Citation: Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220602. doi: 10.3866/PKU.WHXB202206029 shu

Synthesis and Applications of Graphdiyne Derivatives

  • Corresponding author: Jinchong Xiao, jcxiaoicas@163.com Changshui Huang, huangcs@iccas.ac.cn
  • Received Date: 20 June 2022
    Revised Date: 21 July 2022
    Accepted Date: 22 July 2022
    Available Online: 8 August 2022

    Fund Project: the Key Project of the Natural Science Foundation of Hebei Province B2021201043the National Natural Science Foundation of China 21701182the National Natural Science Foundation of China 21790050the National Natural Science Foundation of China 21790051the National Natural Science Foundation of China 11704024the Frontier Science Research Project of the Chinese Academy of Sciences QYZDB-SSW-JSC052

  • Graphdiyne (GDY) bearing sp- and sp2-hybridized carbon networks, which is usually artificially synthesized via the in situ homocoupling reaction of hexaethylbenzene on copper foil, is an emerging two-dimensional (2D) carbon allotrope. During preparation, well-defined GDY structures including nanowires, nanowalls, and nanotubes are obtained. Such materials with varying morphologies have been shown to possess promising electronic, chemical, magnetic, and mechanical properties, rendering them applicable in various domains including energy storage, catalysis, and field emission. In addition, replacing hexaethylbenzene with other aryne derivatives under similar synthesis conditions has resulted in the generation of various GDY derivatives. Thus, a series of GDY derivatives with specific structures and controllable sizes have been readily prepared in recent years. Aryne precursors typically contain polycyclic aromatic carbocycles, heteroarenes (e.g., N, B, S, P, Si, Ge, and Ga). The intrinsic GDY has also been doped with metal elements (e.g., Hg, Ag, and Au). Chemical synthetic strategies such as Glaser coupling, Glaser-Hay coupling, and Eglinton coupling are also described. The structural design of various precursors has been effectively tailored to the constitution of the local carbon framework of GDY-based materials, which has enabled the realization of the targeted performance in terms of the electronic conductivity, band gap, mobility, cavity size, and charge separation. For example, three-dimensional (3D) carbyne riched nanospheres formed by the extended coupling of spatially rigid-structured spirobifluorene have provided abundant storage spaces and convenient multi-directional transmission paths for metal ions. The use of hetero-doped GDY has enabled the effective optimization of the thermal stability and mechanical, electronic, and optical properties. Metal element-based GDY, referred to as "metalated" GDY, could serve as efficient bifunctional catalysts possessing favorable transport properties to facilitate the diffusion of small molecules. By extension, such materials can be used more broadly in electrochemical energy storage, electrocatalysis, optoelectronics, nonlinear optics, oil-water separation, and numerous other fields. In this review, we have summarized the design, synthesis, and structural characterization of various GDY derivatives through the recently demonstrated substitution of various aryne precursors for hexaethylbenzene, while examining the functional relationships between the desired optoelectronic properties of GDY derivatives and their defined nanostructures and morphologies. In addition, important prospective applications of GDY derivatives have been described. These observations may motivate the construction of novel polar and electron-rich GDY derivatives with unique properties that can address practical challenges encountered in various devices.
  • 加载中
    1. [1]

      Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.  doi: 10.3866/PKU.WHXB201605035

    2. [2]

      Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    3. [3]

      Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Chem. Rev. 2018, 118, 7744. doi: 10.1021/acs.chemrev.8b00288  doi: 10.1021/acs.chemrev.8b00288

    4. [4]

      Shen, X. Y.; He, J. J.; Wang, N.; Huang, C. S. Acta Phys. -Chim. Sin. 2018, 34, 1029.  doi: 10.3866/PKU.WHXB201801122

    5. [5]

      Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/C3CS60388A  doi: 10.1039/C3CS60388A

    6. [6]

      Diederich, F.; Kivala, M. Adv. Mater. 2010, 22, 803. doi: 10.1002/adma.200902623  doi: 10.1002/adma.200902623

    7. [7]

      Jia, Z. Y.; Li, Y. J.; Zuo, Z. C.; Liu, H. B.; Huang, C. S.; Li, Y. L. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    8. [8]

      Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Chem. Soc. Rev. 2019, 48, 908. doi: 10.1039/C8CS00773J  doi: 10.1039/C8CS00773J

    9. [9]

