Citation: Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220602. doi: 10.3866/PKU.WHXB202206020 shu

Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction

  • Corresponding author: Zhicheng Zhang, zczhang19@tju.edu.cn
  • Received Date: 14 June 2022
    Revised Date: 11 July 2022
    Accepted Date: 12 July 2022
    Available Online: 20 July 2022

    Fund Project: the National Natural Science Foundation of China 22071172

  • Through the combustion of fossil fuels and other human activities, large amounts of CO2 gas have been emitted into the atmosphere, causing many environmental problems, such as the greenhouse effect and global warming. Thus, developing and utilizing renewable clean energy is crucial to reduce CO2 emission and achieve carbon neutrality. The electrochemical CO2 reduction reaction (CO2RR) has been considered as an effective approach to obtain high value-added chemicals and fuels, which can store intermittent renewable energy and achieve the artificial carbon cycle. In addition, due to its multiple advantages, such as mild reaction conditions, tunable products, and simple implementation, electrochemical CO2RR has attracted extensive attention. Electrochemical CO2RR involves multiple electron–proton transfer steps to obtain multitudinous products, such as C1 products (CO, HCOOH, CH4, etc.) and C2 products (C2H4, C2H5OH, etc.). The intermediates, among which *CO is usually identified as the key intermediate, and reaction pathways of different products intersect, resulting in an extremely complex reaction mechanism. Currently, copper has been widely proven to be the only metal catalyst that can efficiently reduce CO2 to hydrocarbons and oxygenates due to its suitable adsorption energy for *CO. However, the low product selectivity, poor stability, and high overpotential of pure Cu hinder its use for the production of industrial-grade multi-carbon products. Tandem catalysts with multiple types of active sites can sequentially reduce CO2 molecules into desired products. When loaded onto a co-catalyst that can efficiently convert CO2 to *CO (such as Au and Ag), Cu acts as an electron donor owing to its high electrochemical potential. *CO species generated from the substrate can spillover onto the surface of electron-poor Cu due to the stronger adsorption and be further reduced to C2+ products. The use of Cu-based tandem catalysts for electrochemical CO2RR is a promising strategy for improving the performance of CO2RR and thus, has become a research hotspot in recent years. In this review, we first introduce the reaction routes and tandem mechanisms of electrochemical CO2RR. Then, we systematically summarize the recent research progress of Cu-based tandem catalysts for electrochemical CO2RR, including Cu-based metallic materials (alloys, heterojunction, and core-shell structures) as well as Cu-based framework materials, carbon materials, and polymer-modified materials. Importantly, the preparation methods of various Cu-based tandem catalysts and their structure–activity relationship in CO2RR are discussed and analyzed in detail. Finally, the challenges and opportunities of the rational design and controllable synthesis of advanced tandem catalysts for electrochemical CO2RR are proposed.
  • 加载中
    1. [1]

      Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. doi: 10.1039/B912904A  doi: 10.1039/B912904A

    2. [2]

      Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2, 19. doi: 10.1039/C1CY00314C  doi: 10.1039/C1CY00314C

    3. [3]

      Zhu, D.; Liu, J.; Qiao, S. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    4. [4]

      Pierrehumbert, R. T. Am. Inst. Phys. 2011, 1401, 232. doi: 10.1063/1.3653855  doi: 10.1063/1.3653855

    5. [5]

      Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356. doi: 10.1126/science.119065  doi: 10.1126/science.119065

    6. [6]

      Möller, F. J. Geophys. Res. 1963, 68, 3877. doi: 10.1029/JZ068i013p03877  doi: 10.1029/JZ068i013p03877

    7. [7]

      Canadell, J. G.; Quéré, C. L.; Raupach, M. R.; Field, C. B.; Buitenhuis, E. T.; Ciais, P.; Conway, T. J.; Gillett, N. P.; Houghton, R. A.; Marland, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 18866. doi: 10.1073/pnas.0702737104  doi: 10.1073/pnas.0702737104

    8. [8]

      Myers, S. S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A. D. B.; Bloom, A. J.; Carlisle, E.; Dietterich, L. H.; Fitzgerald, G.; Hasegawa, T.; et al. Nature 2014, 510, 139. doi: 10.1038/nature13179  doi: 10.1038/nature13179

    9. [9]

      Pearson, P. N.; Palmer, M. R. Nature 2000, 406, 695. doi: 10.1038/35021000  doi: 10.1038/35021000

    10. [10]

      Schimel, D.; Stephens, B. B.; Fisher, J. B. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 436. doi: 10.1073/pnas.1407302112  doi: 10.1073/pnas.1407302112

    11. [11]

      Raupach, M. R.; Marland, G.; Ciais, P.; Quéré, C. L.; Canadell, J. G.; Klepper, G.; Field, C. B. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10288. doi: 10.1073/pnas.0700609104  doi: 10.1073/pnas.0700609104

    12. [12]

      Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q.; Xie, Y. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503  doi: 10.1038/ncomms14503

    13. [13]

      Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G  doi: 10.1039/C3CS60323G

    14. [14]

      Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A. Chem. Rev. 2001, 101, 953. doi: 10.1021/cr000018s  doi: 10.1021/cr000018s

    15. [15]

      Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    16. [16]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    17. [17]

      Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Nat. Mater. 2017, 16, 70. doi: 10.1038/nmat4778  doi: 10.1038/nmat4778

    18. [18]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y  doi: 10.1021/cr300463y

    19. [19]

      Gattrell, M.; Gupta, N.; Co, A. Energy Convers. Manage. 2007, 48, 1255. doi: 10.1016/j.enconman.2006.09.019  doi: 10.1016/j.enconman.2006.09.019

    20. [20]

      Costentin, C.; Robert, M.; Saveant, J. -M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/C2CS35360A  doi: 10.1039/C2CS35360A

    21. [21]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday Trans. 1 1989, 85, 2309. doi: 10.1039/f19898502309  doi: 10.1039/f19898502309

    22. [22]

      Garza, A. J.; Bell, A. T.; Head-Gordon, M. ACS Catal. 2018, 8, 1490. doi: 10.1021/acscatal.7b03477  doi: 10.1021/acscatal.7b03477

    23. [23]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    24. [24]

      Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. J. Phys. Chem. B 2002, 106, 15. doi: 10.1021/jp013478d  doi: 10.1021/jp013478d

    25. [25]

      Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902. doi: 10.1039/C1SC00277E  doi: 10.1039/C1SC00277E

    26. [26]

      Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y. J. Electroanal. Chem. 2002, 533, 135. doi: 10.1016/S0022-0728(02)01081-1  doi: 10.1016/S0022-0728(02)01081-1

    27. [27]

      Hahn, C.; Hatsukade, T.; Kim, Y. -G.; Vailionis, Arturas.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 5918. doi: 10.1073/pnas.1618935114  doi: 10.1073/pnas.1618935114

    28. [28]

      Yuan, J.; Zhang, J. J.; Yang, M. P.; Meng, W. J.; Wang, H.; Lu, J. X. Catalysts 2018, 8, 171. doi: 10.3390/catal8040171  doi: 10.3390/catal8040171

    29. [29]

      Zhuang, T. T.; Pang, Y. J.; Liang, Z. Q.; Wang, Z. Y.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L. Nat. Catal. 2018, 1, 946. doi: 10.1038/s41929-018-0168-4  doi: 10.1038/s41929-018-0168-4

    30. [30]

      Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. ACS Catal. 2016, 6, 3804. doi: 10.1021/acscatal.6b00770  doi: 10.1021/acscatal.6b00770

    31. [31]

      Pang, Y. J.; Burdyny, T.; Dinh, C. T.; Kibria, M. G.; Fan, J. Z.; Liu, M.; Sargent, E. H.; Sinton, D. Green Chem. 2017, 19, 4023. doi: 10.1039/C7GC01677H  doi: 10.1039/C7GC01677H

    32. [32]

      Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Angew. Chem. Int. Ed. 2016, 55, 5789. doi: 10.1002/anie.201601582  doi: 10.1002/anie.201601582

    33. [33]

      Iyengar, P.; Huang J. F.; De Gregorio, G. L.; Gadiyar, C.; Buonsanti, R. Chem. Commun. 2019 55, 8796. doi: 10.1039/C9CC02522G  doi: 10.1039/C9CC02522G

    34. [34]

      Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. J. Am. Chem. Soc. 2014, 136, 16473. doi: 10.1021/ja508879j  doi: 10.1021/ja508879j

    35. [35]

      Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    36. [36]

      Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    37. [37]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. -W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    38. [38]

      Xiao, H.; Goddard Ⅲ, W. A.; Cheng, T.; Liu, Y. Y. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685. doi: 10.1073/pnas.1702405114  doi: 10.1073/pnas.1702405114

    39. [39]

      Zhang, L. Y.; Yang, S.; Lai, Y. K.; Liu, H.; Fan, Y. A.; Liu, C.; Wang, H. Y.; Chai, L. Y. Appl. Catal. B 2020, 265, 118556. doi: 10.1016/j.apcatb.2019.118556  doi: 10.1016/j.apcatb.2019.118556

    40. [40]

      Yang, S.; Liu, Z. L.; Yan, X.; Liu, C.; Zhang, Z. Y.; Liu, H.; Chai, L. Y. Energy Fuels 2019, 33, 11380. doi: 10.1021/acs.energyfuels.9b02376  doi: 10.1021/acs.energyfuels.9b02376

    41. [41]

      Mudiyanselage, K.; Luo, S.; Kim, H. Y.; Yang, X. F.; Baber, A. E.; Hoffmann, F. M.; Senanayake, S.; Rodriguez, J. A.; Chen, J. G.; Liu, P.; et al. Catal. Today 2016, 263, 4. doi: 10.1016/j.cattod.2015.08.025  doi: 10.1016/j.cattod.2015.08.025

