j  doi: 10.1039/c5cs00182j

    5. [5]

      Yu, F.; Wang, C.; Ma, H.; Song, M.; Li, D.; Li, Y.; Li, S.; Zhang, X.; Liu, Y. Nanoscale 2020, 12, 13. doi: 10.1039/c9nr09743k  doi: 10.1039/c9nr09743k

    6. [6]

      Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem 2017, 3, 4. doi: 10.1016/j.chempr.2017.09.009  doi: 10.1016/j.chempr.2017.09.009

    7. [7]

      Zhang, W.; Ma, D.; Pérez-Ramírez, J.; Chen, Z. Adv. Energy Sustain. Res. 2021, 3, 2. doi: 10.1002/aesr.202100169  doi: 10.1002/aesr.202100169

    8. [8]

      Grodkowski, J.; Neta, P. J. Phys. Chem. B 2001, 105, 21. doi: 10.1021/jp004567d  doi: 10.1021/jp004567d

    9. [9]

      Li, M.; Wang, H.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. Adv. Mater. 2020, 32, 34. doi: 10.1002/adma.202001848  doi: 10.1002/adma.202001848

    10. [10]

      Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 3. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    11. [11]

      Nielsen, D. U.; Hu, X. -M.; Daasbjerg, K.; Skrydstrup, T. Nat. Catal. 2018, 1, 4. doi: 10.1038/s41929-018-0051-3  doi: 10.1038/s41929-018-0051-3

    12. [12]

      Wang, H.; Tzeng, Y. K.; Ji, Y.; Li, Y.; Li, J.; Zheng, X.; Yang, A.; Liu, Y.; Gong, Y.; Cai, L.; et al. Nat. Nanotechnol. 2020, 15, 2. doi: 10.1038/s41565-019-0603-y  doi: 10.1038/s41565-019-0603-y

    13. [13]

      Wang, Y.; Wang, Z.; Dinh, C. -T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. -S.; Gabardo, C. M.; Luo, M.; et al. Nat. Catal. 2019, 3, 2. doi: 10.1038/s41929-019-0397-1  doi: 10.1038/s41929-019-0397-1

    14. [14]

      Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S.; et al. Adv. Energy Mater. 2018, 8, 19. doi: 10.1002/aenm.201703487  doi: 10.1002/aenm.201703487

    15. [15]

      Li, X.; Hong, S.; Hao, L.; Sun, Z. Chin. J. Chem. Eng. 2022, 43, doi: 10.1016/j.cjche.2021.10.013  doi: 10.1016/j.cjche.2021.10.013

    16. [16]

      Zhang, Z.; Ma, C.; Tu, Y.; Si, R.; Wei, J.; Zhang, S.; Wang, Z.; Li, J. -F.; Wang, Y.; Deng, D. Nano Res. 2019, 12, 9. doi: 10.1007/s12274-019-2316-9  doi: 10.1007/s12274-019-2316-9

    17. [17]

      Li, F.; Gu, G. H.; Choi, C.; Kolla, P.; Hong, S.; Wu, T. -S.; Soo, Y. -L.; Masa, J.; Mukerjee, S.; Jung, Y.; et al. Appl. Catal. B: Environ. 2020, 277, 119241. doi: 10.1016/j.apcatb.2020.119241  doi: 10.1016/j.apcatb.2020.119241

    18. [18]

      Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2, 6. doi: 10.1038/s41570-018-0010-1  doi: 10.1038/s41570-018-0010-1

    19. [19]

      Sun, T.; Li, Y.; Cui, T.; Xu, L.; Wang, Y. G.; Chen, W.; Zhang, P.; Zheng, T.; Fu, X.; Zhang, S.; et al. Nano Lett. 2020, 20, 8. doi: 10.1021/acs.nanolett.0c02677  doi: 10.1021/acs.nanolett.0c02677

    20. [20]

      Jiang, Y.; Choi, C.; Hong, S.; Chu, S.; Wu, T. -S.; Soo, Y. -L.; Hao, L.; Jung, Y.; Sun, Z. Cell Rep. Phys. Sci. 2021, 2, 3. doi: 10.1016/j.xcrp.2021.100356  doi: 10.1016/j.xcrp.2021.100356

    21. [21]

      Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Nano Res. 2020, 13, 7. doi: 10.1007/s12274-020-2755-3  doi: 10.1007/s12274-020-2755-3

    22. [22]

      Lin, R.; Ma, X.; Cheong, W. -C.; Zhang, C.; Zhu, W.; Pei, J.; Zhang, K.; Wang, B.; Liang, S.; Liu, Y.; et al. Nano Res. 2019, 12, 11. doi: 10.1007/s12274-019-2526-1  doi: 10.1007/s12274-019-2526-1

    23. [23]

      Hao, L.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009033.  doi: 10.3866/PKU.WHXB202009033

    24. [24]

      Fan, Q.; Hou, P.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Adv. Energy Mater. 2019, 10, 5. doi: 10.1002/aenm.201903068  doi: 10.1002/aenm.201903068

