Citation: Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220500. doi: 10.3866/PKU.WHXB202205005 shu

Fluorinated Solvents for Lithium Metal Batteries

  • Corresponding author: Shuhong Jiao, jiaosh@ustc.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 3 May 2022
    Revised Date: 26 May 2022
    Accepted Date: 27 May 2022
    Available Online: 6 June 2022

    Fund Project: the National Key Research and Development Program of China 2017YFA206703the National Natural Science Foundation of China 51902304the National Natural Science Foundation of China 52072358the National Natural Science Foundation of China U21A2082the Anhui Provincial Natural Science Foundation, China 1908085ME122the Fundamental Research Funds for the Central Universities, China WK2060140026

  • Lithium metal batteries, which use lithium metal as the anode, have attracted tremendous research interest in recent years, owing to their high energy density and potential for future energy storage applications. Despite their advantages such as high energy density, the safety concerns and short lifespan significantly impede their practical applications in transportation and electronic devices. Tremendous efforts have been devoted to overcoming these problems, including materials design, interface modification, and electrolyte engineering. Among these strategies, electrolyte regulation plays a key role in improving the efficiency, stability, and safety of lithium metal anodes. As an important class of electrolyte components, fluorinated solvents, which can decompose to form LiF-rich interphase layers on both anode and cathode, have been proven to enhance the stability of lithium metal anodes and improve the oxidative stability of the electrolytes. Meanwhile, the spatial structure of fluorinated solvents, such as the number and sites of fluorine atoms, can influence the physicochemical properties of the electrolytes and the compositions/structure of the solid-electrolyte interphase, which eventually dictates the cycling performance of Li metal batteries. Recently, many fluorinated solvents with different molecular structures have been designed to regulate the solvation structure of electrolytes, and these solvents exhibit novel electrochemical properties in lithium metal batteries. However, there are few comprehensive reviews that summarize the fluorinated solvents used in Li metal batteries and discuss their functions in electrolytes and their physicochemical properties. This review summarizes the novel fluorinated solvents used in lithium metal batteries in recent years, which have been classified into three parts: diluents, traditional solvents, and novel molecules, based on their functions in the electrolytes. In every part, the understanding of the interactions between fluorinated solvents and Li ions, the decomposition mechanism of fluorinated solvents at the interface of the electrode, the functions of fluorinated solvents in the electrolytes, and the structure-activity relationship between the fluorinated solvents and battery performance have been comprehensively summarized and discussed. Moreover, the advantages and disadvantages of fluorinated solvents have been discussed, and the importance of precisely controlling the number of fluorine atoms and the structure of fluorinated solvents has been emphasized. At the end of this review, a perspective for designing new fluorinated solvents has been proposed. We believe that this review can provide insights on designing novel fluorinated solvents for high-performance Li metal batteries.
  • 加载中
    1. [1]

      Evarts, E. C. Nature 2015, 526, S93. doi: 10.1038/526S93a  doi: 10.1038/526S93a

    2. [2]

      Winter, M.; Barnett, B.; Xu, K. Chem. Rev. 2018, 118, 11433. doi: 10.1021/acs.chemrev.8b00422  doi: 10.1021/acs.chemrev.8b00422

    3. [3]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/Nenergy.2016.141  doi: 10.1038/Nenergy.2016.141

    4. [4]

      Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    5. [5]

      Huang, F. Y.; Jie, Y. L.; Li, X. P.; Chen, Y. W.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Acta Phys. -Chim. Sin. 2021, 37, 2008081.  doi: 10.3866/PKU.WHXB202008081

    6. [6]

      Niu, C. J.; Pan, H. L.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L. L.; Wang, C. M.; Mei, D. H.; Meng, J. S.; Wang, X. P.; et al. Nat. Nanotechnol. 2019, 14, 594. doi: 10.1038/s41565-019-0427-9  doi: 10.1038/s41565-019-0427-9