    42. [42]

      Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M.Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, Hu.; Lin, H. H.; et al. Nano Lett. 2019, 19, 8658. doi: 10.1021/acs.nanolett.9b03324  doi: 10.1021/acs.nanolett.9b03324

    43. [43]

      Buckley, A. K.; Lee, M.; Cheng, T.; Kazantsev, R. V.; Larson, D. M.; Goddard Ⅲ, W. A.; Toste, F. D.; Toma, F. M. J. Am. Chem. Soc. 2019, 141, 7355. doi: 10.1021/jacs.8b13655  doi: 10.1021/jacs.8b13655

    44. [44]

      Hoang, T. T. H.; Ma, S.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. ACS Catal. 2017, 7, 3313. doi: 10.1021/acscatal.6b03613  doi: 10.1021/acscatal.6b03613

    45. [45]

      Han, Z. J.; Kortlever, R.; Chen, H. -Y.; Peters, J. C.; Agapie, T. ACS Cent. Sci. 2017, 3, 853. doi: 10.1021/acscentsci.7b00180  doi: 10.1021/acscentsci.7b00180

    46. [46]

      Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 15848. doi: 10.1021/jacs.7b08607  doi: 10.1021/jacs.7b08607

    47. [47]

      Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P.; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x  doi: 10.1038/s41557-018-0092-x

    48. [48]

      Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231. doi: 10.1021/ja3010978  doi: 10.1021/ja3010978

    49. [49]

      Wang, X.; Wang, Z. Y.; Zhuang, T. -T.; Dinh, C. -T.; Li, J.; Nam, D. -H.; Li, F. W.; Huang, C. -W.; Tan, C. -S.; Chen, Z. T.; et al. Nat Commun. 2019, 10, 5186. doi: 10.1038/s41467-019-13190-6  doi: 10.1038/s41467-019-13190-6

    50. [50]

      Lum, Y.; Ager, J. W. Angew. Chem. Int. Ed. 2018, 57, 551. doi: 10.1002/anie.201710590  doi: 10.1002/anie.201710590

    51. [51]

      Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. J. Am. Chem. Soc. 2015, 137, 9808. doi: 10.1021/jacs.5b06227  doi: 10.1021/jacs.5b06227

    52. [52]

      Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Science 2017, 358, 1187. doi: 10.1126/science.aao3691  doi: 10.1126/science.aao3691

    53. [53]

      Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. F. Small Methods 2019, 3, 1800449. doi: 10.1002/smtd.201800449  doi: 10.1002/smtd.201800449

    54. [54]

      Chang, X. X.; Wang, T.; Zhao, Z. J.; Yang, P. P.; Greeley, J.; Mu, R. T.; Zhang, G.; Gong, Z. M.; Luo, Z. B.; Chen, J.; et al. Angew. Chem. Int. Ed. 2018, 57, 15415. doi: 10.1002/anie.201805256  doi: 10.1002/anie.201805256

    55. [55]

      Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. J. Am. Chem. Soc. 2017, 139, 6827. doi: 10.1021/jacs.7b03101  doi: 10.1021/jacs.7b03101

    56. [56]

      Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.11/acscatal.9b081  doi: 10.11/acscatal.9b081

    57. [57]

      Varandili, S. B.; Huang, J. F.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhowmik, A.; Buonsanti, R. ACS Catal. 2019, 9, 5035. doi: 10.1021/acscatal.9b00010  doi: 10.1021/acscatal.9b00010

    58. [58]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    59. [59]

      Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. SmartMat. 2021, 2, 12. doi: 10.1002/smm2.1018  doi: 10.1002/smm2.1018

    60. [60]

      Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. Curr. Opin. Chem. Eng. 2013, 2, 191. doi: 10.1016/j.coche.2013.03.005  doi: 10.1016/j.coche.2013.03.005

    61. [61]

      Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. -T.; Kim, D.; Yang, P. D.; Sargent, E. H. Nat. Catal. 2019, 2, 648. doi: 10.1038/s41929-019-0306-7  doi: 10.1038/s41929-019-0306-7

    62. [62]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    63. [63]

      Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Nano Res. 2021, 14, 4471. doi: 10.1007/s12274-021-3448-2  doi: 10.1007/s12274-021-3448-2

    64. [64]

      Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. -H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. -F.; et al. Nat. Catal. 2020, 3, 75. doi: 10.1038/s41929-019-0383-7  doi: 10.1038/s41929-019-0383-7

    65. [65]

      Wang, N.; Yao, K. L.; Vomiero, A.; Wang, Y. H.; Liang, H. Y. SmartMat. 2021, 2, 423. doi: 10.1002/smm2.1048  doi: 10.1002/smm2.1048