    25. [25]

      Jia, M.; Hong, S.; Wu, T. S.; Li, X.; Soo, Y. L.; Sun, Z. Chem. Commun. 2019, 55, 80. doi: 10.1039/c9cc06178a  doi: 10.1039/c9cc06178a

    26. [26]

      Cui, X.; Shi, F. Acta Phys. -Chim. Sin. 2021, 37, 2006080.  doi: 10.3866/PKU.WHXB202006080

    27. [27]

      Wang, Y.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q.; Chen, Z.; Xiong, X.; Wang, D.; Lei, Y. Energy Environ. Sci. 2020, 13, 12. doi: 10.1039/d0ee02833a  doi: 10.1039/d0ee02833a

    28. [28]

      Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Chem. Sci. 2017, 8, 2. doi: 10.1039/c6sc03911a  doi: 10.1039/c6sc03911a

    29. [29]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Catal. Today 2017, 288, 74. doi: 10.1016/j.cattod.2017.02.028  doi: 10.1016/j.cattod.2017.02.028

    30. [30]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 4. doi: 10.1039/c7ee03245e  doi: 10.1039/c7ee03245e

    31. [31]

      Sheng, T.; Sun, S. -G. Chem. Phys. Lett. 2017, 688, 37. doi: 10.1016/j.cplett.2017.09.052  doi: 10.1016/j.cplett.2017.09.052

    32. [32]

      Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. J. Am. Chem. Soc. 2020, 142, 29. doi: 10.1021/jacs.9b12111  doi: 10.1021/jacs.9b12111

    33. [33]

      Shang, H.; Wang, T.; Pei, J.; Jiang, Z.; Zhou, D.; Wang, Y.; Li, H.; Dong, J.; Zhuang, Z.; Chen, W.; et al. Angew. Chem. Int. Ed. 2020, 59, 50. doi: 10.1002/anie.202010903  doi: 10.1002/anie.202010903

    34. [34]

      Liu, L.; Corma, A. Chem. Rev. 2018, 118, 10. doi: 10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    35. [35]

      Han, S.; Ma, D.; Zhu, Q. Small Methods 2021, 5, 8. doi: 10.1002/smtd.202100102  doi: 10.1002/smtd.202100102

    36. [36]

      Jia, M.; Fan, Q.; Liu, S.; Qiu, J.; Sun, Z. Curr. Opin. Green Sustain. Chem. 2019, 16, 1. doi: 10.1016/j.cogsc.2018.11.002  doi: 10.1016/j.cogsc.2018.11.002

    37. [37]

      SaéEant, J. -M. Chem. Rev. 2008, 108, 7. doi: 10.1021/cr8004026  doi: 10.1021/cr8004026

    38. [38]

      Sun, L.; Reddu, V.; Fisher, A. C.; Wang, X. Energy Environ. Sci. 2020, 13, 374. doi: 10.1039/c9ee03660a  doi: 10.1039/c9ee03660a

    39. [39]

      Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695. doi: 10.1246/cl.1985.1695  doi: 10.1246/cl.1985.1695

    40. [40]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    41. [41]

      Nguyen, T. N.; Salehi, M.; Le, Q. V.; Seifitokaldani, A.; Dinh, C. T. ACS Catal. 2020, 10, 17. doi: 10.1021/acscatal.0c02643  doi: 10.1021/acscatal.0c02643

    42. [42]

      Cheng, Y.; Yang, S.; Jiang, S. P.; Wang, S. Small Methods 2019, 3, 9. doi: 10.1002/smtd.201800440  doi: 10.1002/smtd.201800440

    43. [43]

      Zhang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 11. doi: 10.1002/anie.202014718  doi: 10.1002/anie.202014718

    44. [44]

      Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H.; et al. J. Am. Chem. Soc. 2019, 141, 42. doi: 10.1021/jacs.9b05766  doi: 10.1021/jacs.9b05766

    45. [45]

      Babucci, M.; Sarac Oztuna, F. E.; Debefve, L. M.; Boubnov, A.; Bare, S. R.; Gates, B. C.; Unal, U.; Uzun, A. ACS Catal. 2019, 9, 11. doi: 10.1021/acscatal.9b02231  doi: 10.1021/acscatal.9b02231

    46. [46]

      He, X.; He, Q.; Deng, Y.; Peng, M.; Chen, H.; Zhang, Y.; Yao, S.; Zhang, M.; Xiao, D.; Ma, D., et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-11619-6  doi: 10.1038/s41467-019-11619-6

    47. [47]

      Huang, K.; Zhang, L.; Xu, T.; Wei, H.; Zhang, R.; Zhang, X.; Ge, B.; Lei, M.; Ma, J. Y.; Liu, L. M.; et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-08484-8  doi: 10.1038/s41467-019-08484-8

    48. [48]

      Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L.; et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-018-08136-3  doi: 10.1038/s41467-018-08136-3

