Citation: Yichen Du, Zhuangzhuang Zhang, Yifan Xu, Jianchun Bao, Xiaosi Zhou. Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220501. doi: 10.3866/PKU.WHXB202205017 shu

Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies

  • Corresponding author: Jianchun Bao, baojianchun@njnu.edu.cn Xiaosi Zhou, zhouxiaosi@njnu.edu.cn
  • Received Date: 9 May 2022
    Revised Date: 11 June 2022
    Accepted Date: 13 June 2022
    Available Online: 20 June 2022

    Fund Project: the National Natural Science Foundation of China 22075147the National Natural Science Foundation of China 22179063

  • Rechargeable potassium-ion batteries (PIBs), with their low cost and the abundant K reserves, have been promising candidates for energy storage and conversion. Among all anode materials for PIBs, metal sulfides (MSs) show superiority owing to their high theoretical capacity and variety of material species. Nevertheless, the battery performance of MSs is hindered by many factors such as poor conductivity, low ion diffusivity, sluggish interfacial/surface transfer kinetics, and drastic volume changes. In this review, the electrochemical reaction mechanisms, challenges, and synthesis methods of MSs for PIBs are summarized and discussed. In particular, the most common synthesis methods of MSs for PIBs are highlighted, including template synthesis, hydro/solvothermal synthesis, solid-phase chemical synthesis, electrospinning synthesis, and ion-exchange synthesis. During the potassium storage process, the two-dimensional layered MSs follow the intercalation/extraction mechanism, and the MSs with inactive metal undergo the conversion reaction, whereas the metal-active MSs follow the conversion-alloying reaction mechanism. Given the inherent properties of MSs and the reactions they undergo during cycling, when used as anodes for PIBs, such materials experience a series of problems, including poor ion-/electron-transport kinetics, structural instability, and loss of active material caused by the dissolution of discharged polysulfide products and the occurrence of side reactions. These problems can be solved by optimizing the methods for synthesizing MSs with an ideal composition and structure. The template method can precisely prepare porous or hollow-structured materials, the hydro/solvothermal method can alter the thickness or size of the material by adjusting certain synthesis parameters, and the one-dimensional-structured material obtained via electrospinning often has a large specific surface area, all of which can shorten the transport pathway for potassium ions, thereby improving the performance of the battery. The ion-exchange method affords difficult-to-synthesize MSs via anion- or cation-exchange, in which the product inherits the structure of the starting material. The solid-phase synthesis method makes it possible to combine MSs with other materials. Combinations with materials such as carbon or other MSs helps to provide sufficient buffer space for the volume expansion of MSs during cycling, while promoting electron transport and improving the potassium-storage properties of the anodes. Therefore, this review aims to highlight the current defects of MS anodes and explore the construction of their ideal architecture for high-performance PIBs by optimizing the synthesis methods. Ultimately, we propose the possible future advancement of MSs for PIBs.
  • 加载中
    1. [1]

      Wang, Y.; Liu, Z.; Wang, C.; Yi, X.; Chen, R.; Ma, L.; Hu, Y.; Zhu, G.; Chen, T.; Tie, Z.; Ma, J.; Liu, J.; Jin, Z. Adv. Mater. 2018, 30 (32), 1802563. doi: 10.1002/adma.201802563  doi: 10.1002/adma.201802563

    2. [2]

      Xue, X.; Chen, R.; Yan, C.; Zhao, P.; Hu, Y.; Kong, W.; Lin, H.; Wang, L.; Jin, Z. Adv. Energy Mater. 2019, 9 (22), 1900145. doi: 10.1002/aenm.201900145  doi: 10.1002/aenm.201900145

    3. [3]

      Zhou, J.; Shen, D.; Yu, X.; Lu, B. J. Energy Chem. 2022, 69, 100. doi: 10.1016/j.jechem.2021.10.001  doi: 10.1016/j.jechem.2021.10.001

    4. [4]

      Zhao, M.; Zhu, L.; Fu, B.; Jiang, S.; Zhou, Y.; Song, Y. Acta Phys. -Chim. Sin. 2019, 35 (2), 193.  doi: 10.3866/PKU.WHXB201801241

    5. [5]

      Liu, Y.; Sun, Z.; Tan, K.; Denis, D. K.; Sun, J.; Liang, L.; Hou, L.; Yuan, C. J. Mater. Chem. A 2019, 7 (9), 4353. doi: 10.1039/c8ta10258a  doi: 10.1039/c8ta10258a