    66. [66]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi: 10.1002/cphc.201700736  doi: 10.1002/cphc.201700736

    67. [67]

      Li, C. W.; Ciston, J. Kanan, M. W. Nature 2014, 508, 504. doi: 10.1038/nature13249  doi: 10.1038/nature13249

    68. [68]

      Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. J. Am. Chem. Soc. 2019, 141, 18704. doi: 10.1021/jacs.9b07415  doi: 10.1021/jacs.9b07415

    69. [69]

      Jagadeesan, D. Appl. Catal. A 2016, 511, 59. doi: 10.1016/j.apcata.2015.11.033  doi: 10.1016/j.apcata.2015.11.033

    70. [70]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Chem. Soc. Rev. 2017, 46, 126. doi: 10.1039/C6CS00250A  doi: 10.1039/C6CS00250A

    71. [71]

      Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248, 2365. doi: 10.1016/j.ccr.2004.05.012  doi: 10.1016/j.ccr.2004.05.012

    72. [72]

      Mata, J. A.; Hahn, F. E.; Peris, E. Chem. Sci. 2014, 5, 1723. doi: 10.1039/c3sc53126k  doi: 10.1039/c3sc53126k

    73. [73]

      Zhou, J. Chem. Asian J. 2010, 5, 422. doi: 10.1002/asia.200900458  doi: 10.1002/asia.200900458

    74. [74]

      Camp, J. E. Eur. J. Org. Chem. 2017, 3, 425. doi: 10.1002/ejoc.201600803  doi: 10.1002/ejoc.201600803

    75. [75]

      Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001. doi: 10.1021/cr020018n  doi: 10.1021/cr020018n

    76. [76]

      Shindoh, N.; Takemoto, Y.; Takasu, K. Chem. Eur. J. 2009, 15, 12168. doi: 10.1002/chem.200901486  doi: 10.1002/chem.200901486

    77. [77]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    78. [78]

      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8, 7445. doi: 10.1021/acscatal.8b01200  doi: 10.1021/acscatal.8b01200

    79. [79]

      Li, X. D.; Wang, S. M.; Li, L.; Sun, Y. F.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    80. [80]

      Zhang, Y.; Guo, S. X.; Zhang, X. L.; Bond, A. M.; Zhang, J. Nano Today 2020, 31, 100835. doi: 10.1016/j.nantod.2019.100835  doi: 10.1016/j.nantod.2019.100835

    81. [81]

      Woldu, A. R.; Huang, Z. L.; Zhao, P. X.; Hu, L. S.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340  doi: 10.1016/j.ccr.2021.214340

    82. [82]

      Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2021, 50, 12897. doi: 10.1039/D1CS00535A  doi: 10.1039/D1CS00535A

    83. [83]

      Kas, R.; Kortlever, R.; Yılmaz, H.; Koper, M. T. M.; Mul, G. ChemElectroChem 2015, 2, 354. doi: 10.1002/celc.201402373  doi: 10.1002/celc.201402373

    84. [84]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4, 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    85. [85]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    86. [86]

      Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. ACS Catal. 2015, 5, 3916. doi: 10.1021/acscatal.5b00602  doi: 10.1021/acscatal.5b00602

    87. [87]

      Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E4585. doi: 10.1073/pnas.1602984113  doi: 10.1073/pnas.1602984113

    88. [88]

      Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. J. Am. Chem. Soc. 2012, 134, 9864. doi: 10.1021/ja302668n  doi: 10.1021/ja302668n

    89. [89]

      Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. Lett. 2016, 7, 1471. doi: 10.1021/acs.jpclett.6b00358  doi: 10.1021/acs.jpclett.6b00358

    90. [90]

      Li, J. J.; Zhang, Z. C. Rare Met. 2022, 41, 723. doi: 10.1007/s12598-021-01862-6  doi: 10.1007/s12598-021-01862-6

    91. [91]

      Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52, 7282. doi: 10.1002/ange.201301470  doi: 10.1002/ange.201301470

    92. [92]

      Hanselman, S.; Koper, M. T. M.; Calle-Vallejo, F. ACS Energy Lett. 2018, 3, 1062. doi: 10.1021/acsenergylett.8b00326  doi: 10.1021/acsenergylett.8b00326

    93. [93]

      Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Catal. Today 2016, 262, 90. doi: 10.1016/j.cattod.2015.09.029  doi: 10.1016/j.cattod.2015.09.029

    94. [94]

      Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. J. Phys. Chem. Lett. 2016, 7, 20. doi: 10.1021/acs.jpclett.5b02554  doi: 10.1021/acs.jpclett.5b02554

    95. [95]

      Zhang, H. C.; Li, J.; Cheng, M. J.; Lu, Q. ACS Catal. 2018, 9, 49. doi: 10.1021/acscatal.8b03780  doi: 10.1021/acscatal.8b03780

    96. [96]