      Zuo, Z. C.; Li, Y. L. Joule 2019, 3, 899. doi: 10.1016/j.joule.2019.01.016  doi: 10.1016/j.joule.2019.01.016

    10. [10]

      Du, Y. C.; Zhou, W. D.; Gao, J.; Pan, X. Y.; Li, Y. L. Acc. Chem. Res. 2020, 53, 459. doi: 10.1021/acs.accounts.9b00558  doi: 10.1021/acs.accounts.9b00558

    11. [11]

      Yu, H. D.; Xue, Y. R.; Li, Y. L. Adv. Mater. 2019, 31, 1803101. doi: 10.1002/adma.201803101  doi: 10.1002/adma.201803101

    12. [12]

      Sakamoto, R.; Fukui, N.; Maeda, H.; Matsuoka, R.; Toyoda, R.; Nishihara, H. Adv. Mater. 2019, 31, 1804211. doi: 10.1002/adma.201804211  doi: 10.1002/adma.201804211

    13. [13]

      Wang, N.; He, J. J.; Wang, K.; Zhao, Y. J.; Jiu, T. G.; Huang, C. S.; Li, Y. L. Adv. Mater. 2019, 31, 1803202. doi: 10.1002/adma.201803202  doi: 10.1002/adma.201803202

    14. [14]

      Guo, J.; Guo, M. Y.; Wang, F. H.; Jin, W. Y.; Chen, C. Y.; Liu, H. B.; Li, Y. L. Angew. Chem. Int. Ed. 2020, 59, 16712. doi: 10.1002/anie.202006891  doi: 10.1002/anie.202006891

    15. [15]

      Jin, J.; Guo, M. Y.; Liu, J. M.; Liu, J.; Zhou, H. G.; Li, J. Y.; Wang, L. M.; Liu, H. B.; Li, Y. L.; Zhao, Y. L.; et al. ACS Appl. Mater. Interfaces 2018, 10, 8436. doi: 10.1021/acsami.7b17219  doi: 10.1021/acsami.7b17219

    16. [16]

      Xie, J. N.; Wang, N.; Dong, X. H.; Wang, C. Y.; Du, Z.; Mei, L. Q.; Yong, Y.; Huang, C. S.; Li, Y. L.; Gu, Z. J.; et al. ACS Appl. Mater. Interfaces 2018, 11, 2579. doi: 10.1021/acsami.8b00949  doi: 10.1021/acsami.8b00949

    17. [17]

      Shang, H.; Zuo, Z. Q.; Li, L.; Wang, F.; Liu, H. B.; Li, Y. J.; Li, Y. L. Angew. Chem. Int. Ed. 2018, 57, 774. doi: 10.1002/anie.201711366  doi: 10.1002/anie.201711366

    18. [18]

      Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Lu, F. S.; Li, Y. L. Adv. Mater. 2019, 31, 1806272. doi: 10.1002/adma.201806272  doi: 10.1002/adma.201806272

    19. [19]

      Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Li, Y. L. Adv. Mater. 2020, 32, 2004379. doi: 10.1002/adma.202004379  doi: 10.1002/adma.202004379

    20. [20]

      Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F., Zhang, J.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2016, 138, 3954. doi: 10.1021/jacs.5b12758  doi: 10.1021/jacs.5b12758

    21. [21]

      Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F.; Zhang, J. Adv. Mater. 2017, 29, 1605308. doi: 10.1002/adma.201605308  doi: 10.1002/adma.201605308

    22. [22]

      Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q.; et al. Angew. Chem. Int. Ed. 2020, 59, 13021. doi: 10.1002/anie.202004213  doi: 10.1002/anie.202004213

    23. [23]

      Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Angew. Chem. Int. Ed. 2021, 133, 3207. doi: 10.1002/ange.202012357  doi: 10.1002/ange.202012357

    24. [24]

      Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Natl. Sci. Rev. 2021, 8, nwaa213. doi: 10.1093/nsr/nwaa213  doi: 10.1093/nsr/nwaa213

    25. [25]

      Zuo, Z. C.; Wang, D.; Zhang, J.; Lu, F. S.; Li, Y. L. Adv. Mater. 2019, 31, 1803762. doi: 10.1002/adma.201803762  doi: 10.1002/adma.201803762

    26. [26]

      Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Nat. Commun. 2018, 9, 1460. doi: 10.1038/s41467-018-03896-4  doi: 10.1038/s41467-018-03896-4

    27. [27]

      Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. J. Am. Chem. Soc. 2019, 141, 10677. doi: 10.1021/jacs.9b03004  doi: 10.1021/jacs.9b03004

    28. [28]

      Hui, L.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Zhang, C.; Zhang, D. Y.; Jia, D. Z.; Zhao, Y. J.; Li, Y. J.; Liu, H. B.; et al. Nat. Commun. 2018, 9, 5309. doi: 10.1038/s41467-018-07790-x  doi: 10.1038/s41467-018-07790-x

    29. [29]

      Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Li, Y. J.; Zuo, Z. C.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Adv. Mater. 2018, 30, 1707082. doi: 10.1002/adma.201707082  doi: 10.1002/adma.201707082

    30. [30]

      Yang, Z.; Cui, W. W.; Wang, K.; Song, Y. W.; Zhao, F. H.; Wang, N.; Long, Y. Z.; Wang, H. L.; Huang, C. S. Chem. Eur. J. 2019, 25, 5643. doi: 10.1002/chem.201900477  doi: 10.1002/chem.201900477

    31. [31]

      Du, H. P.; Zhang, Z. H., He, J. J.; Cui, Z. L.; Chai, J. C.; Ma, J.; Yang, Z.; Huang, C. S.; Cui, G. L. Small 2017, 13, 1702277. doi: 10.1002/smll.201702277  doi: 10.1002/smll.201702277

    32. [32]

      Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J.; et al. Nat. Chem. 2018, 10, 924. doi: 10.1038/s41557-018-0100-1  doi: 10.1038/s41557-018-0100-1

    33. [33]

      Shen, X. Y.; Li, X. D.; Zhao, F. H.; Wang, N.; Xie, C. P.; He, J. J.; Si, W. Y.; Yi, Y. P.; Yang, Z.; Li, X. F.; et al. 2D Mater. 2019, 6, 035020. doi: 10.1088/2053-1583/ab185d  doi: 10.1088/2053-1583/ab185d

    34. [34]

      Wang, N.; He, J. J.; Tu, Z. Y; Yang, Z.; Zhao, F. H; Li, X. D; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P.; et al. Angew. Chem. Int. Ed. 2017, 56, 10740. doi: 10.1002/anie.201704779  doi: 10.1002/anie.201704779

    35. [35]

      He, J. J.; Wang, N.; Yang, Z.; Shen, X. Y.; Wang, K.; Huang, C. S.; Yi, Y. P.; Tu, Z. Y.; Li, Y. L. Energy Environ. Sci. 2018, 11, 2893. doi: 10.1039/c8ee01642a  doi: 10.1039/c8ee01642a

    36. [36]

      Zhou, W. X.; Shen, H.; Wu. C. Y.; Tu, Z. Y.; He, F.; Gu, Y. N.; Xue, Y. R.; Zhao, Y. J.; Yi, Y. P.; Li, Y. J.; et al. J. Am. Chem. Soc. 2018, 141, 48. doi: 10.1021/jacs.8b09945  doi: 10.1021/jacs.8b09945

    37. [37]

      He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y.; et al. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-01202-2  doi: 10.1038/s41467-017-01202-2

    38. [38]

      Yang, Z.; Liu, R. R.; Wang, N.; He, J. J.; Wang, K.; Li, X. D.; Shen, X. Y.; Wang, X.; Lv, Q.; Zhang, M. J.; et al. Carbon. 2018, 137, 442. doi: 10.1016/j.carbon.2018.05.049  doi: 10.1016/j.carbon.2018.05.049

    39. [39]

      Shang, H.; Zuo, Z. C.; Zheng, H. Y.; Li, K.; Tu, Z. Y.; Yi, Y. P.; Liu, H. B.; Li, Y. J.; Li, Y. L. Nano Energy 2018, 44, 144. doi: 10.1016/j.nanoen.2017.11.072  doi: 10.1016/j.nanoen.2017.11.072

    40. [40]

      Kan, X. N.; Ban, Y. Q.; Wu, C. Y.; Pan, Q. Y.; Liu, H.; Song, J. H.; Zuo, Z. C.; Li, Z. B.; Zhao, Y. J. ACS Appl. Mater. Interfaces 2018, 10, 53. doi: 10.1021/acsami.7b17326  doi: 10.1021/acsami.7b17326

