Fluorinated Solvents for Lithium Metal Batteries
- Corresponding author: Shuhong Jiao, jiaosh@ustc.edu.cn †These authors contributed equally to this work.
Citation:
Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica,
;2022, 38(11): 220500.
doi:
10.3866/PKU.WHXB202205005
Evarts, E. C. Nature 2015, 526, S93. doi: 10.1038/526S93a
doi: 10.1038/526S93a
Winter, M.; Barnett, B.; Xu, K. Chem. Rev. 2018, 118, 11433. doi: 10.1021/acs.chemrev.8b00422
doi: 10.1021/acs.chemrev.8b00422
Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/Nenergy.2016.141
doi: 10.1038/Nenergy.2016.141
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1
doi: 10.1038/s41560-018-0108-1
Huang, F. Y.; Jie, Y. L.; Li, X. P.; Chen, Y. W.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Acta Phys. -Chim. Sin. 2021, 37, 2008081.
doi: 10.3866/PKU.WHXB202008081
Niu, C. J.; Pan, H. L.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L. L.; Wang, C. M.; Mei, D. H.; Meng, J. S.; Wang, X. P.; et al. Nat. Nanotechnol. 2019, 14, 594. doi: 10.1038/s41565-019-0427-9
doi: 10.1038/s41565-019-0427-9
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561
doi: 10.1002/adma.201800561
Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Small Structures 2021, 2, 2100009. doi: 10.1002/sstr.202100009
doi: 10.1002/sstr.202100009
Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Chem. Rev. 2020, 120, 13312. doi: 10.1021/acs.chemrev.0c00275
doi: 10.1021/acs.chemrev.0c00275
Jiao, S. H.; Zheng, J. M.; Li, Q. Y.; Li, X.; Engelhard, M. H.; Cao, R. G.; Zhang, J. G.; Xu, W. Joule 2018, 2, 110. doi: 10.1016/j.joule.2017.10.007
doi: 10.1016/j.joule.2017.10.007
Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y., Acta Phys. -Chim. Sin. 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021
Chen, C. -Y.; Tsuda, T.; Oshima, Y.; Kuwabata, S. Small Structures 2021, 2, 2100018. doi: 10.1002/sstr.202100018
doi: 10.1002/sstr.202100018
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z
doi: 10.1038/s41586-019-1481-z
Ding, J. F.; Xu, R.; Ma, X. X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Huang, J. Q. Angew. Chem. Int. Ed. 2022, 61, e2021156. doi: 10.1002/anie.202115602
doi: 10.1002/anie.202115602
Li, W. D.; Song, B. H.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E
doi: 10.1039/C6CS00875E
Wang, Y.; Liu, Y.; Tu, Y.; Wang, Q. J. Phys. Chem. C 2020, 124, 9099. doi: 10.1021/acs.jpcc.9b10535
doi: 10.1021/acs.jpcc.9b10535
Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Manthiram, A. Nat. Commun. 2020, 11, 1550. doi: 10.1038/s41467-020-15355-0
doi: 10.1038/s41467-020-15355-0
Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J.; et al. Adv. Energy Mater. 2021, 11, 2000982. doi: 10.1002/aenm.202000982
doi: 10.1002/aenm.202000982