    6. [6]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. -L.; Hu, N. -T.; Wei, L. -M.; Wei, H. Acta Phys. -Chim. Sin. 2017, 33, 2339.  doi: 10.3866/PKU.WHXB201706021

    7. [7]

      Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e  doi: 10.1039/c7cs00863e

    8. [8]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. -X.; Huang, Y. -H. Acta Phys. -Chim. Sin. 2016, 32 (5), 1062.  doi: 10.3866/PKU.WHXB201603231

    9. [9]

      Ge, J.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. Nat. Sustain. 2022, 5 (3), 225. doi: 10.1038/s41893-021-00810-7  doi: 10.1038/s41893-021-00810-7

    10. [10]

      Fan, L.; Hu, Y.; Rao, A. M.; Zhou, J.; Hou, Z.; Wang, C.; Lu, B. Small Methods 2021, 5 (12), 2101131. doi: 10.1002/smtd.202101131  doi: 10.1002/smtd.202101131

    11. [11]

      Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Angew. Chem. Int. Ed. 2019, 58 (31), 10500. doi: 10.1002/anie.201904258  doi: 10.1002/anie.201904258

    12. [12]

      Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Chem. Rev. 2020, 120 (14), 6358. doi: 10.1021/acs.chemrev.9b00463  doi: 10.1021/acs.chemrev.9b00463

    13. [13]

      Ji, B.; Yao, W.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Tunmee, S.; Sattayaporn, S.; Cheng, H. M.; He, H.; Tang, Y. Nat. Commun. 2020, 11 (1), 1225. doi: 10.1038/s41467-020-15044-y  doi: 10.1038/s41467-020-15044-y

    14. [14]

      Liu, Y.; Lu, Y. -X.; Xu, Y. -S.; Meng, Q. -S.; Gao, J. -C.; Sun, Y. -G.; Hu, Y. -S.; Chang, B. -B.; Liu, C. -T.; Cao, A. -M. Adv. Mater. 2020, 32 (17), 2000505. doi: 10.1002/adma.202000505  doi: 10.1002/adma.202000505

    15. [15]

      Wang, J.; Yin, B.; Gao, T.; Wang, X.; Li, W.; Hong, X.; Wang, Z.; He, H. Acta Phys. -Chim. Sin. 2022, 38 (2), 2012088.  doi: 10.3866/PKU.WHXB202012088

    16. [16]

      Ma, L.; Lv, Y.; Wu, J.; Xia, C.; Kang, Q.; Zhang, Y.; Liang, H.; Jin, Z. Nano Res. 2021, 14 (12), 4442. doi: 10.1007/s12274-021-3439-3  doi: 10.1007/s12274-021-3439-3

    17. [17]

      Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez‐Garcia, J.; Ceder, G. Adv. Energy Mater. 2017, 8 (9), 1702384. doi: 10.1002/aenm.201702384  doi: 10.1002/aenm.201702384

    18. [18]

      Liu, X.; Niu, Z.; Xu, Y.; Zhao, Z.; Li, C.; Yi, Y.; Guan, H.; Zhang, S.; Pei, X.; Li, D. Chem. Eng. J. 2022, 430, 133176. doi: 10.1016/j.cej.2021.133176  doi: 10.1016/j.cej.2021.133176

    19. [19]

      Zhang, H.; Cheng, Y.; Zhang, Q.; Ye, W.; Yu, X.; Wang, M. S. ACS Nano 2021, 15 (6), 10107. doi: 10.1021/acsnano.1c01918  doi: 10.1021/acsnano.1c01918

    20. [20]

      Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C. F. Angew. Chem. Int. Ed. 2019, 58 (46), 16474. doi: 10.1002/anie.201909202  doi: 10.1002/anie.201909202

    21. [21]

      Ahmed, S. M.; Suo, G.; Wang, W. A.; Xi, K.; Iqbal, S. B. J. Energy Chem. 2021, 62, 307. doi: 10.1016/j.jechem.2021.03.032  doi: 10.1016/j.jechem.2021.03.032

    22. [22]

      Liu, S.; Kang, L.; Henzie, J.; Zhang, J.; Ha, J.; Amin, M. A.; Hossain, M. S. A.; Jun, S. C.; Yamauchi, Y. ACS Nano 2021, 15 (12), 18931. doi: 10.1021/acsnano.1c08428  doi: 10.1021/acsnano.1c08428