    49. [49]

      Feng, S.; Song, X.; Liu, Y.; Lin, X.; Yan, L.; Liu, S.; Dong, W.; Yang, X.; Jiang, Z.; Ding, Y. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-12965-1  doi: 10.1038/s41467-019-12965-1

    50. [50]

      Peng, P.; Shi, L.; Huo, F.; Mi, C.; Wu, X.; Zhang, S.; Xiang, Z. Sci. Adv. 2019, 5, 2322. doi: 10.1126/sciadv.aaw2322  doi: 10.1126/sciadv.aaw2322

    51. [51]

      Wang, Q.; Cai, C.; Dai, M.; Fu, J.; Zhang, X.; Li, H.; Zhang, H.; Chen, K.; Lin, Y.; Li, H.; et al. Small Sci. 2020, 1, 2. doi: 10.1002/smsc.202000028  doi: 10.1002/smsc.202000028

    52. [52]

      Gao, D.; Liu, T.; Wang, G.; Bao, X. ACS Energy Lett. 2021, 6, 2. doi: 10.1021/acsenergylett.0c02665  doi: 10.1021/acsenergylett.0c02665

    53. [53]

      Weng, Z.; Jiang, J.; Wu, Y.; Wu, Z.; Guo, X.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. J. Am. Chem. Soc. 2016, 138, 26. doi: 10.1021/jacs.6b04746  doi: 10.1021/jacs.6b04746

    54. [54]

      Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Chem 2017, 3, 4. doi: 10.1016/j.chempr.2017.08.002  doi: 10.1016/j.chempr.2017.08.002

    55. [55]

      Yao, C.; Li, J.; Gao, W.; Jiang, Q. Chem. -Eur. J. 2018, 24, 43. doi: 10.1002/chem.201800363  doi: 10.1002/chem.201800363

    56. [56]

      Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. Nat. Mater. 2018, 17, 4. doi: 10.1038/s41563-018-0033-5  doi: 10.1038/s41563-018-0033-5

    57. [57]

      Ma, L.; Hu, W.; Mei, B.; Liu, H.; Yuan, B.; Zang, J.; Chen, T.; Zou, L.; Zou, Z.; Yang, B.; et al. ACS Catal. 2020, 10, 8. doi: 10.1021/acscatal.0c00243  doi: 10.1021/acscatal.0c00243

    58. [58]

      Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Nano Res. 2019, 12, 9. doi: 10.1007/s12274-019-2403-y  doi: 10.1007/s12274-019-2403-y

    59. [59]

      Sun, L.; Reddu, V.; Fisher, A. C.; Wang, X. Energy Environ. Sci. 2020, 13, 2. doi: 10.1039/c9ee03660a  doi: 10.1039/c9ee03660a

    60. [60]

      Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.201911995  doi: 10.1002/anie.201911995

    61. [61]

      Ge, J.; He, D.; Chen, W.; Ju, H.; Zhang, H.; Chao, T.; Wang, X.; You, R.; Lin, Y.; Wang, Y.; et al. J. Am. Chem. Soc. 2016, 138, 42. doi: 10.1021/jacs.6b09246  doi: 10.1021/jacs.6b09246

    62. [62]

      Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; et al. Adv. Mater. 2018, 30, 11. doi: 10.1002/adma.201705369  doi: 10.1002/adma.201705369

    63. [63]

      Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2019, 58, 21. doi: 10.1002/anie.201901575  doi: 10.1002/anie.201901575

    64. [64]

      Zhang, E.; Wang, T.; Yu, K.; Liu, J.; Chen, W.; Li, A.; Rong, H.; Lin, R.; Ji, S.; Zheng, X.; et al. J. Am. Chem. Soc. 2019, 141, 42. doi: 10.1021/jacs.9b08259  doi: 10.1021/jacs.9b08259

    65. [65]

      Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Angew. Chem. Int. Ed. 2016, 55, 36. doi: 10.1002/anie.201604802  doi: 10.1002/anie.201604802

    66. [66]

      Li, X.; Zhu, Q. -L. Energy Chem. 2020, 2, 3. doi: 10.1016/j.enchem.2020.100033  doi: 10.1016/j.enchem.2020.100033

    67. [67]

      Wu, Y. L.; Li, X.; Wei, Y. S.; Fu, Z.; Wei, W.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Adv. Mater. 2021, 33, 12. doi: 10.1002/adma.202006965  doi: 10.1002/adma.202006965

    68. [68]

      Wang, X.; Chen, W.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H.; Dong, J.; Zheng, L.; Yan, W.; et al. J. Am. Chem. Soc. 2017, 139, 28. doi: 10.1021/jacs.7b01686  doi: 10.1021/jacs.7b01686

    69. [69]

      Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W. C.; Shen, R.; et al. Adv. Mater. 2018, 30, 25. doi: 10.1002/adma.201800588  doi: 10.1002/adma.201800588

    70. [70]

      Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; et al. Nat. Catal. 2018, 1, 1. doi: 10.1038/s41929-017-0008-y  doi: 10.1038/s41929-017-0008-y

    71. [71]

      Guan, J.; Duan, Z.; Zhang, F.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q.; Chen, J. Q.; Tang, C.; Li, C. Nat. Catal. 2018, 1, 11. doi: 10.1038/s41929-018-0158-6  doi: 10.1038/s41929-018-0158-6

    72. [72]

      Hu, X. -M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. -M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 7. doi: 10.1021/acscatal.8b01022  doi: 10.1021/acscatal.8b01022

    73. [73]

      Wen, X.; Duan, Z.; Bai, L.; Guan, J. J. Power Sources 2019, 431, 265. doi: 10.1016/j.jpowsour.2019.126650  doi: 10.1016/j.jpowsour.2019.126650

    74. [74]

      Yuan, K.; Lutzenkirchen-Hecht, D.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M. K. H.; Chen, Y.; et al. J. Am. Chem. Soc. 2020, 142, 5. doi: 10.1021/jacs.9b11852  doi: 10.1021/jacs.9b11852

    75. [75]

      Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et al. J. Am. Chem. Soc. 2017, 139, 42. doi: 10.1021/jacs.7b09074  doi: 10.1021/jacs.7b09074

    76. [76]

      Jones, j.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P.; et al. Science 2016, 353, 150. doi: 10.1126/science.aaf8800  doi: 10.1126/science.aaf8800

    77. [77]

      Wei, S.; Li, A.; Liu, J. C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. C.; Wang, Y.; Zheng, L.; et al. Nat. Nanotechnol. 2018, 13, 9. doi: 10.1038/s41565-018-0197-9  doi: 10.1038/s41565-018-0197-9

    78. [78]

      Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Nat. Catal. 2018, 1, 10. doi: 10.1038/s41929-018-0146-x  doi: 10.1038/s41929-018-0146-x

    79. [79]

      Chen, M. X.; Zhu, M.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y.; Liang, H. W.; Feng, X. Angew. Chem. Int. Ed. 2020, 59, 4. doi: 10.1002/anie.201912275  doi: 10.1002/anie.201912275

    80. [80]

      Zhou, P.; Li, N.; Chao, Y.; Zhang, W.; Lv, F.; Wang, K.; Yang, W.; Gao, P.; Guo, S. Angew. Chem. Int. Ed. 2019, 58, 40. doi: 10.1002/anie.201908351  doi: 10.1002/anie.201908351

    81. [81]

      Yang, Z.; Chen, B.; Chen, W.; Qu, Y.; Zhou, F.; Zhao, C.; Xu, Q.; Zhang, Q.; Duan, X.; Wu, Y. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-11796-4  doi: 10.1038/s41467-019-11796-4

    82. [82]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 8. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    83. [83]

      Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. J. Am. Chem. Soc. 2013, 135, 10. doi: 10.1021/ja312646d  doi: 10.1021/ja312646d

    84. [84]

      Ge, X.; Zhou, P.; Zhang, Q.; Xia, Z.; Chen, S.; Gao, P.; Zhang, Z.; Gu, L.; Guo, S. Angew. Chem. Int. Ed. 2020, 59, 1. doi: 10.1002/anie.201911516  doi: 10.1002/anie.201911516

    85. [85]

      Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.; et al. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-020-14917-6  doi: 10.1038/s41467-020-14917-6

    86. [86]

      Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; et al. Sci. Rep. 2013, 3, 1. doi: 10.1038/srep01775  doi: 10.1038/srep01775

    87. [87]

      Li, J.; Guan, Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z.; Ye, X.; Zheng, X.; Pan, H.; Zhu, J.; et al. J. Am. Chem. Soc. 2019, 141, 37. doi: 10.1021/jacs.9b06482  doi: 10.1021/jacs.9b06482

    88. [88]

      Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et. al. Sci. Adv. 2015, 1, e1500462. doi: 10.1126/sciadv.1500462  doi: 10.1126/sciadv.1500462

    89. [89]

      Zhang, J.; Cai, W.; Hu, F. X.; Yang, H.; Liu, B. Chem. Sci. 2021, 12, 20. doi: 10.1039/d1sc01375k  doi: 10.1039/d1sc01375k

    90. [90]

      Hu, X.; Luo, G.; Zhao, Q.; Wu, D.; Yang, T.; Wen, J.; Wang, R.; Xu, C.; Hu, N. J. Am. Chem. Soc. 2020, 142, 39. doi: 10.1021/jacs.0c07317  doi: 10.1021/jacs.0c07317

    91. [91]

      Huang, P.; Cheng, M.; Zhang, H.; Zuo, M.; Xiao, C.; Xie, Y. Nano Energy 2019, 61, 428. doi: 10.1016/j.nanoen.2019.05.003  doi: 10.1016/j.nanoen.2019.05.003

    92. [92]