Asl, H. Y.; Manthiram, A. Science 2020, 369, 140. doi: 10.1126/science.abc5454
doi: 10.1126/science.abc5454
Yu, Z.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y. C.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S.; et al. Nat. Energy 2020, 5, 526. doi: 10.1038/s41560-020-0634-5
doi: 10.1038/s41560-020-0634-5
Yu, Z.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X.; et al. Nat. Energy 2022, 7, 94. doi: 10.1038/s41560-021-00962-y
doi: 10.1038/s41560-021-00962-y
Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martinez, L. M.; Armand, M. Angew. Chem. Int. Ed. 2018, 57, 15002. doi: 10.1002/anie.201712702
doi: 10.1002/anie.201712702
Lee, S. H.; Hwang, J. Y.; Ming, J.; Cao, Z.; Nguyen, H. A.; Jung, H. G.; Kim, J.; Sun, Y. K. Adv. Energy Mater. 2020, 10, 2000567. doi: 10.1002/aenm.202000567
doi: 10.1002/aenm.202000567
Zhang, S.; Yang, G.; Liu, Z.; Li, X.; Wang, X.; Chen, R.; Wu, F.; Wang, Z.; Chen, L. Nano Lett. 2021, 21, 3310. doi: 10.1021/acs.nanolett.1c00848
doi: 10.1021/acs.nanolett.1c00848
Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3, 739. doi: 10.1038/s41560-018-0199-8
doi: 10.1038/s41560-018-0199-8
Pham, T. D.; Bin Faheem, A.; Chun, S. Y.; Rho, J. R.; Kwak, K.; Lee, K. K. Adv. Energy Mater. 2021, 11, 2003520. doi: 10.1002/aenm.202003520
doi: 10.1002/aenm.202003520
Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2
doi: 10.1038/s41565-018-0183-2
Cao, X.; Zou, L.; Matthews, B. E.; Zhang, L.; He, X.; Ren, X.; Engelhard, M. H.; Burton, S. D.; El-Khoury, P. Z.; Lim, H. -S.; et al. Energy Stor. Mater. 2021, 34, 76. doi: 10.1016/j.ensm.2020.08.035
doi: 10.1016/j.ensm.2020.08.035
He, M.; Hu, L.; Xue, Z.; Su, C. C.; Redfern, P.; Curtiss, L. A.; Polzin, B.; von Cresce, A.; Xu, K.; Zhang, Z. J. Electrochem. Soc. 2015, 162, A1725. doi: 10.1149/2.0231509jes
doi: 10.1149/2.0231509jes
Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2, 1337. doi: 10.1021/acsenergylett.7b00163
doi: 10.1021/acsenergylett.7b00163
Zhang, X. -Q.; Cheng, X. -B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989
doi: 10.1002/adfm.201605989
Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806. doi: 10.1039/c3ee24414h
doi: 10.1039/c3ee24414h
von Aspern, N.; Roschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Angew. Chem. Int. Ed. 2019, 58, 15978. doi: 10.1002/anie.201901381
doi: 10.1002/anie.201901381
Cao, X.; Jia, H.; Xu, W.; Zhang, J. -G. J. Electrochem. Soc. 2021, 168, 010522. doi: 10.1149/1945-7111/abd60e
doi: 10.1149/1945-7111/abd60e
Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; et al. Nat. Energy 2021, 6, 495. doi: 10.1038/s41560-021-00792-y
doi: 10.1038/s41560-021-00792-y
Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406. doi: 10.1149/2.0041514jes
doi: 10.1149/2.0041514jes
Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2008044.