    23. [23]

      Wu, X.; Qiu, S.; Liu, Y.; Xu, Y.; Jian, Z.; Yang, J.; Ji, X.; Liu, J. Adv. Mater. 2022, 34, 2106876. doi: 10.1002/adma.202106876  doi: 10.1002/adma.202106876

    24. [24]

      Xu, Y. -S.; Duan, S. -Y.; Sun, Y. -G.; Bin, D. -S.; Tao, X. -S.; Zhang, D.; Liu, Y.; Cao, A. -M.; Wan, L. -J. J. Mater. Chem. A 2019, 7 (9), 4334. doi: 10.1039/c8ta10953b  doi: 10.1039/c8ta10953b

    25. [25]

      Adams, R. A.; Varma, A.; Pol, V. G. Adv. Energy Mater. 2019, 9 (35), 1900550. doi: 10.1002/aenm.201900550  doi: 10.1002/aenm.201900550

    26. [26]

      Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M. -M.; Hu, Y. -S. Chem. Soc. Rev. 2019, 48 (17), 4655. doi: 10.1039/c9cs00162j  doi: 10.1039/c9cs00162j

    27. [27]

      Liu, S.; Shao, L.; Zhang, X.; Tao, Z.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    28. [28]

      Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Acc. Chem. Res. 2016, 49 (2), 231. doi: 10.1021/acs.accounts.5b00482  doi: 10.1021/acs.accounts.5b00482

    29. [29]

      Liang, S.; Shi, H.; Yu, Z.; Liu, Q.; Cai, K.; Wang, J.; Xu, Z. Energy Storage Mater. 2021, 34, 536. doi: 10.1016/j.ensm.2020.10.017  doi: 10.1016/j.ensm.2020.10.017

    30. [30]

      Wang, N.; Chu, C.; Xu, X.; Du, Y.; Yang, J.; Bai, Z.; Dou, S. Adv. Energy Mater. 2018, 8 (27), 1801888. doi: 10.1002/aenm.201801888  doi: 10.1002/aenm.201801888

    31. [31]

      Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Small 2021, 17 (9), 1903194. doi: 10.1002/smll.201903194  doi: 10.1002/smll.201903194

    32. [32]

      Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Adv. Funct. Mater. 2018, 28 (5), 1703857. doi: 10.1002/adfm.201703857  doi: 10.1002/adfm.201703857

    33. [33]

      Fang, L.; Bahlawane, N.; Sun, W.; Pan, H.; Xu, B. B.; Yan, M.; Jiang, Y. Small 2021, 17 (37), 2101137. doi: 10.1002/smll.202101137  doi: 10.1002/smll.202101137

    34. [34]

      Zhang, H.; Hasa, I.; Passerini, S. Adv. Energy Mater. 2018, 8 (17), 1702582. doi: 10.1002/aenm.201702582  doi: 10.1002/aenm.201702582

    35. [35]

      Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Adv. Mater. 2010, 22 (35), E170. doi: 10.1002/adma.201000717  doi: 10.1002/adma.201000717

    36. [36]

      Cao, K.; Zheng, R.; Wang, S.; Shu, J.; Liu, X.; Liu, H.; Huang, K. J.; Jing, Q. S.; Jiao, L. Adv. Funct. Mater. 2020, 30 (52), 2007712. doi: 10.1002/adfm.202007712  doi: 10.1002/adfm.202007712

    37. [37]

      Wang, L.; Swiatowska, J.; Dai, S.; Cao, M.; Zhong, Z.; Shen, Y.; Wang, M. Mater. Today Energy 2019, 11, 46. doi: 10.1016/j.mtener.2018.10.017  doi: 10.1016/j.mtener.2018.10.017

    38. [38]

      Deng, W.; Chen, J.; Yang, L.; Liang, X.; Yin, S.; Deng, X.; Zou, G.; Hou, H.; Ji, X. Small 2021, 17 (35), 2101058. doi: 10.1002/smll.202101058  doi: 10.1002/smll.202101058

    39. [39]

      Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Chem. Soc. Rev. 2013, 42 (7), 2986. doi: 10.1039/c2cs35310e  doi: 10.1039/c2cs35310e

    40. [40]