    41. [41]

      Yang, Z.; Shen, X. Y.; Wang, N.; He, J. J.; Li, X. D.; Wang, X.; Hou, Z. F.; Wang, K.; Gao, J.; Jiu, T. G.; et al. ACS Appl. Mater. Interface 2019, 11, 2608. doi: 10.1021/acsami.8b01823  doi: 10.1021/acsami.8b01823

    42. [42]

      Zhang, Z. H.; Wu, C. Y.; Pan, Q. Y.; Shao, F.; Song, Q. Z.; Chen, S. Q.; Li, Z. B.; Zhao, Y. J. Chem. Commun. 2020, 56, 3210. doi: 10.1039/C9CC09617E  doi: 10.1039/C9CC09617E

    43. [43]

      Pan, Q. Y.; Chen, X. S.; Li, H.; Chen, S. Q.; Zheng, X. H.; Liu, H.; Li, B.; Zhao, Y. J. 2D Mater. 2022, 9, 014001. doi: 10.1088/2053-1583/ac2e50  doi: 10.1088/2053-1583/ac2e50

    44. [44]

      Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T.; et al. Angew. Chem. Int. Ed. 2018, 57, 11952. doi: 10.1002/anie.201805924  doi: 10.1002/anie.201805924

    45. [45]

      Yang, Z.; Song, Y. W.; Zhang, C. F.; He, J. J.; Li, X. D.; Wang, X.; Wang, N.; Li, Y. L.; Huang, C. S. Adv. Energy Mater. 2021, 11, 2101197. doi: 10.1002/aenm.202101197  doi: 10.1002/aenm.202101197

    46. [46]

      Yang, Z.; Ren, X.; Song, Y. W.; Li, X. D.; Zhang, C. F.; Hu, X. L.; He, J. J.; Li, J. Z.; Huang, C. S. Energy Environ. Mater. 2022, doi: 10.1002/eem2.12269  doi: 10.1002/eem2.12269

    47. [47]

      Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Li, Y. P.; Li, Y. L. Angew. Chem. Int. Ed. 2018, 130, 4032. doi: 10.1002/anie.201800453  doi: 10.1002/anie.201800453

    48. [48]

      Jia, Z. Y.; Zuo, Z. C.; Yi, Y. P.; Liu, H. B.; Li, D.; Li, Y. J.; Li, Y. L. Nano Energy 2017, 33, 343. doi: 10.1016/j.nanoen.2017.01.049  doi: 10.1016/j.nanoen.2017.01.049

    49. [49]

      Liu, H.; Zhang, Z. H.; Wu, C. Y.; Pan, Q. Y.; Zhao, Y. J.; Li, Z. B. Small 2019, 15, 1804519. doi: 10.1002/smll.201804519  doi: 10.1002/smll.201804519

    50. [50]

      Liu, C.; Cheng, P. X.; Shi, R. C.; Ge, F.; Han, X.; Qi, S. M.; Li, G.; Xu, J. L. 2D Mater. 2021, 9, 014006. doi: 10.1088/2053-1583/ac3c9a  doi: 10.1088/2053-1583/ac3c9a

    51. [51]

      Pan, Q. Y.; Chen, S. Q.; Wu, C. Y.; Zhang, Z. H.; Li, Z. B.; Zhao, Y. J. ACS Appl. Mater. Interfaces 2019, 11, 46070. doi: 10.1021/acsami.9b15133  doi: 10.1021/acsami.9b15133

    52. [52]

      Lu, T. T.; Deng, X.; Sun, Q. H.; Xiao, J. C.; He, J. J.; Wang, K.; Huang, C. S. Small 2021, 18, 2106328. doi: 10.1002/smll.202106328  doi: 10.1002/smll.202106328

    53. [53]

      Gao, L.; Ge, X.; Zuo, Z. C.; Wang, F.; Liu, X. Y.; Lv, M. M.; Shi, S. Q.; Xu, L. T.; Liu, T. F.; Zhou, Q. H.; et al. Nano Lett. 2020, 20, 7333. doi: 10.1021/acs.nanolett.0c02728  doi: 10.1021/acs.nanolett.0c02728

    54. [54]