      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Am. Chem. Soc. 1987, 109, 5022. doi: 10.1021/ja00250a044  doi: 10.1021/ja00250a044

    97. [97]

      Li, J.; Chang, K.; Zhang, H. C.; He, M.; Goddard, W. A.; Chen, J. G.; Cheng, M. J.; Lu, Q. ACS Catal. 2019, 9, 4709. doi: 10.1021/acscatal.9b00099  doi: 10.1021/acscatal.9b00099

    98. [98]

      Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Phys. Chem. Chem. Phys. 2014, 16, 13814. doi: 10.1039/c4cp00692e  doi: 10.1039/c4cp00692e

    99. [99]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. ACS Catal. 2015, 5, 4293. doi: 10.1021/acscatal.5b00840  doi: 10.1021/acscatal.5b00840

    100. [100]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/c0ee00071j  doi: 10.1039/c0ee00071j

    101. [101]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    102. [102]

      Zhang, H. C.; Chang, X. X.; Chen, J. G.; Goddard; W. A.; Xu, B. J.; Cheng, M. J.; Lu, Q. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-11292-9  doi: 10.1038/s41467-019-11292-9

    103. [103]

      Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822  doi: 10.1021/acscatal.7b02822

    104. [104]

      Gurudayal, G.; Bullock, J.; Sranko, D. F.; Towle, C. M.; Lum, Y.; Hettick, M.; Scott, M. C.; Javey, A.; Ager, J. Energy Environ. Sci. 2017, 10, 2222. doi: 10.1039/c7ee01764b  doi: 10.1039/c7ee01764b

    105. [105]

      Chang, Z. Y.; Huo, S. J.; Zhang, W.; Fang, J. H.; Wang, H. L. J. Phys. Chem. C 2017, 121, 11368. doi: 10.1021/acs.jpcc.7b01586  doi: 10.1021/acs.jpcc.7b01586

    106. [106]

      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. J. Am. Chem. Soc. 2018, 140, 5791. doi: 10.1021/jacs.8b01868  doi: 10.1021/jacs.8b01868

    107. [107]

      Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Angew. Chem. Int. Ed. 2019, 58, 15036. doi: 10.1002/anie.201909610  doi: 10.1002/anie.201909610

    108. [108]

      Li, J. J.; Zhang, Z. C.; Hu, W. P. Green Energy Environ. 2021. doi: 10.1016/j.gee.2021.11.004  doi: 10.1016/j.gee.2021.11.004

    109. [109]

      Wang, Y. H.; Jiang, W. J.; Yao, W.; Liu, Z. L.; Liu, Z.; Yang, Y.; Gao, L. Z. Rare Met. 2021, 40, 2327. doi: 10.1007/s12598-021-01728-x  doi: 10.1007/s12598-021-01728-x

    110. [110]

      Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52, 7282. doi: 10.1002/anie.201301470  doi: 10.1002/anie.201301470

    111. [111]

      Ren, D.; Ang, B. S.; Yeo, B. S. ACS Catal. 2016, 6, 8239. doi: 10.1021/acscatal.6b02162  doi: 10.1021/acscatal.6b02162

    112. [112]

      Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. Nat. Catal. 2018, 1, 592. doi: 10.1038/s41929-018-0108-3  doi: 10.1038/s41929-018-0108-3

    113. [113]

      Dinh, C. -T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 78. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    114. [114]

      Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A. ACS Catal. 2020, 10, 14093. doi: 10.1021/acscatal.0c03319  doi: 10.1021/acscatal.0c03319

    115. [115]

      Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Chem. Soc. Rev. 2020, 49, 6632. doi: 10.1039/D0CS00030B  doi: 10.1039/D0CS00030B

    116. [116]

      Lees, E. W.; Mowbray, B. A.; Parlane, F. G.; Berlinguette, C. P. Nat. Rev. Mater. 2022, 7, 55. doi: 10.1038/s41578-021-00356-2  doi: 10.1038/s41578-021-00356-2

    117. [117]

      Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Joule 2020, 4, 1688. doi: 10.1016/j.joule.2020.07.009  doi: 10.1016/j.joule.2020.07.009

    118. [118]

      Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Nano-Micro Lett. 2021, 13, 216. doi: 10.1007/s40820-021-00738-9  doi: 10.1007/s40820-021-00738-9

    119. [119]

      Li, X.; Kou, Z. K.; Wang, J. Small Methods 2020, 5, 2001010. doi: 10.1002/smtd.202001010  doi: 10.1002/smtd.202001010

    120. [120]

      Shao, Q.; Wang, P. T.; Huang, X. Q. Adv. Funct. Mater. 2019, 29, 1806419. doi: 10.1002/adfm.201806419  doi: 10.1002/adfm.201806419

    121. [121]

      Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F.; et al. J. Am. Chem. Soc. 2017, 139, 5652. doi: 10.1021/jacs.7b00102  doi: 10.1021/jacs.7b00102

    122. [122]