      Yin, J.; Jin, J.; Lin, H.; Yin, Z.; Li, J.; Lu, M.; Guo, L.; Xi, P.; Tang, Y.; Yan, C. H. Adv. Sci. 2020, 7 (10), 1903070. doi: 10.1002/advs.201903070  doi: 10.1002/advs.201903070

    41. [41]

      Zhou, J.; Liu, Y.; Zhang, S.; Zhou, T.; Guo, Z. InfoMat. 2020, 2 (3), 437. doi: 10.1002/inf2.12101  doi: 10.1002/inf2.12101

    42. [42]

      Wang, H. X., Y. -Y.; Zhou, J. -Z.; Lin, Z. -H. Acta Phys. -Chim. Sin. 2012, 28, 1398.

    43. [43]

      Tian, A. -H.; Wei, W.; Qu, P.; Xia, Q. -P.; Shen, Q. Acta Phys. -Chim. Sin. 2017, 33, 1621.  doi: 10.3866/PKU.WHXB201704191

    44. [44]

      Dai, M.; Wang, R. Small 2021, 17 (29), 2006813. doi: 10.1002/smll.202006813  doi: 10.1002/smll.202006813

    45. [45]

      Chen, J.; Chua, D. H. C.; Lee, P. S. Small Methods 2020, 4 (1), 1900648. doi: 10.1002/smtd.201900648  doi: 10.1002/smtd.201900648

    46. [46]

      Zhang, Y.; Zhou, Q.; Zhu, J.; Yan, Q.; Dou, S. X.; Sun, W. Adv. Funct. Mater. 2017, 27 (35), 1702317. doi: 10.1002/adfm.201702317  doi: 10.1002/adfm.201702317

    47. [47]

      Tan, H.; Feng, Y.; Rui, X.; Yu, Y.; Huang, S. Small Methods 2020, 4 (1), 1900563. doi: 10.1002/smtd.201900563  doi: 10.1002/smtd.201900563

    48. [48]

      Pan, Q.; Tong, Z.; Su, Y.; Qin, S.; Tang, Y. Adv. Funct. Mater. 2021, 31 (37), 2103912. doi: 10.1002/adfm.202103912  doi: 10.1002/adfm.202103912

    49. [49]

      Cheng, Q.; Yu, X. J. Mater. Chem. A 2021, 9, 11381. doi: 10.1039/D1TA01768C  doi: 10.1039/D1TA01768C

    50. [50]

      Xu, Q. -T.; Li, J. -C.; Xue, H. -G.; Guo, S. -P. J. Power Sources 2018, 379, 41. doi: 10.1016/j.jpowsour.2018.01.022  doi: 10.1016/j.jpowsour.2018.01.022

    51. [51]

      Min, Y.; Im, E.; Hwang, G. -T.; Kim, J. -W.; Ahn, C. -W.; Choi, J. -J.; Hahn, B. -D.; Choi, J. -H.; Yoon, W. -H.; Park, D. -S.; et al. Nano Res. 2019, 12 (8), 1750. doi: 10.1007/s12274-019-2432-6  doi: 10.1007/s12274-019-2432-6

    52. [52]

      Cai, H.; Gu, Y.; Lin, Y. -C.; Yu, Y.; Geohegan, D. B.; Xiao, K. Appl. Phys. Rev. 2019, 6 (4), 041312. doi: 10.1063/1.5123487  doi: 10.1063/1.5123487

    53. [53]

      Deng, Z.; Jiang, H.; Li, C. Small 2018, 14 (22), 1800148. doi: 10.1002/smll.201800148  doi: 10.1002/smll.201800148

    54. [54]

      Li, L.; Zhang, W.; Wang, X.; Zhang, S.; Liu, Y.; Li, M.; Zhu, G.; Zheng, Y.; Zhang, Q.; Zhou, T.; et al. ACS Nano 2019, 13 (7), 7939. doi: 10.1021/acsnano.9b02384  doi: 10.1021/acsnano.9b02384

    55. [55]

      Chen, X.; Cheng, N.; Ding, Y. -L.; Liu, Z. Carbon 2022, 904, 115852. doi: 10.1016/j.jelechem.2021.115852  doi: 10.1016/j.jelechem.2021.115852

    56. [56]

      Huang, H.; Etogo, C. A.; Chen, C.; Bi, R.; Zhang, L. ACS Appl. Mater. Interfaces 2021, 13 (31), 36982. doi: 10.1021/acsami.1c05563  doi: 10.1021/acsami.1c05563