      Li, Y.; Wei, B.; Zhu, M.; Chen, J.; Jiang, Q.; Yang, B.; Hou, Y.; Lei, L.; Li, Z.; Zhang, R.; et al. Adv. Mater. 2021, 33, 41. doi: 10.1002/adma.202102212  doi: 10.1002/adma.202102212

    93. [93]

      Liang, S.; Jiang, Q.; Wang, Q.; Liu, Y. Adv. Energy Mater. 2021, 11, 36. doi: 10.1002/aenm.202101477  doi: 10.1002/aenm.202101477

    94. [94]

      Shang, H.; Jiang, Z.; Zhou, D.; Pei, J.; Wang, Y.; Dong, J.; Zheng, X.; Zhang, J.; Chen, W. Chem. Sci. 2020, 11, 23. doi: 10.1039/d0sc02343d  doi: 10.1039/d0sc02343d

    95. [95]

      Sun, X.; Tuo, Y.; Ye, C.; Chen, C.; Lu, Q.; Li, G.; Jiang, P.; Chen, S.; Zhu, P.; Ma, M.; et al. Angew. Chem. Int. Ed. 2021, 60, 44. doi: 10.1002/anie.202110433  doi: 10.1002/anie.202110433

    96. [96]

      Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; et al. Chem. Rev. 2020, 120, 21. doi: 10.1021/acs.chemrev.0c00594  doi: 10.1021/acs.chemrev.0c00594

    97. [97]

      Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 24. doi: 10.1002/anie.202101559  doi: 10.1002/anie.202101559

    98. [98]

      Li, Z.; Chen, Y.; Ji, S.; Tang, Y.; Chen, W.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.; Gong, Y.; et al. Nat. Chem. 2020, 12, 8. doi: 10.1038/s41557-020-0473-9  doi: 10.1038/s41557-020-0473-9

    99. [99]

      Ji, S.; Chen, Y.; Fu, Q.; Chen, Y.; Dong, J.; Chen, W.; Li, Z.; Wang, Y.; Gu, L.; He, W.; et al. J. Am. Chem. Soc. 2017, 139, 29. doi: 10.1021/jacs.7b05018  doi: 10.1021/jacs.7b05018

    100. [100]

      Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; et al. Nat. Commun. 2014, 5, 4695. doi: 10.1038/ncomms5695  doi: 10.1038/ncomms5695

    101. [101]

      Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 40. doi: 10.1021/ja505791r  doi: 10.1021/ja505791r

    102. [102]

      Zhao, Z.; Chen, Z.; Lu, G. J. Phys. Chem. C 2017, 121, 38. doi: 10.1021/acs.jpcc.7b06895  doi: 10.1021/acs.jpcc.7b06895

    103. [103]

      Wang, X.; Sang, X.; Dong, C. L.; Yao, S.; Shuai, L.; Lu, J.; Yang, B.; Li, Z.; Lei, L.; Qiu, M.; et al. Angew. Chem. Int. Ed. 2021, 60, 21. doi: 10.1002/anie.202100011  doi: 10.1002/anie.202100011

    104. [104]

      Wang, X.; Wang, Y.; Sang, X.; Zheng, W.; Zhang, S.; Shuai, L.; Yang, B.; Li, Z.; Chen, J.; Lei, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 8. doi: 10.1002/anie.202013427  doi: 10.1002/anie.202013427

    105. [105]

      Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y.; Lu, Z.; Lattimer, J.; Hu, Y.; Stokes, C.; Gangishetty, M.; Chen, G.; et al. Chem 2017, 3, 6. doi: 10.1016/j.chempr.2017.09.014  doi: 10.1016/j.chempr.2017.09.014

    106. [106]

      Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H. -Y.; Cai, W.; Chen, R.; et al. Nat. Energy 2018, 3, 2. doi: 10.1038/s41560-017-0078-8  doi: 10.1038/s41560-017-0078-8

    107. [107]

      Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. ACS Catal. 2017, 7, 3. doi: 10.1021/acscatal.6b03353  doi: 10.1021/acscatal.6b03353

    108. [108]

      Gu, Jun.; Hsu, C-S.; Bai, L.; Chen, H.; Hu, X. Science 2019, 364, 6445. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    109. [109]

      Li, X.; Xi, S.; Sun, L.; Dou, S.; Huang, Z.; Su, T.; Wang, X. Adv. Sci. 2020, 7, 17. doi: 10.1002/advs.202001545  doi: 10.1002/advs.202001545

    110. [110]

      Lin, L.; Li, H.; Yan, C.; Li, H.; Si, R.; Li, M.; Xiao, J.; Wang, G.; Bao, X. Adv. Mater. 2019, 31, 41. doi: 10.1002/adma.201903470  doi: 10.1002/adma.201903470

    111. [111]

      Pan, F.; Li, B.; Sarnello, E.; Fei, Y.; Feng, X.; Gang, Y.; Xiang, X.; Fang, L.; Li, T.; Hu, Y. H.; et al. ACS Catal. 2020, 10, 19. doi: 10.1021/acscatal.0c02499  doi: 10.1021/acscatal.0c02499