    7. [7]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    8. [8]

      Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Small Structures 2021, 2, 2100009. doi: 10.1002/sstr.202100009  doi: 10.1002/sstr.202100009

    9. [9]

      Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Chem. Rev. 2020, 120, 13312. doi: 10.1021/acs.chemrev.0c00275  doi: 10.1021/acs.chemrev.0c00275

    10. [10]

      Jiao, S. H.; Zheng, J. M.; Li, Q. Y.; Li, X.; Engelhard, M. H.; Cao, R. G.; Zhang, J. G.; Xu, W. Joule 2018, 2, 110. doi: 10.1016/j.joule.2017.10.007  doi: 10.1016/j.joule.2017.10.007

    11. [11]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y., Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    12. [12]

      Chen, C. -Y.; Tsuda, T.; Oshima, Y.; Kuwabata, S. Small Structures 2021, 2, 2100018. doi: 10.1002/sstr.202100018  doi: 10.1002/sstr.202100018

    13. [13]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    14. [14]

      Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z  doi: 10.1038/s41586-019-1481-z

    15. [15]

      Ding, J. F.; Xu, R.; Ma, X. X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Huang, J. Q. Angew. Chem. Int. Ed. 2022, 61, e2021156. doi: 10.1002/anie.202115602  doi: 10.1002/anie.202115602

    16. [16]

      Li, W. D.; Song, B. H.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E  doi: 10.1039/C6CS00875E

    17. [17]

      Wang, Y.; Liu, Y.; Tu, Y.; Wang, Q. J. Phys. Chem. C 2020, 124, 9099. doi: 10.1021/acs.jpcc.9b10535  doi: 10.1021/acs.jpcc.9b10535

    18. [18]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    19. [19]

      Manthiram, A. Nat. Commun. 2020, 11, 1550. doi: 10.1038/s41467-020-15355-0  doi: 10.1038/s41467-020-15355-0

    20. [20]

      Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J.; et al. Adv. Energy Mater. 2021, 11, 2000982. doi: 10.1002/aenm.202000982  doi: 10.1002/aenm.202000982

    21. [21]

      Asl, H. Y.; Manthiram, A. Science 2020, 369, 140. doi: 10.1126/science.abc5454  doi: 10.1126/science.abc5454

    22. [22]

      Yu, Z.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y. C.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S.; et al. Nat. Energy 2020, 5, 526. doi: 10.1038/s41560-020-0634-5  doi: 10.1038/s41560-020-0634-5

    23. [23]

      Yu, Z.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X.; et al. Nat. Energy 2022, 7, 94. doi: 10.1038/s41560-021-00962-y  doi: 10.1038/s41560-021-00962-y

    24. [24]

      Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martinez, L. M.; Armand, M. Angew. Chem. Int. Ed. 2018, 57, 15002. doi: 10.1002/anie.201712702  doi: 10.1002/anie.201712702

    25. [25]

      Lee, S. H.; Hwang, J. Y.; Ming, J.; Cao, Z.; Nguyen, H. A.; Jung, H. G.; Kim, J.; Sun, Y. K. Adv. Energy Mater. 2020, 10, 2000567. doi: 10.1002/aenm.202000567  doi: 10.1002/aenm.202000567

    26. [26]

      Zhang, S.; Yang, G.; Liu, Z.; Li, X.; Wang, X.; Chen, R.; Wu, F.; Wang, Z.; Chen, L. Nano Lett. 2021, 21, 3310. doi: 10.1021/acs.nanolett.1c00848  doi: 10.1021/acs.nanolett.1c00848

    27. [27]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3, 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    28. [28]

      Pham, T. D.; Bin Faheem, A.; Chun, S. Y.; Rho, J. R.; Kwak, K.; Lee, K. K. Adv. Energy Mater. 2021, 11, 2003520. doi: 10.1002/aenm.202003520  doi: 10.1002/aenm.202003520

    29. [29]

      Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2  doi: 10.1038/s41565-018-0183-2

    30. [30]

      Cao, X.; Zou, L.; Matthews, B. E.; Zhang, L.; He, X.; Ren, X.; Engelhard, M. H.; Burton, S. D.; El-Khoury, P. Z.; Lim, H. -S.; et al. Energy Stor. Mater. 2021, 34, 76. doi: 10.1016/j.ensm.2020.08.035  doi: 10.1016/j.ensm.2020.08.035

    31. [31]

      He, M.; Hu, L.; Xue, Z.; Su, C. C.; Redfern, P.; Curtiss, L. A.; Polzin, B.; von Cresce, A.; Xu, K.; Zhang, Z. J. Electrochem. Soc. 2015, 162, A1725. doi: 10.1149/2.0231509jes  doi: 10.1149/2.0231509jes

    32. [32]

      Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2, 1337. doi: 10.1021/acsenergylett.7b00163  doi: 10.1021/acsenergylett.7b00163

    33. [33]

      Zhang, X. -Q.; Cheng, X. -B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    34. [34]

      Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806. doi: 10.1039/c3ee24414h  doi: 10.1039/c3ee24414h

    35. [35]

      von Aspern, N.; Roschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Angew. Chem. Int. Ed. 2019, 58, 15978. doi: 10.1002/anie.201901381  doi: 10.1002/anie.201901381

    36. [36]

      Cao, X.; Jia, H.; Xu, W.; Zhang, J. -G. J. Electrochem. Soc. 2021, 168, 010522. doi: 10.1149/1945-7111/abd60e  doi: 10.1149/1945-7111/abd60e

    37. [37]

      Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; et al. Nat. Energy 2021, 6, 495. doi: 10.1038/s41560-021-00792-y  doi: 10.1038/s41560-021-00792-y

    38. [38]

      Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406. doi: 10.1149/2.0041514jes  doi: 10.1149/2.0041514jes

    39. [39]

      Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2008044.  doi: 10.3866/PKU.WHXB202008044

    40. [40]

      Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z  doi: 10.1038/s41560-019-0336-z

    41. [41]

      Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362 (2015  doi: 10.1038/ncomms7362(2015

    42. [42]

      Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Proc. Natl. Acad. Sci. USA 2018, 115, 1156. doi: 10.1073/pnas.1712895115  doi: 10.1073/pnas.1712895115

    43. [43]

      Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C.; et al. ACS Energy Lett. 2019, 4, 896. doi: 10.1021/acsenergylett.9b00381  doi: 10.1021/acsenergylett.9b00381

    44. [44]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032. doi: 10.1038/ncomms12032  doi: 10.1038/ncomms12032

    45. [45]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Nat. Energy 2017, 3, 22. doi: 10.1038/s41560-017-0033-8  doi: 10.1038/s41560-017-0033-8

    46. [46]

      Wang, A. A.; Gunnarsdottir, A. B.; Fawdon, J.; Pasta, M.; Grey, C. P.; Monroe, C. W. ACS Energy Lett. 2021, 6, 3086. doi: 10.1021/acsenergylett.1c01213  doi: 10.1021/acsenergylett.1c01213

    47. [47]

      Jiang, G.; Li, F.; Wang, H.; Wu, M.; Qi, S.; Liu, X.; Yang, S.; Ma, J. Small Structures 2021, 2, 2000122. doi: 10.1002/sstr.202000122  doi: 10.1002/sstr.202000122

    48. [48]

      Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem. 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002  doi: 10.1016/j.chempr.2018.05.002

    49. [49]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, e1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    50. [50]

      Lee, Y.; Lee, T. K.; Kim, S.; Lee, J.; Ahn, Y.; Kim, K.; Ma, H.; Park, G.; Lee, S. -M.; Kwak, S. K.; et al. Nano Energy 2020, 67, 104309. doi: 10.1016/j.nanoen.2019.104309  doi: 10.1016/j.nanoen.2019.104309