    57. [57]

      Peng, Q.; Zhang, S.; Yang, H.; Sheng, B.; Xu, R.; Wang, Q.; Yu, Y. ACS Nano 2020, 14 (5), 6024. doi: 10.1021/acsnano.0c01681  doi: 10.1021/acsnano.0c01681

    58. [58]

      Yang, M.; Su, D.; Zhang, W.; Wen, J.; Liu, W.; Luo, Q.; Liu, L.; Wang, X. Electrochim. Acta 2021, 400, 139461. doi: 10.1016/j.electacta.2021.139461  doi: 10.1016/j.electacta.2021.139461

    59. [59]

      Yu, Q.; Wang, B.; Hu, J.; Suo, G.; Wang, Q.; Mei, H.; Xi, K.; Lu, S.; Wang, W.; Zhang, J. J. Power Sources 2021, 506, 230117. doi: 10.1016/j.jpowsour.2021.230117  doi: 10.1016/j.jpowsour.2021.230117

    60. [60]

      Zhang, C.; Han, F.; Wang, F.; Liu, Q.; Zhou, D.; Zhang, F.; Xu, S.; Fan, C.; Li, X.; Liu, J. Energy Storage Mater. 2020, 24, 208. doi: 10.1016/j.ensm.2019.08.018  doi: 10.1016/j.ensm.2019.08.018

    61. [61]

      Cao, K.; Wang, S.; Jia, Y.; Xu, D.; Liu, H.; Huang, K. -J.; Jing, Q. -S.; Jiao, L. Chem. Eng. J. 2021, 406, 126902. doi: 10.1016/j.cej.2020.126902  doi: 10.1016/j.cej.2020.126902

    62. [62]

      Lakshmi, V.; Mikhaylov, A. A.; Medvedev, A. G.; Zhang, C.; Ramireddy, T.; Rahman, M. M.; Cizek, P.; Golberg, D.; Chen, Y.; Lev, O. J. Mater. Chem. A 2020, 8 (22), 11424. doi: 10.1039/d0ta03555f  doi: 10.1039/d0ta03555f

    63. [63]

      Li, D.; Dai, L.; Ren, X.; Ji, F.; Sun, Q.; Zhang, Y.; Ci, L. Energy Environ. Sci. 2021, 14 (1), 424. doi: 10.1039/d0ee02919j  doi: 10.1039/d0ee02919j

    64. [64]

      Sun, Q.; Li, D.; Dai, L.; Liang, Z.; Ci, L. Small 2020, 16 (45), 2005023. doi: 10.1002/smll.202005023  doi: 10.1002/smll.202005023

    65. [65]

      Wang, T.; Shen, D.; Liu, H.; Chen, H.; Liu, Q.; Lu, B. ACS Appl. Mater. Interfaces 2020, 12 (52), 57907. doi: 10.1021/acsami.0c18285  doi: 10.1021/acsami.0c18285

    66. [66]

      Qin, G. L., Y.; Han, P.; Wang, L.; Liu, F.; Ma, J. Adv. Funct. Mater. 2020, 30, 2005080. doi: 10.1002/adfm.202005080  doi: 10.1002/adfm.202005080

    67. [67]

      Zhang, W.; Liu, Y.; Guo, Z. Sci. Adv. 2019, 5, eaav7412. doi: 10.1126/sciadv.aav7412  doi: 10.1126/sciadv.aav7412

    68. [68]

      Lu, Y.; Saroja, A. P. V. K.; Wei, R.; Xu, Y. Cell Rep. Phys. Sci. 2021, 2 (9), 100555. doi: 10.1016/j.xcrp.2021.100555  doi: 10.1016/j.xcrp.2021.100555

    69. [69]

      Han, M.; Zhou, Z.; Li, Y.; Chen, Q.; Chen, M. ChemElectroChem 2021, 8 (23), 4412. doi: 10.1002/celc.202100735  doi: 10.1002/celc.202100735

    70. [70]

      Min, X.; Xiao, J.; Fang, M.; Wang, W.; Zhao, Y.; Liu, Y.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. Energy Environ. Sci. 2021, 14 (4), 2186. doi: 10.1039/d0ee02917c  doi: 10.1039/d0ee02917c

    71. [71]