      Pan, Q. Y.; Chen, X. S.; Liu, H.; Gan, W. J.; Ding, N. X.; Zhao, Y. J. Mat. Chem. Front. 2021, 5, 4596. doi: 10.1039/d1qm00285f  doi: 10.1039/d1qm00285f

    55. [55]

      Matsuoka, R.; Toyoda, R.; Shiotsuki, R.; Fukui, N.; Wada, K.; Maeda, H.; Sakamoto, R.; Sasaki, S.; Masunaga, H.; Nagashio, K.; et al. ACS Appl. Mater. Interfaces 2018, 11, 2730. doi: 10.1021/acsami.8b00743  doi: 10.1021/acsami.8b00743

    56. [56]

      Kulkarni, R.; Huang, J. Y.; Trunk, M.; Burmeister, D.; Amsalem, P.; Müller, J.; Martin, A.; Koch, N.; Kass, D.; Bojdys, M. J. Chem. Sci. 2021, 12, 12661. doi: 10.1039/d1sc03390e  doi: 10.1039/d1sc03390e

    57. [57]

      Al-Busaidi, I. J.; Haque, A.; Al-Balushi, R. A.; Rather, J. A.; Munam, A.; Ilmi, R.; Raithby, P. R.; Zhang, Y. M.; Fu, Y. Y.; Xie, Z. Y.; et al. New J. Chem. 2021, 45, 15082. doi: 10.1039/D1NJ00925G  doi: 10.1039/D1NJ00925G

    58. [58]

      Xu, L. L.; Sun, J. B.; Tang, T. H.; Zhang, H. Y.; Sun, M. Z.; Zhang, J. Q.; Li, J. H.; Huang, B. L.; Wang, Z. P.; Xie, Z.; et al. Angew. Chem. Int. Ed. 2021, 60, 11326. doi: 10.1002/anie.202014835  doi: 10.1002/anie.202014835

    59. [59]

      Sun, Q.; Cai, L. L.; Ma, H. H.; Yuan, C. X.; Xu, W. ACS Nano 2016, 10, 7023. doi: 10.1021/acsnano.6b03048  doi: 10.1021/acsnano.6b03048

    60. [60]

      Yang, Z. C.; Gebhardt, J. L.; Schaub, T. A.; Sander, T.; Schönamsgruber, J.; Soni, H.; Görling, A.; Kivala, M.; Maier, S. Nanoscale 2018, 10, 3769. doi: 10.1039/c7nr08238j  doi: 10.1039/c7nr08238j

    61. [61]

      Zhang, Y. Q.; Paintner, T.; Hellwig, R.; Haag, F.; Allegretti, F.; Feulner, P.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V.; et al. J. Am. Chem. Soc. 2019, 141, 5087. doi: 10.1021/jacs.8b13547  doi: 10.1021/jacs.8b13547

    62. [62]

      Arya, J. S.; Mahato, M. K.; Sankaraman, S.; Prasad, E. J. Mater. Chem. C 2021, 9, 10324. doi: 10.1039/D1TC02334A  doi: 10.1039/D1TC02334A

    63. [63]

      Kong, Y.; Li, J. Q.; Zeng, S.; Yon, C.; Tong, L. M.; Zhang, J. Chem 2020, 6, 1933. doi: 10.1016/j.chempr.2020.06.011  doi: 10.1016/j.chempr.2020.06.011

    64. [64]

      Tang, J. Y.; Jiang, H. F.; Deng, G. H.; Zhou, L. Chin. J. Org. Chem. 2005, 25, 1503.
       

    65. [65]

      Bai, D. H.; Li, C. J.; Li, J.; Jia, X. S. Chin. J. Org. Chem. 2012, 32, 994.  doi: 10.6023/cjoc1202073

    66. [66]

      Zhou, J. Y.; Li, J. Q.; Liu, Z. F.; Zhang, J. Adv. Mater. 2019, 31, 1803758. doi: 10.1002/adma.201803758  doi: 10.1002/adma.201803758

    67. [67]

      Diederich, F.; Rubin, Y. Angew. Chem. Int. Ed. 1992, 31, 1101. doi: 10.1002/anie.199211013  doi: 10.1002/anie.199211013

    68. [68]

      Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. J. Phys. Chem. C 2011, 115, 2611. doi: 10.1021/jp107996f  doi: 10.1021/jp107996f

    69. [69]

      Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi: 10.1021/jacs.6b12776  doi: 10.1021/jacs.6b12776