    51. [51]

      Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; et al. Joule 2019, 3, 1662. doi: 10.1016/j.joule.2019.05.006  doi: 10.1016/j.joule.2019.05.006

    52. [52]

      Ren, X.; Gao, P.; Zou, L.; Jiao, S.; Cao, X.; Zhang, X.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H.; et al. Proc. Natl. Acad. Sci. USA 2020, 117, 28603. doi: 10.1073/pnas.2010852117  doi: 10.1073/pnas.2010852117

    53. [53]

      Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Angew. Chem. Int. Ed. 2020, 59, 14869. doi: 10.1002/anie.202003663  doi: 10.1002/anie.202003663

    54. [54]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    55. [55]

      Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    56. [56]

      Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C.; et al. Adv. Energy Mater. 2020, 10, 1903568. doi: 10.1002/aenm.201903568  doi: 10.1002/aenm.201903568

    57. [57]

      Cao, X.; Gao, P.; Ren, X.; Zou, L.; Engelhard, M. H.; Matthews, B. E.; Hu, J.; Niu, C.; Liu, D.; Arey, B. W.; et al. Proc. Natl. Acad. Sci. USA 2021, 118, 9. doi: 10.1073/pnas.2020357118  doi: 10.1073/pnas.2020357118

    58. [58]

      Yao, N.; Chen, X.; Shen, X.; Zhang, R.; Fu, Z. H.; Ma, X. X.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 21473. doi: 10.1002/anie.202107657  doi: 10.1002/anie.202107657

    59. [59]

      Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627  doi: 10.1002/anie.202101627

    60. [60]

      Gupta, A.; Manthiram, A. Adv. Energy Mater. 2020, 10, 2001972. doi: 10.1002/aenm.202001972  doi: 10.1002/aenm.202001972

    61. [61]

      Zhao, F. P.; Zhang, S. M.; Li, Y. G.; Sun, X. L. Small Structures 2022, 3, 2100146. doi: 10.1002/sstr.202100146  doi: 10.1002/sstr.202100146

    62. [62]

      Ren, F.; Li, Z.; Chen, J.; Huguet, P.; Peng, Z.; Deabate, S. ACS. Appl. Mater. Interfaces 2022, 14, 4211. doi: 10.1021/acsami.1c21638  doi: 10.1021/acsami.1c21638

    63. [63]

      Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2019, 9, 1902116 doi: 10.1002/aenm.201902116  doi: 10.1002/aenm.201902116

    64. [64]

      Perez Beltran, S.; Cao, X.; Zhang, J. -G.; Balbuena, P. B. Chem. Mater. 2020, 32, 5973. doi: 10.1021/acs.chemmater.0c00987  doi: 10.1021/acs.chemmater.0c00987

    65. [65]

      Perez Beltran, S.; Cao, X.; Zhang, J. -G.; El-Khoury, P. Z.; Balbuena, P. B. J. Mater. Chem. A 2021, 9, 17459. doi: 10.1039/d1ta04737j  doi: 10.1039/d1ta04737j

    66. [66]

      Dong, L.; Liu, Y.; Wen, K.; Chen, D.; Rao, D.; Liu, J.; Yuan, B.; Dong, Y.; Wu, Z.; Liang, Y. et al. Adv. Sci. 2022, 9, e2104699. doi: 10.1002/advs.202104699  doi: 10.1002/advs.202104699

    67. [67]

      Zheng, Y.; Balbuena, P. B. J. Chem. Phys. 2021, 154, 104702. doi: 10.1063/5.0042896  doi: 10.1063/5.0042896

    68. [68]

      Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Adv. Func. Mater. 2021, 31, 2005991. doi: 10.1002/adfm.202005991  doi: 10.1002/adfm.202005991

    69. [69]