      Back, S.; Kim, J. H.; Kim, Y. T.; Jung, Y. ACS Appl. Mater. Interfaces 2016, 8, 23022. doi: 10.1021/acsami.6b05903  doi: 10.1021/acsami.6b05903

    123. [123]

      Duan, M. Y.; Yu, J.; Meng, J.; Zhu, B. E.; Wang, Y.; Gao, Y. Angew. Chem. Int. Ed. 2018, 57, 6464. doi: 10.1002/anie.201800925  doi: 10.1002/anie.201800925

    124. [124]

      Lin, Y.; Zhou, M.; Tai, X. L.; Li, H. F.; Han, X.; Yu, J. G. Matter 2021, 4, 2309. doi: 10.1016/j.matt.2021.05.005  doi: 10.1016/j.matt.2021.05.005

    125. [125]

      Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; et al. Nat. Catal. 2018, 1, 764. doi: 10.1038/s41929-018-0139-9  doi: 10.1038/s41929-018-0139-9

    126. [126]

      Wang, J. Q.; Li, Z.; Dong, C. K.; Feng, Y.; Yang, J.; Liu, H.; Du, X. W. ACS Appl. Mater. Interfaces 2019, 11, 2763. doi: 10.1021/acsami.8b20545  doi: 10.1021/acsami.8b20545

    127. [127]

      Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381  doi: 10.1021/jacs.8b12381

    128. [128]

      Huang, X. Q.; Li, Y. J.; Zhou, H. L.; Zhong, X.; Duan, X. F.; Huang, Y. Chem. Eur. J. 2012, 18, 9505. doi: 10.1002/chem.201200817  doi: 10.1002/chem.201200817

    129. [129]

      Kim, N. R.; Shin, K.; Jung, I.; Shim, M.; Lee. H. M. J. Phys. Chem. C 2014, 118, 26324. doi: 10.1021/jp506069c  doi: 10.1021/jp506069c

    130. [130]

      Chen, Z.; Mochizuki, D.; Maitani, M. M.; Wada, Y. Nanotechnology 2013, 24, 265602. doi: 10.1088/0957-4484/24/26/265602  doi: 10.1088/0957-4484/24/26/265602

    131. [131]

      Gao, J.; Ren, D.; Guo, X. Y.; Zakeeruddin, S. M.; Grätzel, M. Faraday Discuss. 2019, 215, 282. doi: 10.1039/c8fd00219c  doi: 10.1039/c8fd00219c

    132. [132]

      Lum, Y. W.; Ager, J. W. Energy Environ. Sci. 2018, 11, 2935. doi: 10.1039/c8ee01501e  doi: 10.1039/c8ee01501e

    133. [133]

      Zhang, T. Y.; Li, Z. Y.; Zhang, J. F.; Wu, J. J. J. Catal. 2020, 387, 163. doi: 10.1016/j.jcat.2020.05.002  doi: 10.1016/j.jcat.2020.05.002

    134. [134]

      Zhang, B. A.; Nocera, D. G. ChemElectroChem 2021, 8, 1918. doi: 10.1002/celc.202100295  doi: 10.1002/celc.202100295

    135. [135]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Surf. Sci. 1995, 335, 258. doi; 10.1016/0039-6028(95)00441-6

    136. [136]

      Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722  doi: 10.1021/acs.jpclett.5b00722

    137. [137]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    138. [138]

      Schouten, K. J. P.; Gallent, E. P.; Koper, M. T. M. ACS Catal. 2013, 3, 1292. doi: 10.1021/cs4002404  doi: 10.1021/cs4002404

    139. [139]

      Iyengar, P.; Kolb, M. J.; Pankhurst, J. R.; Calle-Vallejo, F.; Buonsanti, R. ACS Catal. 2021, 11, 4456. doi: 10.1021/acscatal.1c00420  doi: 10.1021/acscatal.1c00420

    140. [140]

      Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y.; et al. Adv. Mater. 2022, 34, 2110607. doi: 10.1002/adma.202110607  doi: 10.1002/adma.202110607

    141. [141]

      Pang, X. H.; Wan, C. S.; Wang, M. Y.; Lin, Z. Q. Angew. Chem. Int. Ed. 2014, 53, 5524. doi: 10.1002/anie.201309352  doi: 10.1002/anie.201309352

    142. [142]

      Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Adv. Funct. Mater. 2021, 31, 2101255. doi: 10.1002/adfm.202101255  doi: 10.1002/adfm.202101255

    143. [143]

      Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Nano Res. 2022, doi: 10.1007/s12274-022-4234-5  doi: 10.1007/s12274-022-4234-5

    144. [144]

      Wang, F. Q.; Zhang, W. L.; Wan, H. B.; Li, C. X.; An, W. K.; Sheng, X.; Liang, X. Y.; Wang, X. P.; Ren, Y. L.; Zheng, X. Chin. Chem. Lett. 2022, 33, 2259. doi: 10.1016/j.cclet.2021.08.074  doi: 10.1016/j.cclet.2021.08.074