      Wu, Y.; Zhang, C.; Zhao, H.; Lei, Y. J. Mater. Chem. A 2021, 9 (15), 9506. doi: 10.1039/d1ta00831e  doi: 10.1039/d1ta00831e

    72. [72]

      Zhao, Z.; Hu, Z.; Jiao, R.; Tang, Z.; Dong, P.; Li, Y.; Li, S.; Li, H. Energy Storage Mater. 2019, 22, 228. doi: 10.1016/j.ensm.2019.01.022  doi: 10.1016/j.ensm.2019.01.022

    73. [73]

      Han, K.; Meng, J.; Hong, X.; Wang, X.; Mai, L. Nanoscale 2020, 12 (15), 8255. doi: 10.1039/d0nr01274b  doi: 10.1039/d0nr01274b

    74. [74]

      Yao, Q.; Zhang, J.; Shi, X.; Deng, B.; Hou, K.; Zhao, Y.; Guan, L. Electrochim. Acta 2019, 307, 118. doi: 10.1016/j.electacta.2019.03.184  doi: 10.1016/j.electacta.2019.03.184

    75. [75]

      Zheng, N.; Jiang, G.; Chen, X.; Mao, J.; Zhou, Y.; Li, Y. J. Mater. Chem. A 2019, 7 (15), 9305. doi: 10.1039/c9ta00423h  doi: 10.1039/c9ta00423h

    76. [76]

      Li, D.; Sun, Q.; Zhang, Y.; Chen, L.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. ChemSusChem 2019, 12 (12), 2689. doi: 10.1002/cssc.201900719  doi: 10.1002/cssc.201900719

    77. [77]

      Chen, B.; Ding, J.; Bai, X.; Zhang, H.; Liang, M.; Zhu, S.; Shi, C.; Ma, L.; Liu, E.; Zhao, N.; He, F.; Zhou, W.; He, C. Adv. Funct. Mater. 2021, 32 (14), 2109899. doi: 10.1002/adfm.202109899  doi: 10.1002/adfm.202109899

    78. [78]

      Gao, H.; Zhou, T.; Zheng, Y.; Zhang, Q.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z. Adv. Funct. Mater. 2017, 27 (43), 1702634. doi: 10.1002/adfm.201702634  doi: 10.1002/adfm.201702634

    79. [79]

      Han, K.; An, F.; Wan, Q.; Xing, L.; Wang, L.; Liu, Q.; Wang, W. A.; Liu, Y.; Li, P.; Qu, X., Small 2021, 17 (12), 2006719. doi: 10.1002/smll.202006719  doi: 10.1002/smll.202006719

    80. [80]

      Shi, X.; Gan, Y.; Zhang, Q.; Wang, C.; Zhao, Y.; Guan, L.; Huang, W. Adv. Mater. 2021, 33 (33), 2100837. doi: 10.1002/adma.202100837  doi: 10.1002/adma.202100837

    81. [81]

      Zeng, X.; Tong, H.; Chen, S.; Lu, J.; Wang, C.; Tu, J.; Wang, P.; Chen, Q. Chin. J. Chem. 2022, 40, 1313. doi: 10.1002/cjoc.202100936  doi: 10.1002/cjoc.202100936

    82. [82]

      Zhang, S.; Ling, F.; Wang, L.; Xu, R.; Ma, M.; Cheng, X.; Bai, R.; Shao, Y.; Huang, H.; Li, D.; et al. Adv. Mater. 2022, 34 (18), 2201420. doi: 10.1002/adma.202201420  doi: 10.1002/adma.202201420

    83. [83]

      Chu, J.; Wang, W. A.; Feng, J.; Lao, C. -Y.; Xi, K.; Xing, L.; Han, K.; Li, Q.; Song, L.; Li, P.; Li, X.; Bao, Y. ACS Nano 2019, 13 (6), 6906. doi: 10.1021/acsnano.9b01773  doi: 10.1021/acsnano.9b01773

    84. [84]

      Lu, J.; Tong, H.; Chen, S.; Wang, C.; Zeng, X.; Tu, J.; Chen, Q. ACS Appl. Mater. Interfaces 2021, 13 (45), 54308. doi: 10.1021/acsami.1c17256  doi: 10.1021/acsami.1c17256

    85. [85]