    112. [112]

      Wang, T.; Sang, X.; Zheng, W.; Yang, B.; Yao, S.; Lei, C.; Li, Z.; He, Q.; Lu, J.; Lei, L.; et al. Adv. Mater. 2020, 32, 29. doi: 10.1002/adma.202002430  doi: 10.1002/adma.202002430

    113. [113]

      Hou, P.; Song, W.; Wang, X.; Hu, Z.; Kang, P. Small 2020, 16, 24. doi: 10.1002/smll.202001896  doi: 10.1002/smll.202001896

    114. [114]

      Su, P.; Iwase, K.; Harada, T.; Kamiya, K.; Nakanishi, S. Chem. Sci. 2018, 9, 16. doi: 10.1039/c8sc00604k  doi: 10.1039/c8sc00604k

    115. [115]

      Yang, H.; Lin, Q.; Wu, Y.; Li, G.; Hu, Q.; Chai, X.; Ren, X.; Zhang, Q.; Liu, J.; He, C. Nano Energy 2020, 70, 104454. doi: 10.1016/j.nanoen.2020.104454  doi: 10.1016/j.nanoen.2020.104454

    116. [116]

      Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W.; et al. Angew. Chem. Int. Ed. 2018, 57, 7. doi: 10.1002/anie.201712451  doi: 10.1002/anie.201712451

    117. [117]

      Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Nature 2019, 575, 7784. doi: 10.1038/s41586-019-1760-8  doi: 10.1038/s41586-019-1760-8

    118. [118]

      Chu, S.; Li, X.; Robertson, A. W.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009023.  doi: 10.3866/PKU.WHXB202009023

    119. [119]

      Chu, S.; Yan, X.; Choi, C.; Hong, S.; Robertson, A. W.; Masa, J.; Han, B.; Jung, Y.; Sun, Z. Green Chem. 2020, 22, 19. doi: 10.1039/d0gc02279a  doi: 10.1039/d0gc02279a

    120. [120]

      Yang, Y.; Zhang, Y.; Hu, J. -S.; Wan, L. -J. Acta Phys. -Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    121. [121]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    122. [122]

      Li, Y.; Chu, S.; Shen, H.; Xia, Q.; Robertson, A. W.; Masa, J.; Siddiqui, U.; Sun, Z. ACS Sustain. Chem. Eng. 2020, 8, 12. doi: 10.1021/acssuschemeng.0c00800  doi: 10.1021/acssuschemeng.0c00800

    123. [123]

      Chen, R.; Su, H. Y.; Liu, D.; Huang, R.; Meng, X.; Cui, X.; Tian, Z. Q.; Zhang, D. H.; Deng, D. Angew. Chem. Int. Ed. 2020, 59, 1. doi: 10.1002/anie.201910662  doi: 10.1002/anie.201910662

    124. [124]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. J. Am. Chem. Soc. 2019, 141, 32. doi: 10.1021/jacs.9b04907  doi: 10.1021/jacs.9b04907

    125. [125]

      Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T. -K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et al. ACS Energy Lett. 2020, 5, 4. doi: 10.1021/acsenergylett.0c00018  doi: 10.1021/acsenergylett.0c00018

    126. [126]

      Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A.; et al. Angew. Chem. Int. Ed. 2019, 58, 42. doi: 10.1002/anie.201907994  doi: 10.1002/anie.201907994

    127. [127]

      Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C. -J.; Li, T.; Muntean, J. V.; Winans, R. E.; et al. Nat. Energy 2020, 5, 8. doi: 10.1038/s41560-020-0666-x  doi: 10.1038/s41560-020-0666-x

    128. [128]

      Chen, Z.; Mou, K.; Yao, S.; Liu, L. ChemSusChem 2018, 11, 17. doi: 10.1002/cssc.201800925  doi: 10.1002/cssc.201800925

    129. [129]

      Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Angew. Chem. Int. Ed. 2018, 57, 38. doi: 10.1002/anie.201805871  doi: 10.1002/anie.201805871

    130. [130]

      Lin, L.; Liu, T.; Xiao, J.; Li, H.; Wei, P.; Gao, D.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2020, 59, 50. doi: 10.1002/anie.202009191  doi: 10.1002/anie.202009191

    131. [131]

      Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 24. doi: 10.1021/jacs.7b02736  doi: 10.1021/jacs.7b02736

    132. [132]

      Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; et al. Adv. Mater. 2019, 31, 15. doi: 10.1002/adma.201808135  doi: 10.1002/adma.201808135

    133. [133]

      Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z.; et al. Energy Environ. Sci. 2020, 13, 9. doi: 10.1039/d0ee01486a  doi: 10.1039/d0ee01486a

    134. [134]

      Sa, Y. J.; Jung, H.; Shin, D.; Jeong, H. Y.; Ringe, S.; Kim, H.; Hwang, Y. J.; Joo, S. H. ACS Catal. 2020, 10, 19. doi: 10.1021/acscatal.0c02325  doi: 10.1021/acscatal.0c02325