doi: 10.3866/PKU.WHXB202008044
Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z
doi: 10.1038/s41560-019-0336-z
Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362 (2015
doi: 10.1038/ncomms7362(2015
Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Proc. Natl. Acad. Sci. USA 2018, 115, 1156. doi: 10.1073/pnas.1712895115
doi: 10.1073/pnas.1712895115
Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C.; et al. ACS Energy Lett. 2019, 4, 896. doi: 10.1021/acsenergylett.9b00381
doi: 10.1021/acsenergylett.9b00381
Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032. doi: 10.1038/ncomms12032
doi: 10.1038/ncomms12032
Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Nat. Energy 2017, 3, 22. doi: 10.1038/s41560-017-0033-8
doi: 10.1038/s41560-017-0033-8
Wang, A. A.; Gunnarsdottir, A. B.; Fawdon, J.; Pasta, M.; Grey, C. P.; Monroe, C. W. ACS Energy Lett. 2021, 6, 3086. doi: 10.1021/acsenergylett.1c01213
doi: 10.1021/acsenergylett.1c01213
Jiang, G.; Li, F.; Wang, H.; Wu, M.; Qi, S.; Liu, X.; Yang, S.; Ma, J. Small Structures 2021, 2, 2000122. doi: 10.1002/sstr.202000122
doi: 10.1002/sstr.202000122
Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem. 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002
doi: 10.1016/j.chempr.2018.05.002
Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, e1706102. doi: 10.1002/adma.201706102
doi: 10.1002/adma.201706102
Lee, Y.; Lee, T. K.; Kim, S.; Lee, J.; Ahn, Y.; Kim, K.; Ma, H.; Park, G.; Lee, S. -M.; Kwak, S. K.; et al. Nano Energy 2020, 67, 104309. doi: 10.1016/j.nanoen.2019.104309
doi: 10.1016/j.nanoen.2019.104309
Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; et al. Joule 2019, 3, 1662. doi: 10.1016/j.joule.2019.05.006
doi: 10.1016/j.joule.2019.05.006
Ren, X.; Gao, P.; Zou, L.; Jiao, S.; Cao, X.; Zhang, X.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H.; et al. Proc. Natl. Acad. Sci. USA 2020, 117, 28603. doi: 10.1073/pnas.2010852117
doi: 10.1073/pnas.2010852117
Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Angew. Chem. Int. Ed. 2020, 59, 14869. doi: 10.1002/anie.202003663
doi: 10.1002/anie.202003663
Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3
doi: 10.1038/s41560-019-0474-3
Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5
doi: 10.1038/s41560-019-0464-5
Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C.; et al. Adv. Energy Mater. 2020, 10, 1903568. doi: 10.1002/aenm.201903568
doi: 10.1002/aenm.201903568
Cao, X.; Gao, P.; Ren, X.; Zou, L.; Engelhard, M. H.; Matthews, B. E.; Hu, J.; Niu, C.; Liu, D.; Arey, B. W.; et al. Proc. Natl. Acad. Sci. USA 2021, 118, 9. doi: 10.1073/pnas.2020357118
doi: 10.1073/pnas.2020357118
Yao, N.; Chen, X.; Shen, X.; Zhang, R.; Fu, Z. H.; Ma, X. X.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 21473. doi: 10.1002/anie.202107657
doi: 10.1002/anie.202107657
Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627
doi: 10.1002/anie.202101627
Gupta, A.; Manthiram, A. Adv. Energy Mater. 2020, 10, 2001972. doi: 10.1002/aenm.202001972
doi: 10.1002/aenm.202001972
Zhao, F. P.; Zhang, S. M.; Li, Y. G.; Sun, X. L. Small Structures 2022, 3, 2100146. doi: 10.1002/sstr.202100146
doi: 10.1002/sstr.202100146