      Wang, C.; Lu, J.; Tong, H.; Wu, S.; Wang, D.; Liu, B.; Cheng, L.; Lin, Z.; Hu, L.; Wang, H.; et al. Nano Res. 2021, 14 (10), 3545. doi: 10.1007/s12274-021-3560-3  doi: 10.1007/s12274-021-3560-3

    86. [86]

      Xu, Y.; Sun, J.; He, Y.; Li, J.; Xu, J.; Sun, Y.; Liao, J.; Zhou, X. Sci. China Chem. 2021, 64 (8), 1401. doi: 10.1007/s11426-021-1057-3  doi: 10.1007/s11426-021-1057-3

    87. [87]

      Xiao, X.; Zou, L.; Pang, H.; Xu, Q. Chem. Soc. Rev. 2020, 49 (1), 301. doi: 10.1039/c7cs00614d  doi: 10.1039/c7cs00614d

    88. [88]

      Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Nano-Micro Lett. 2021, 13 (1), 203. doi: 10.1007/s40820-021-00726-z  doi: 10.1007/s40820-021-00726-z

    89. [89]

      Yang, L.; Hong, W.; Zhang, Y. Tian, Y.; Gao, X.; Zhu, Y.; Zou, G.; Hou, H.; Ji, X. Adv. Funct. Mater. 2019, 29 (50), 1903454. doi: 10.1002/adfm.201903454  doi: 10.1002/adfm.201903454

    90. [90]

      Han, Y.; Li, W.; Zhou, K.; Wu, X.; Wu, H.; Wu, X.; Shi, Q.; Diao, G.; Chen, M. ChemNanoMat 2019, 6 (1), 132. doi: 10.1002/cnma.201900601  doi: 10.1002/cnma.201900601

    91. [91]

      Wang, C.; Yang, Q.; Qin, G.; Xiao, Y.; Duan, J. Nanoscale 2020, 12 (19), 10532. doi: 10.1039/d0nr00033g  doi: 10.1039/d0nr00033g

    92. [92]

      Xie, J.; Li, X.; Lai, H.; Zhao, Z.; Li, J.; Zhang, W.; Xie, W.; Liu, Y.; Mai, W. Angew. Chem. Int. Ed. 2019, 58 (41), 14740. doi: 10.1002/anie.201908542  doi: 10.1002/anie.201908542

    93. [93]

      Luo, W.; Feng, Y.; Shen, D.; Zhou, J.; Gao, C.; Lu, B. ACS Appl. Mater. Interfaces 2022, 14 (14), 16379. doi: 10.1021/acsami.2c02679  doi: 10.1021/acsami.2c02679

    94. [94]

      Hu, J.; Wang, B.; Yu, Q.; Zhang, Y.; Zhang, D.; Li, Y.; Wang, W. J. Mater. Sci. 2020, 55 (31), 15213. doi: 10.1007/s10853-020-04886-y  doi: 10.1007/s10853-020-04886-y

    95. [95]

      Xu, Y.; Bahmani, F.; Wei, R. Microsyst. Nanoeng. 2020, 6, 75. doi: 10.1038/s41378-020-00188-0  doi: 10.1038/s41378-020-00188-0

    96. [96]

      Wu, Y.; Xu, R.; Wang, Z.; Hao, X.; Zhang, C.; Zhao, H.; Li, W.; Wang, S.; Dong, Y.; Huang, Z.; et al. ACS Appl. Mater. Interfaces 2021, 13 (46), 55218. doi: 10.1021/acsami.1c17799  doi: 10.1021/acsami.1c17799

    97. [97]

      Guo, J.; Sun, X.; Shen, K.; Li, X.; Zhang, N.; Hou, T.; Fan, A.; Jin, S.; Hu, X.; Li, T.; et al. Chem. Eng. J. 2020, 393, 124703. doi: 10.1016/j.cej.2020.124703  doi: 10.1016/j.cej.2020.124703

    98. [98]

      Ma, G.; Xu, X.; Feng, Z.; Hu, C.; Zhu, Y.; Yang, X.; Yang, J.; Qian, Y. Nano Res. 2020, 13 (3), 802. doi: 10.1007/s12274-020-2699-7  doi: 10.1007/s12274-020-2699-7

    99. [99]

      Cao, L.; Zhang, B.; Ou, X.; Wang, C.; Peng, C.; Zhang, J. ChemElectroChem 2019, 6 (8), 2254. doi: 10.1002/celc.201900346  doi: 10.1002/celc.201900346

    100. [100]