    135. [135]

      Gong, Y.; L. Jiao, L.; Qian, Y.; Pan, C.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.; Jiang, H. Angew. Chem. 2020, 132, 7. doi: 10.1002/ange.201914977  doi: 10.1002/ange.201914977

    136. [136]

      Zheng, W.; Yang, J.; Chen, H.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z.; et al. Adv. Funct. Mater. 2019, 30, 4. doi: 10.1002/adfm.201907658  doi: 10.1002/adfm.201907658

    137. [137]

      Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et al. Angew. Chem. Int. Ed. 2019, 58, 42. doi: 10.1002/anie.201906079  doi: 10.1002/anie.201906079

    138. [138]

      Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W. C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 12. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    139. [139]

      Sun, L.; Huang, Z.; Reddu, V.; Su, T.; Fisher, A. C.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 39. doi: 10.1002/anie.202007445  doi: 10.1002/anie.202007445

    140. [140]

      Wang, X.; Pan, Y.; Ning, H.; Wang, H.; Guo, D.; Wang, W.; Yang, Z.; Zhao, Q.; Zhang, B.; Zheng, L.; et al. Appl. Catal. B: Environ. 2020, 266, 118630. doi: 10.1016/j.apcatb.2020.118630  doi: 10.1016/j.apcatb.2020.118630

    141. [141]

      Zhang, B.; Zhang, J.; Shi, J.; Tan, D.; Liu, L.; Zhang, F.; Lu, C.; Su, Z.; Tan, X.; Cheng, X.; et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-10854-1  doi: 10.1038/s41467-019-10854-1

    142. [142]

      Ni, W.; Gao, Y.; Lin, Y.; Ma, C.; Guo, X.; Wang, S.; Zhang, S. ACS Catal. 2021, 11, 9. doi: 10.1021/acscatal.0c05514  doi: 10.1021/acscatal.0c05514

    143. [143]

      Ying, Y.; Luo, X.; Qiao, J.; Huang, H. Adv. Funct. Mater. 2020, 31, 3. doi: 10.1002/adfm.202007423  doi: 10.1002/adfm.202007423

    144. [144]

      Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. Matter 2020, 2, 1. doi: 10.1016/j.matt.2019.11.014  doi: 10.1016/j.matt.2019.11.014

    145. [145]

      Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S. -Z. Chem 2018, 4, 8. doi: 10.1016/j.chempr.2018.05.001  doi: 10.1016/j.chempr.2018.05.001

    146. [146]

      Ouyang, Y.; Shi, L.; Bai, X.; Li, Q.; Wang, J. Chem. Sci. 2020, 11, 7. doi: 10.1039/c9sc05236d  doi: 10.1039/c9sc05236d

    147. [147]

      Ding, C.; Feng, C.; Mei, Y.; Liu, F.; Wang, H.; Dupuis, M.; Li, C. Appl. Catal. B: Environ. 2020, 268, 118391. doi: 10.1016/j.apcatb.2019.118391  doi: 10.1016/j.apcatb.2019.118391

    148. [148]

      Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C. T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; et al. Nature 2020, 581, 7807. doi: 10.1038/s41586-020-2242-8  doi: 10.1038/s41586-020-2242-8

    149. [149]

      Chen, D.; Zhang, L. H.; Du, J.; Wang, H.; Guo, J.; Zhan, J.; Li, F.; Yu, F. Angew. Chem. Int. Ed. 2021, 60, 45. doi: 10.1002/anie.202109579  doi: 10.1002/anie.202109579

    150. [150]

      Wang, X.; De Araujo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kuhl, S.; Rossmeisl, J.; Strasser, P. Nat. Nanotechnol. 2019, 14, 11. doi: 10.1038/s41565-019-0551-6  doi: 10.1038/s41565-019-0551-6

    151. [151]

      Jiao, J.; Lin, R.; Liu, S.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S. F.; et al. Nat. Chem. 2019, 11, 3. doi: 10.1038/s41557-018-0201-x  doi: 10.1038/s41557-018-0201-x

    152. [152]

      Wu, Y.; Cao, S.; Hou, J.; Li, Z.; Zhang, B.; Zhai, P.; Zhang, Y.; Sun, L. Adv. Energy Mater. 2020, 10, 29. doi: 10.1002/aenm.202070123  doi: 10.1002/aenm.202070123

    153. [153]

      Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, G. ACS Catal. 2018, 8, 8. doi: 10.1021/acscatal.8b01014  doi: 10.1021/acscatal.8b01014

    154. [154]

      Guo, W.; Liu, S.; Tan, X.; Wu, R.; Yan, X.; Chen, C.; Zhu, Q.; Zheng, L.; Ma, J.; Zhang, J.; et al. Angew. Chem. Int. Ed. 2021, 60, 40. doi: 10.1002/anie.202108635  doi: 10.1002/anie.202108635