Ren, F.; Li, Z.; Chen, J.; Huguet, P.; Peng, Z.; Deabate, S. ACS. Appl. Mater. Interfaces 2022, 14, 4211. doi: 10.1021/acsami.1c21638
doi: 10.1021/acsami.1c21638
Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2019, 9, 1902116 doi: 10.1002/aenm.201902116
doi: 10.1002/aenm.201902116
Perez Beltran, S.; Cao, X.; Zhang, J. -G.; Balbuena, P. B. Chem. Mater. 2020, 32, 5973. doi: 10.1021/acs.chemmater.0c00987
doi: 10.1021/acs.chemmater.0c00987
Perez Beltran, S.; Cao, X.; Zhang, J. -G.; El-Khoury, P. Z.; Balbuena, P. B. J. Mater. Chem. A 2021, 9, 17459. doi: 10.1039/d1ta04737j
doi: 10.1039/d1ta04737j
Dong, L.; Liu, Y.; Wen, K.; Chen, D.; Rao, D.; Liu, J.; Yuan, B.; Dong, Y.; Wu, Z.; Liang, Y. et al. Adv. Sci. 2022, 9, e2104699. doi: 10.1002/advs.202104699
doi: 10.1002/advs.202104699
Zheng, Y.; Balbuena, P. B. J. Chem. Phys. 2021, 154, 104702. doi: 10.1063/5.0042896
doi: 10.1063/5.0042896
Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Adv. Func. Mater. 2021, 31, 2005991. doi: 10.1002/adfm.202005991
doi: 10.1002/adfm.202005991
Jiang, Z. P.; Zeng, Z. Q.; Zhai, B. Y.; Li, X.; Hu, W.; Zhang, H.; Cheng, S. J.; Xie, J. J. Power Sources 2021, 506, 230086. doi: 10.1016/j.jpowsour.2021.230086
doi: 10.1016/j.jpowsour.2021.230086
Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Joule 2020, 4, 1776. doi: 10.1016/j.joule.2020.06.011
doi: 10.1016/j.joule.2020.06.011
Zhu, X.; Chang, Z.; Yang, H.; Qian, Y.; He, P.; Zhou, H. Energy Stor. Mater. 2022, 44, 360. doi: 10.1016/j.ensm.2021.09.022
doi: 10.1016/j.ensm.2021.09.022
Li, T.; Zhang, X. Q.; Yao, N.; Yao, Y. X.; Hou, L. P.; Chen, X.; Zhou, M. Y.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 22683. doi: 10.1002/anie.202107732
doi: 10.1002/anie.202107732
Holoubek, J.; Liu, H.; Wu, Z.; Yin, Y.; Xing, X.; Cai, G.; Yu, S.; Zhou, H.; Pascal, T. A.; Chen, Z.; et al. Nat. Energy 2021, 6, 303. doi: 10.1038/s41560-021-00783-z
doi: 10.1038/s41560-021-00783-z
Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 4090. doi: 10.1002/anie.202011482
doi: 10.1002/anie.202011482
Wang, H.; Yu, Z.; Kong, X.; Huang, W.; Zhang, Z.; Mackanic, D. G.; Huang, X.; Qin, J.; Bao, Z.; Cui, Y. Adv. Mater. 2021, 33, e2008619. doi: 10.1002/adma.202008619
doi: 10.1002/adma.202008619
Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. J. Am. Chem. Soc. 2020, 142, 7393. doi: 10.1021/jacs.9b11056
doi: 10.1021/jacs.9b11056
Chen, Y.; Yu, Z.; Rudnicki, P.; Gong, H.; Huang, Z.; Kim, S. C.; Lai, J. C.; Kong, X.; Qin, J.; Cui, Y.; et al. J. Am. Chem. Soc. 2021, 143, 18703. doi: 10.1021/jacs.1c09006
doi: 10.1021/jacs.1c09006
Kim, S. C.; Kong, X.; Vila, R. A.; Huang, W.; Chen, Y.; Boyle, D. T.; Yu, Z.; Wang, H.; Bao, Z.; Qin, J.; et al. J. Am. Chem. Soc. 2021, 143, 10301. doi: 10.1021/jacs.1c03868
doi: 10.1021/jacs.1c03868
Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A.; et al. Science 2022, 375, 66. doi: 10.1126/science.abi8703
doi: 10.1126/science.abi8703
Ma, P.; Mirmira, P.; Amanchukwu, C. V. ACS. Cent. Sci. 2021, 7, 1232. doi: 10.1021/acscentsci.1c00503
doi: 10.1021/acscentsci.1c00503
Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; et al. J. Power Sources 2011, 196, 3623. doi: 10.1016/j.jpowsour.2010.12.040