    70. [70]

      Liu, R.; Gao, X.; Zhou, J. Y.; Xu, H.; Li, Z. Z.; Zhang, S. Q.; Xie, Z. Q.; Zhang, J.; Liu, Z. F. Adv. Mater. 2017, 29, 1604665. doi: 10.1002/adma.201604665  doi: 10.1002/adma.201604665

    71. [71]

      Zhou, J. Y.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2018, 34, 977.  doi: 10.3866/PKU.WHXB201801243

    72. [72]

      Klappenberger, F.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Acc. Chem. Res. 2015, 48, 2140. doi: 10.1021/acs.accounts.5b00174  doi: 10.1021/acs.accounts.5b00174

    73. [73]

      Gao, H. Y.; Held, P. A.; Amirjalayer, S.; Liu, L. C.; Timmer, A.; Schirmer, B.; Arado, O. D.; Mönig, H.; Mück-Lichtenfeld, C.; Neugebauer, J.; et al. J. Am. Chem. Soc. 2017, 139, 7012. doi: 10.1021/jacs.7b02430  doi: 10.1021/jacs.7b02430

    74. [74]

      Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z.; et al. Sci. Adv. 2018, 4, eaat6378. doi: 10.1126/sciadv.aat6378  doi: 10.1126/sciadv.aat6378

    75. [75]

      Miao, S. B.; Smith, M. D.; Bunz, U. H. F. Org. Lett. 2006, 8, 757. doi: 10.1021/ol0529851  doi: 10.1021/ol0529851

    76. [76]

      Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Acta Phys. -Chim. Sin. 2021, 37, 2011007.  doi: 10.3866/PKU.WHXB202011007

    77. [77]

      Mortazavi, B.; Shahrokhi, M.; Madjet, M. E.; Hussain, T.; Zhuang, X. Y.; Rabczuk, T. J. Mater. Chem. C 2019, 7, 3025. doi: 10.1039/C9TC00082H  doi: 10.1039/C9TC00082H

    78. [78]

      Geyer, F. L.; Rominger, F.; Bunz, U. H. F. Chem. Eur. J. 2014, 20, 3600. doi: 10.1002/chem.201400105  doi: 10.1002/chem.201400105

    79. [79]

      Liu, M. H.; Li, Y. L. Acta Phys. -Chim. Sin. 2018, 34, 959.  doi: 10.3866/PKU.WHXB201803232

    80. [80]

      Que, H. F.; Jiang, H. N.; Wang, X. G.; Zhai, P. B.; Meng, L. J.; Zhang, P.; Gong, Y. J. Acta Phys. -Chim. Sin. 2021, 37, 2010051.  doi: 10.3866/PKU.WHXB202010051

    81. [81]

      Ye, Y. K.; Hu, Z. X.; Liu, J. H.; Lin, W. C.; Chen, T. W.; Zheng, J. X.; Pan, F. Acta Phys. -Chim. Sin. 2021, 37, 2011003.  doi: 10.3866/PKU.WHXB202011003

    82. [82]

      van Miert, G.; Juričić, V.; Morais, Smith, C. Phys. Rev. B 2014, 90, 195414. doi: 10.1103/PhysRevB.90.195414.  doi: 10.1103/PhysRevB.90.195414

    83. [83]

      Searles, D. J.; Sun, C. H. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z  doi: 10.1021/jp309638z

    84. [84]

      Wang, S. L.; Yang, G. Y.; Nasir, M. S.; Wang, X.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003.

    85. [85]

      Chen, Y.; Dong, H. Y.; Li, Y. Y.; Liu, J. P. Acta Phys. -Chim. Sin. 2021, 37, 2007075.  doi: 10.3866/PKU.WHXB202007075

    86. [86]

      Wu, B.; Li, M. R.; Xiao, S. N.; Qu, Y. K.; Qiu, X. Y.; Liu, T. F.; Tian, F. H.; Li, H. X.; Xiao, S. X. Nanoscale 2017, 9, 11939. doi: 10.1039/c7nr02247f  doi: 10.1039/c7nr02247f

    87. [87]

      Li, Y. L. Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, 1st ed.; Wiley: Weinheim, Germany, 2021; pp. 367–368.

  • 加载中
    1. [1]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    20. [20]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

Metrics
  • PDF Downloads(0)
  • Abstract views(570)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return