    155. [155]

      Qin, X.; Zhu, S.; Xiao, F.; Zhang, L.; Shao, M. ACS Energy Lett. 2019, 4, 7. doi: 10.1021/acsenergylett.9b01015  doi: 10.1021/acsenergylett.9b01015

    156. [156]

      Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Adv. Mater. 2021, 33, 1. doi: 10.1002/adma.202003238  doi: 10.1002/adma.202003238

    157. [157]

      Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Angew. Chem. Int. Ed. 2020, 59, 5. doi: 10.1002/anie.201912458  doi: 10.1002/anie.201912458

    158. [158]

      Han, S. -G.; Ma, D. -D.; Zhou, S. -H.; Zhang, K.; Wei, W. -B.; Du, Y.; Wu, X. -T.; Xu, Q.; Zou, R.; Zhu, Q. -L. Appl. Catal. B: Environ. 2021, 283, 119591. doi: 10.1016/j.apcatb.2020.119591  doi: 10.1016/j.apcatb.2020.119591

    159. [159]

      Huang, P.; Cheng, Z.; Zeng, L.; Yu, J.; Tan, L.; Mohapatra, P.; Fan, L. -S.; Zhu, Y. ACS Catal. 2020, 10, 24. doi: 10.1021/acscatal.0c03941  doi: 10.1021/acscatal.0c03941

    160. [160]

      Pan, F.; Li, B.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X.; Xiang, X.; Adli, N. M.; Li, T.; Su, D.; et al. Nano Energy 2020, 68, 104384. doi: 10.1016/j.nanoen.2019.104384  doi: 10.1016/j.nanoen.2019.104384

    161. [161]

      Wang, H. -H.; Lv, L. -B.; Zhang, S. -N.; Su, H.; Zhai, G. -Y.; Lei, W. -W.; Li, X. -H.; Chen, J. -S. Nano Res. 2020, 13, 8. doi: 10.1007/s12274-020-2810-0  doi: 10.1007/s12274-020-2810-0

    162. [162]

      Li, Y.; Adli, N. M.; Shan, W.; Wang, M.; Zachman, M. J.; Hwang, S.; Tabassum, H.; Karakalos, S.; Feng, Z.; Wang, G.; et al. Energy Environ. Sci. 2022, 15, 5. doi: 10.1039/d2ee00318j  doi: 10.1039/d2ee00318j

    163. [163]

      Chen, X.; Ma, D. -D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X. -T.; Zhu, Q. -L. Appl. Catal. B: Environ. 2020, 267, 118720. doi: 10.1016/j.apcatb.2020.118720  doi: 10.1016/j.apcatb.2020.118720

    164. [164]

      Chen, S.; Li, W. H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61, 4. doi: 10.1002/anie.202114450  doi: 10.1002/anie.202114450

    165. [165]

      Paz, F. A.; Klinowski, J.; Vilela, S. M.; Tome, J. P.; Cavaleiro, J. A.; Rocha, J. Chem. Soc. Rev. 2012, 41, 3. doi: 10.1039/c1cs15055c  doi: 10.1039/c1cs15055c

    166. [166]

      Bang, S.; Lee, Y. M.; Hong, S.; Cho, K. B.; Nishida, Y.; Seo, M. S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Nat. Chem. 2014, 6, 10. doi: 10.1038/nchem.2055  doi: 10.1038/nchem.2055

    167. [167]

      Ren, X.; Liu, S.; Li, H.; Ding, J.; Liu, L.; Kuang, Z.; Li, L.; Yang, H.; Bai, F.; Huang, Y.; et al. Sci. Chin. Chem. 2020, 63, 12. doi: 10.1007/s11426-020-9847-9  doi: 10.1007/s11426-020-9847-9

    168. [168]

      Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; et al. Nat. Commun. 2017, 8, 14675. doi: 10.1038/ncomms14675  doi: 10.1038/ncomms14675

    169. [169]

      Zhang, X.; Wang, Y.; Gu, M.; Wang, M.; Zhang, Z.; Pan, W.; Jiang, Z.; Zheng, H.; Lucero, M.; Wang, H.; et al. Nat. Energy 2020, 5, 9. doi: 10.1038/s41560-020-0667-9  doi: 10.1038/s41560-020-0667-9

    170. [170]

      Gao, Y.; Yang, Y.; Hao, L.; Hong, S.; Tan, X.; Wu, T. -S.; Soo, Y. -L.; Robertson, A. W.; Yang, Q.; Sun, Z. Chem. Catal. 2022, in press. doi: 10.1016/j.checat.2022.06.010

  • 加载中
    1. [1]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    2. [2]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    3. [3]

      Jinshu HuangZhuochun HuangTengyu LiuYu WenJili YuanSong YangHu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    6. [6]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    9. [9]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    10. [10]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    11. [11]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    12. [12]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    13. [13]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

Metrics
  • PDF Downloads(38)
  • Abstract views(1284)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return