doi: 10.1016/j.jpowsour.2010.12.040
Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. J. Power Sources 2011, 196, 9743. doi: 10.1016/j.jpowsour.2011.07.071
doi: 10.1016/j.jpowsour.2011.07.071
Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Angew. Chem. Int. Ed. 2017, 56, 6192. doi: 10.1002/anie.201701026
doi: 10.1002/anie.201701026
Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem. 2019, 5, 2630. doi: 10.1016/j.chempr.2019.07.003
doi: 10.1016/j.chempr.2019.07.003
Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; et al. Energy Environ. Sci. 2020, 13, 212. doi: 10.1039/c9ee02538c
doi: 10.1039/c9ee02538c
Xue, W.; Gao, R.; Shi, Z.; Xiao, X.; Zhang, W.; Zhang, Y.; Zhu, Y. G.; Waluyo, I.; Li, Y.; Hill, M. R.; et al. Energy Environ. Sci. 2021, 14, 6030. doi: 10.1039/d1ee01265g
doi: 10.1039/d1ee01265g
Zhang, Y.; Viswanathan, V. J. Phys. Chem. Lett. 2021, 12, 5821. doi: 10.1021/acs.jpclett.1c01522
doi: 10.1021/acs.jpclett.1c01522
Su, C. -C.; He, M.; Amine, R.; Chen, Z.; Sahore, R.; Dietz Rago, N.; Amine, K. Energy Stor. Mater. 2019, 17, 284. doi: 10.1016/j.ensm.2018.11.003
doi: 10.1016/j.ensm.2018.11.003
Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D. ACS Energy Lett. 2017, 2, 1321. doi: 10.1021/acsenergylett.7b00300
doi: 10.1021/acsenergylett.7b00300
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513
doi: 10.1002/anie.201801513
Zhang, Y. M.; Krishnamurthy, D.; Viswanathan, V. J. Electrochem. Soc. 2020, 167, 070554. doi: 10.1149/1945-7111/ab836b
doi: 10.1149/1945-7111/ab836b
Zhu, Y. Y.; Pande, V.; Li, L. S.; Wen, B. H.; Pan, M. S.; Wang, D.; Ma, Z. F.; Viswanathan, V.; Chiang, Y. M. P. Natl. Acad. Sci. USA 2020, 117, 27195. doi: 10.1073/pnas.2001923117
doi: 10.1073/pnas.2001923117
Su, C. C.; He, M. N.; Cai, M.; Shi, J. Y.; Amine, R.; Rago, N. D.; Guo, J. C.; Rojas, T.; Ngo, A. T.; Amine, K. Nano Energy 2022, 92, 106720. doi: 10.1016/j.nanoen.2021.106720
doi: 10.1016/j.nanoen.2021.106720
Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. Energy Environ. Sci. 2022. doi: 10.1039/d1ee02959b
doi: 10.1039/d1ee02959b
Yang, Y.; Yan, C.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37 (11), 2010076.
doi: 10.3866/PKU.WHXB202010076
Yu, L.; Wang, J.; Xu, Z. J. Small Structures 2020, 2, 2000043. doi: 10.1002/sstr.202000043
doi: 10.1002/sstr.202000043
Liu, H.; Li, T.; Xu, X. Q.; Shi, P.; Zhang, X. Q.; Xu, R.; Cheng, X. B.; Huang, J. Q. Chinese J. Chem. Eng. 2021, 37, 152. doi: 10.1016/j.cjche.2021.03.021
doi: 10.1016/j.cjche.2021.03.021
Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B. M. Nat. Energy 2021, 6, 951. doi: 10.1038/s41560-021-00910-w
doi: 10.1038/s41560-021-00910-w
Xu, Y.; Dong, K.; Jie, Y.; Adelhelm, P.; Chen, Y.; Xu, L.; Yu, P.; Kim, J.; Kochovski, Z.; Yu, Z.; et al. Adv. Energy Mater. 2022, 12, 2200398. doi: 10.1002/aenm.202200398
doi: 10.1002/aenm.202200398
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Chengshan Yuan , Xiaolong Li , Xiuping Yang , Xiangfeng Shao , Zitong Liu , Xiaolei Wang , Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073
Shahua Huang , Xiaoming Guo , Lin Lin , Guangping Chang , Sheng Han , Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030