    145. [145]

      Wang, Z. J.; Qi, J.; Yang, N. J.; Yu, R. B.; Wang, D. Mater. Chem. Front. 2021, 5, 1126. doi: 10.1039/d0qm00538j  doi: 10.1039/d0qm00538j

    146. [146]

      Monzó, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Koper, M. T. M.; Rodriguez, P. J. Mater. Chem. A 2015, 3, 23690. doi: 10.1039/c5ta06804e  doi: 10.1039/c5ta06804e

    147. [147]

      Zhang, S. S.; Zhao, S. L.; Qu, D. X.; Liu, X. J.; Wu, Y. P.; Chen, Y. H.; Huang, W. Small 2021, 17, 2102293. doi: 10.1002/smll.202102293  doi: 10.1002/smll.202102293

    148. [148]

      Zhang, B. B.; Wang, Y. H.; Xu, S. M.; Chen, K.; Yang, Y. G.; Kong, Q. H. RSC Adv. 2020, 10, 19192. doi: 10.1039/d0ra02482a  doi: 10.1039/d0ra02482a

    149. [149]

      Choukroun, D.; Pacquets, L.; Li, C.; Hoekx, S.; Arnouts, S.; Baert, K.; Hauffman, T.; Bals, S.; Breugelmans, T. ACS Nano 2021, 15, 14858. doi: 10.1021/acsnano.1c04943  doi: 10.1021/acsnano.1c04943

    150. [150]

      Zhou, J. H.; Yuan, C. Y.; Zheng, Y. L.; Yin, H. J.; Yuan, K.; Sun, X. C.; Zhang, Y. W. RSC Adv. 2021, 11, 38486. doi: 10.1039/d1ra07507a  doi: 10.1039/d1ra07507a

    151. [151]

      Zhang, S. H.; Yang, Q.; Wang, C.; Luo, X. L.; Kim, J.; Wang, Z.; Yamauchi, Y. Adv. Sci. 2018, 5, 1801116. doi: 10.1002/advs.201801116  doi: 10.1002/advs.201801116

    152. [152]

      Chen, H.; Zhou, Y.; Guo, W.; Xia, B. Y. Chin. Chem. Lett. 2022, 33, 1831. doi: 10.1016/j.cclet.2021.09.034  doi: 10.1016/j.cclet.2021.09.034

    153. [153]

      Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248  doi: 10.1038/46248

    154. [154]

      Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025.  doi: 10.3866/PKU.WHXB202010025

    155. [155]

      Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 429. doi: 10.1002/anie.201308589.  doi: 10.1002/anie.201308589

    156. [156]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. doi: 10.1021/cr300014x.  doi: 10.1021/cr300014x

    157. [157]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444.  doi: 10.1126/science.1230444

    158. [158]

      Wang, X.; She, P. F.; Zhang, Q. C. SmartMat. 2021, 2, 299. doi: 10.1002/smm2.1057  doi: 10.1002/smm2.1057

    159. [159]

      Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Su, P. P.; Li, X. F.; Zhang, H. M. ACS Appl. Mater. Interfaces 2018, 10, 2480. doi: 10.1021/acsami.7b15255  doi: 10.1021/acsami.7b15255

    160. [160]

      Zhao, Z. H.; Zheng, K.; Huang, N. Y.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Chem. Commun. 2021, 57, 12764. doi: 10.1039/d1cc05376k  doi: 10.1039/d1cc05376k

    161. [161]

      Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 25485. doi: 10.1002/anie.202111136  doi: 10.1002/anie.202111136

    162. [162]

      Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Nat. Mater. 2019, 19, 77. doi: 10.1038/s41563-019-0487-0  doi: 10.1038/s41563-019-0487-0

    163. [163]

      Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. Nat. Nanotechnol. 2015, 10, 444. doi: 10.1038/nnano.2015.48  doi: 10.1038/nnano.2015.48

    164. [164]

      Li, W. L.; Herkt, B.; Seredych, M.; Bandosz, T. J. Appl. Catal. B 2017, 207, 195. doi: 10.1016/j.apcatb.2017.02.023  doi: 10.1016/j.apcatb.2017.02.023

    165. [165]

      Pan, F. P.; Li, B. Y.; Xiang, X. M.; Wang, G. F.; Li, Y. ACS Catal. 2019, 9, 2124. doi: 10.1021/acscatal.9b00016  doi: 10.1021/acscatal.9b00016

    166. [166]

      Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajta, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869  doi: 10.1038/ncomms13869

    167. [167]

      Zaman, S.; Tian, X. L.; Su, Y. -Q.; Cai, W. W.; Yan, Y.; Qi, R. J.; Douka, A. I.; Chen, S. H.; You, B.; Liu, H. F.; et al. Sci. Bull. 2021, 66, 2207. doi: 10.1016/j.scib.2021.07.001  doi: 10.1016/j.scib.2021.07.001