      Jiang, Z. P.; Zeng, Z. Q.; Zhai, B. Y.; Li, X.; Hu, W.; Zhang, H.; Cheng, S. J.; Xie, J. J. Power Sources 2021, 506, 230086. doi: 10.1016/j.jpowsour.2021.230086  doi: 10.1016/j.jpowsour.2021.230086

    70. [70]

      Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Joule 2020, 4, 1776. doi: 10.1016/j.joule.2020.06.011  doi: 10.1016/j.joule.2020.06.011

    71. [71]

      Zhu, X.; Chang, Z.; Yang, H.; Qian, Y.; He, P.; Zhou, H. Energy Stor. Mater. 2022, 44, 360. doi: 10.1016/j.ensm.2021.09.022  doi: 10.1016/j.ensm.2021.09.022

    72. [72]

      Li, T.; Zhang, X. Q.; Yao, N.; Yao, Y. X.; Hou, L. P.; Chen, X.; Zhou, M. Y.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 22683. doi: 10.1002/anie.202107732  doi: 10.1002/anie.202107732

    73. [73]

      Holoubek, J.; Liu, H.; Wu, Z.; Yin, Y.; Xing, X.; Cai, G.; Yu, S.; Zhou, H.; Pascal, T. A.; Chen, Z.; et al. Nat. Energy 2021, 6, 303. doi: 10.1038/s41560-021-00783-z  doi: 10.1038/s41560-021-00783-z

    74. [74]

      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 4090. doi: 10.1002/anie.202011482  doi: 10.1002/anie.202011482

    75. [75]

      Wang, H.; Yu, Z.; Kong, X.; Huang, W.; Zhang, Z.; Mackanic, D. G.; Huang, X.; Qin, J.; Bao, Z.; Cui, Y. Adv. Mater. 2021, 33, e2008619. doi: 10.1002/adma.202008619  doi: 10.1002/adma.202008619

    76. [76]

      Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. J. Am. Chem. Soc. 2020, 142, 7393. doi: 10.1021/jacs.9b11056  doi: 10.1021/jacs.9b11056

    77. [77]

      Chen, Y.; Yu, Z.; Rudnicki, P.; Gong, H.; Huang, Z.; Kim, S. C.; Lai, J. C.; Kong, X.; Qin, J.; Cui, Y.; et al. J. Am. Chem. Soc. 2021, 143, 18703. doi: 10.1021/jacs.1c09006  doi: 10.1021/jacs.1c09006

    78. [78]

      Kim, S. C.; Kong, X.; Vila, R. A.; Huang, W.; Chen, Y.; Boyle, D. T.; Yu, Z.; Wang, H.; Bao, Z.; Qin, J.; et al. J. Am. Chem. Soc. 2021, 143, 10301. doi: 10.1021/jacs.1c03868  doi: 10.1021/jacs.1c03868

    79. [79]

      Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A.; et al. Science 2022, 375, 66. doi: 10.1126/science.abi8703  doi: 10.1126/science.abi8703

    80. [80]

      Ma, P.; Mirmira, P.; Amanchukwu, C. V. ACS. Cent. Sci. 2021, 7, 1232. doi: 10.1021/acscentsci.1c00503  doi: 10.1021/acscentsci.1c00503

    81. [81]

      Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; et al. J. Power Sources 2011, 196, 3623. doi: 10.1016/j.jpowsour.2010.12.040  doi: 10.1016/j.jpowsour.2010.12.040

    82. [82]

      Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. J. Power Sources 2011, 196, 9743. doi: 10.1016/j.jpowsour.2011.07.071  doi: 10.1016/j.jpowsour.2011.07.071

    83. [83]

      Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Angew. Chem. Int. Ed. 2017, 56, 6192. doi: 10.1002/anie.201701026  doi: 10.1002/anie.201701026

    84. [84]

      Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem. 2019, 5, 2630. doi: 10.1016/j.chempr.2019.07.003  doi: 10.1016/j.chempr.2019.07.003

    85. [85]

      Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; et al. Energy Environ. Sci. 2020, 13, 212. doi: 10.1039/c9ee02538c  doi: 10.1039/c9ee02538c

    86. [86]

      Xue, W.; Gao, R.; Shi, Z.; Xiao, X.; Zhang, W.; Zhang, Y.; Zhu, Y. G.; Waluyo, I.; Li, Y.; Hill, M. R.; et al. Energy Environ. Sci. 2021, 14, 6030. doi: 10.1039/d1ee01265g  doi: 10.1039/d1ee01265g

    87. [87]

      Zhang, Y.; Viswanathan, V. J. Phys. Chem. Lett. 2021, 12, 5821. doi: 10.1021/acs.jpclett.1c01522  doi: 10.1021/acs.jpclett.1c01522

    88. [88]

      Su, C. -C.; He, M.; Amine, R.; Chen, Z.; Sahore, R.; Dietz Rago, N.; Amine, K. Energy Stor. Mater. 2019, 17, 284. doi: 10.1016/j.ensm.2018.11.003  doi: 10.1016/j.ensm.2018.11.003

    89. [89]

      Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D. ACS Energy Lett. 2017, 2, 1321. doi: 10.1021/acsenergylett.7b00300  doi: 10.1021/acsenergylett.7b00300

    90. [90]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    91. [91]

      Zhang, Y. M.; Krishnamurthy, D.; Viswanathan, V. J. Electrochem. Soc. 2020, 167, 070554. doi: 10.1149/1945-7111/ab836b  doi: 10.1149/1945-7111/ab836b

    92. [92]

      Zhu, Y. Y.; Pande, V.; Li, L. S.; Wen, B. H.; Pan, M. S.; Wang, D.; Ma, Z. F.; Viswanathan, V.; Chiang, Y. M. P. Natl. Acad. Sci. USA 2020, 117, 27195. doi: 10.1073/pnas.2001923117  doi: 10.1073/pnas.2001923117

    93. [93]

      Su, C. C.; He, M. N.; Cai, M.; Shi, J. Y.; Amine, R.; Rago, N. D.; Guo, J. C.; Rojas, T.; Ngo, A. T.; Amine, K. Nano Energy 2022, 92, 106720. doi: 10.1016/j.nanoen.2021.106720  doi: 10.1016/j.nanoen.2021.106720

    94. [94]

      Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. Energy Environ. Sci. 2022. doi: 10.1039/d1ee02959b  doi: 10.1039/d1ee02959b

    95. [95]

      Yang, Y.; Yan, C.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37 (11), 2010076.  doi: 10.3866/PKU.WHXB202010076

    96. [96]

      Yu, L.; Wang, J.; Xu, Z. J. Small Structures 2020, 2, 2000043. doi: 10.1002/sstr.202000043  doi: 10.1002/sstr.202000043

    97. [97]

      Liu, H.; Li, T.; Xu, X. Q.; Shi, P.; Zhang, X. Q.; Xu, R.; Cheng, X. B.; Huang, J. Q. Chinese J. Chem. Eng. 2021, 37, 152. doi: 10.1016/j.cjche.2021.03.021  doi: 10.1016/j.cjche.2021.03.021

    98. [98]

      Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B. M. Nat. Energy 2021, 6, 951. doi: 10.1038/s41560-021-00910-w  doi: 10.1038/s41560-021-00910-w

    99. [99]

      Xu, Y.; Dong, K.; Jie, Y.; Adelhelm, P.; Chen, Y.; Xu, L.; Yu, P.; Kim, J.; Kochovski, Z.; Yu, Z.; et al. Adv. Energy Mater. 2022, 12, 2200398. doi: 10.1002/aenm.202200398  doi: 10.1002/aenm.202200398

  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    4. [4]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    5. [5]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    6. [6]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    7. [7]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    8. [8]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    9. [9]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    10. [10]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    13. [13]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(100)
  • Abstract views(2989)
  • HTML views(968)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return