      Cao, L.; Luo, B.; Xu, B.; Zhang, J.; Wang, C.; Xiao, Z.; Li, S.; Li, Y.; Zhang, B.; Zou, G.; et al. Adv. Funct. Mater. 2021, 31 (36), 2103802. doi: 10.1002/adfm.202103802  doi: 10.1002/adfm.202103802

    101. [101]

      Iqbal, S.; Wang, L.; Kong, Z.; Zhai, Y.; Sun, X.; Wang, F.; Jing, Z.; He, X.; Dou, J.; Xu, L. ACS Appl. Mater. Interfaces 2022, 14 (13), 15324. doi: 10.1021/acsami.2c02409  doi: 10.1021/acsami.2c02409

    102. [102]

      Liu, Y.; Xiao, Y.; Liu, F.; Han, P.; Qin, G. J. Mater. Chem. A 2019, 7 (47), 26818. doi: 10.1039/c9ta09919k  doi: 10.1039/c9ta09919k

    103. [103]

      Suo, G.; Ahmed, S. M.; Cheng, Y.; Zhang, J.; Li, Z.; Hou, X.; Yang, Y.; Ye, X.; Feng, L.; Zhang, L.; et al. J. Colloid. Interface Sci. 2022, 608, 275. doi: 10.1016/j.jcis.2021.09.137  doi: 10.1016/j.jcis.2021.09.137

    104. [104]

      Cao, Y.; Chen, H.; Shen, Y.; Chen, M.; Zhang, Y.; Zhang, L.; Wang, Q.; Guo, S.; Yang, H. ACS Appl. Mater. Interfaces 2021, 13 (15), 17668. doi: 10.1021/acsami.1c02590  doi: 10.1021/acsami.1c02590

    105. [105]

      Gao, Y.; Ru, Q.; Liu, Y.; Cheng, S.; Wei, L.; Ling, F. C. -C.; Chen, F.; Hou, X. ChemElectroChem 2019, 6 (17), 4689. doi: 10.1002/celc.201901166  doi: 10.1002/celc.201901166

    106. [106]

      Sadan, M. K.; Kim, H.; Kim, C.; Cho, G. B.; Cho, K. K.; Ahn, J. H.; Ahn, H. J. Nanoscale 2021, 13 (23), 10447. doi: 10.1039/d1nr02133h  doi: 10.1039/d1nr02133h

    107. [107]

      Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Adv. Mater. 2001, 13 (1), 70. doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO;2-8  doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO;2-8

    108. [108]

      Liu, S.; Zhang, H. Zhou, M.; Chen, X.; Sun, Y.; Zhang, Y. J. Electroanal. Chem. 2021, 903, 115841. doi: 10.1016/j.jelechem.2021.115841  doi: 10.1016/j.jelechem.2021.115841

    109. [109]

      Zhang, W.; Chen, J.; Liu, Y.; Liu, S.; Li, X.; Yang, K.; Li, L. J. Alloys Compd. 2020, 823, 153631. doi: 10.1016/j.jallcom.2019.153631  doi: 10.1016/j.jallcom.2019.153631

    110. [110]

      Du, Y.; Weng, W.; Zhang, Z.; He, Y.; Xu, J.; Sun, J.; Liao, J.; Bao, J.; Zhou, X. ACS Mater. Lett. 2021, 3 (4), 356. doi: 10.1021/acsmaterialslett.1c00129  doi: 10.1021/acsmaterialslett.1c00129

    111. [111]

      Li, X.; Liu, Y.; Lin, C.; Wang, Y.; Lei, Z.; Xiong, P.; Luo, Y.; Chen, Q.; Zeng, L.; Wei, M.; Qian, Q. Chem. Eur. J. 2022, 28 (21), e202200028. doi: 10.1002/chem.202200028  doi: 10.1002/chem.202200028

  • 加载中
    1. [1]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    2. [2]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    3. [3]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    4. [4]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    5. [5]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    6. [6]

      Renyuan WangLei KeHouxiang WangYueheng TaoYujie CuiPeipei ZhangMinjie ShiXingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    9. [9]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    10. [10]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    11. [11]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    12. [12]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    16. [16]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    17. [17]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    18. [18]

      Mengyu WuKewei RenChengyu ZouJiacheng ChenRui MaChuan ZhuChao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213

    19. [19]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(100)
  • Abstract views(1840)
  • HTML views(398)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return