    168. [168]

      Reddu, V.; Sun, L. B.; Li, X. G.; Jin, H. L.; Wang, S.; Wang, X. SmartMat. 2022, 3, 151. doi: 10.1002/smm2.1081  doi: 10.1002/smm2.1081

    169. [169]

      Bi, W. T.; Li, X. G.; You, R.; Chen, M. L.; Yuan, R. L.; Huang, W. X.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Adv. Mater. 2018, 30, 1706617. doi: 10.1002/adma.201706617  doi: 10.1002/adma.201706617

    170. [170]

      Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4, 2819. doi: 10.1038/ncomms3819  doi: 10.1038/ncomms3819

    171. [171]

      Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 7845. doi: 10.1021/ja5031529  doi: 10.1021/ja5031529

    172. [172]

      Sharma, P. P.; Wu, J. J.; Yadav, R. M.; Liu, M. J.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Angew. Chem. Int. Ed. 2015, 54, 13701. doi: 10.1002/ange.201506062  doi: 10.1002/ange.201506062

    173. [173]

      Wu, J. J.; Liu, M. J.; Sharma, P. P.; Yadav, R. M.; Ma, L. L.; Yang, Y. C.; Zou, X. L.; Zhou, X. -D.; Vajtai, R.; Yakobson, B. I.; et al. Nano Lett. 2016, 16, 466. doi: 10.1021/acs.nanolett.5b04123  doi: 10.1021/acs.nanolett.5b04123

    174. [174]

      Gao, J.; Wang, H.; Feng, K.; Xiang, C. S.; Wang, H. B.; Qi, H. H.; Liu, Y.; Tian, H.; Zhong, J.; Kang, Z. H. Mater. Adv. 2020, 1, 2286. doi: 10.1039/D0MA00433B  doi: 10.1039/D0MA00433B

    175. [175]

      Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L. B.; Wu, Z. L.; Meyer Ⅲ, H. M.; Chi, M. F.; Ma, C.; Sumpter, B. G.; et al. ChemistrySelect 2016, 1, 6055. doi: 10.1002/slct.201601169  doi: 10.1002/slct.201601169

    176. [176]

      Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Nano Energy 2016, 24, 1. doi: 10.1016/j.nanoen.2016.03.024  doi: 10.1016/j.nanoen.2016.03.024

    177. [177]

      Wang, X. L.; Araújo, J. F. D.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Nat. Nanotechnol. 2019, 14, 1063. doi: 10.1038/s41565-019-0551-6  doi: 10.1038/s41565-019-0551-6

    178. [178]

      Lee, J. C.; Kim, J. Y.; Joo, W. H.; Hong, D. K.; Oh, S. H.; Kim, B.; Lee, G. D.; Kim, M.; Oh, J.; Joo, Y. C. J. Mater. Chem. A 2020, 8, 11632. doi: 10.1039/d0ta03322g  doi: 10.1039/d0ta03322g

    179. [179]

      Liu, S.; Cao, Y.; Liu, H.; Wang, H. L.; Zhang, B. S.; Zhang, Y. M.; Zhang, L. H.; Zhang, S.; Sun, J. Nanoscale 2021, 13, 16986. doi: 10.1039/D1NR04802C  doi: 10.1039/D1NR04802C

    180. [180]

      Chen, D.; Zhang, L. H.; Du, J.; Wang, H. H.; Guo, J. Y.; Zhan, J. Y.; Li, F.; Yu, F. S. Angew. Chem. Int. Ed. 2021, 60, 24022. doi: 10.1002/anie.202109579  doi: 10.1002/anie.202109579

    181. [181]

      Wei, X.; Yin, Z. L, ; Lyu, K. J.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. ACS Catal. 2020, 10, 4103. doi: 10.1021/acscatal.0c00049  doi: 10.1021/acscatal.0c00049

    182. [182]

      Pan, H. Q.; Barile, C. J. Energy Environ. Sci. 2020, 13, 3567. doi: 10.1039/d0ee02189j  doi: 10.1039/d0ee02189j

    183. [183]

      Wang, J. C.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143, 2857. doi: 10.1021/jacs.0c12478  doi: 10.1021/jacs.0c12478

    184. [184]

      Duan, G. Y, ; Li, X. Q.; Ding, G. R.; Han, L. J.; Xu, B. H.; Zhang, S. J. Angew. Chem. Int. Ed. 2021, 61, e202110657. doi: 10.1002/anie.202110657  doi: 10.1002/anie.202110657

  • 加载中
    1. [1]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    7. [7]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    10. [10]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    11. [11]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    12. [12]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    13. [13]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    14. [14]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    15. [15]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    16. [16]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    19. [19]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    20. [20]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

Metrics
  • PDF Downloads(121)
  • Abstract views(1654)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return