Citation: Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220500. doi: 10.3866/PKU.WHXB202205005 shu

Fluorinated Solvents for Lithium Metal Batteries

  • Corresponding author: Shuhong Jiao, jiaosh@ustc.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 3 May 2022
    Revised Date: 26 May 2022
    Accepted Date: 27 May 2022
    Available Online: 6 June 2022

    Fund Project: the National Key Research and Development Program of China 2017YFA206703the National Natural Science Foundation of China 51902304the National Natural Science Foundation of China 52072358the National Natural Science Foundation of China U21A2082the Anhui Provincial Natural Science Foundation, China 1908085ME122the Fundamental Research Funds for the Central Universities, China WK2060140026

  • Lithium metal batteries, which use lithium metal as the anode, have attracted tremendous research interest in recent years, owing to their high energy density and potential for future energy storage applications. Despite their advantages such as high energy density, the safety concerns and short lifespan significantly impede their practical applications in transportation and electronic devices. Tremendous efforts have been devoted to overcoming these problems, including materials design, interface modification, and electrolyte engineering. Among these strategies, electrolyte regulation plays a key role in improving the efficiency, stability, and safety of lithium metal anodes. As an important class of electrolyte components, fluorinated solvents, which can decompose to form LiF-rich interphase layers on both anode and cathode, have been proven to enhance the stability of lithium metal anodes and improve the oxidative stability of the electrolytes. Meanwhile, the spatial structure of fluorinated solvents, such as the number and sites of fluorine atoms, can influence the physicochemical properties of the electrolytes and the compositions/structure of the solid-electrolyte interphase, which eventually dictates the cycling performance of Li metal batteries. Recently, many fluorinated solvents with different molecular structures have been designed to regulate the solvation structure of electrolytes, and these solvents exhibit novel electrochemical properties in lithium metal batteries. However, there are few comprehensive reviews that summarize the fluorinated solvents used in Li metal batteries and discuss their functions in electrolytes and their physicochemical properties. This review summarizes the novel fluorinated solvents used in lithium metal batteries in recent years, which have been classified into three parts: diluents, traditional solvents, and novel molecules, based on their functions in the electrolytes. In every part, the understanding of the interactions between fluorinated solvents and Li ions, the decomposition mechanism of fluorinated solvents at the interface of the electrode, the functions of fluorinated solvents in the electrolytes, and the structure-activity relationship between the fluorinated solvents and battery performance have been comprehensively summarized and discussed. Moreover, the advantages and disadvantages of fluorinated solvents have been discussed, and the importance of precisely controlling the number of fluorine atoms and the structure of fluorinated solvents has been emphasized. At the end of this review, a perspective for designing new fluorinated solvents has been proposed. We believe that this review can provide insights on designing novel fluorinated solvents for high-performance Li metal batteries.
  • 加载中
    1. [1]

      Evarts, E. C. Nature 2015, 526, S93. doi: 10.1038/526S93a  doi: 10.1038/526S93a

    2. [2]

      Winter, M.; Barnett, B.; Xu, K. Chem. Rev. 2018, 118, 11433. doi: 10.1021/acs.chemrev.8b00422  doi: 10.1021/acs.chemrev.8b00422

    3. [3]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/Nenergy.2016.141  doi: 10.1038/Nenergy.2016.141

    4. [4]

      Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    5. [5]

      Huang, F. Y.; Jie, Y. L.; Li, X. P.; Chen, Y. W.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Acta Phys. -Chim. Sin. 2021, 37, 2008081.  doi: 10.3866/PKU.WHXB202008081

    6. [6]

      Niu, C. J.; Pan, H. L.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L. L.; Wang, C. M.; Mei, D. H.; Meng, J. S.; Wang, X. P.; et al. Nat. Nanotechnol. 2019, 14, 594. doi: 10.1038/s41565-019-0427-9  doi: 10.1038/s41565-019-0427-9

    7. [7]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    8. [8]

      Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Small Structures 2021, 2, 2100009. doi: 10.1002/sstr.202100009  doi: 10.1002/sstr.202100009

    9. [9]

      Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Chem. Rev. 2020, 120, 13312. doi: 10.1021/acs.chemrev.0c00275  doi: 10.1021/acs.chemrev.0c00275

    10. [10]

      Jiao, S. H.; Zheng, J. M.; Li, Q. Y.; Li, X.; Engelhard, M. H.; Cao, R. G.; Zhang, J. G.; Xu, W. Joule 2018, 2, 110. doi: 10.1016/j.joule.2017.10.007  doi: 10.1016/j.joule.2017.10.007

    11. [11]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y., Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    12. [12]

      Chen, C. -Y.; Tsuda, T.; Oshima, Y.; Kuwabata, S. Small Structures 2021, 2, 2100018. doi: 10.1002/sstr.202100018  doi: 10.1002/sstr.202100018

    13. [13]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    14. [14]

      Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z  doi: 10.1038/s41586-019-1481-z

    15. [15]

      Ding, J. F.; Xu, R.; Ma, X. X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Huang, J. Q. Angew. Chem. Int. Ed. 2022, 61, e2021156. doi: 10.1002/anie.202115602  doi: 10.1002/anie.202115602

    16. [16]

      Li, W. D.; Song, B. H.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E  doi: 10.1039/C6CS00875E

    17. [17]

      Wang, Y.; Liu, Y.; Tu, Y.; Wang, Q. J. Phys. Chem. C 2020, 124, 9099. doi: 10.1021/acs.jpcc.9b10535  doi: 10.1021/acs.jpcc.9b10535

    18. [18]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    19. [19]

      Manthiram, A. Nat. Commun. 2020, 11, 1550. doi: 10.1038/s41467-020-15355-0  doi: 10.1038/s41467-020-15355-0

    20. [20]

      Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J.; et al. Adv. Energy Mater. 2021, 11, 2000982. doi: 10.1002/aenm.202000982  doi: 10.1002/aenm.202000982

    21. [21]

      Asl, H. Y.; Manthiram, A. Science 2020, 369, 140. doi: 10.1126/science.abc5454  doi: 10.1126/science.abc5454

    22. [22]

      Yu, Z.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y. C.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S.; et al. Nat. Energy 2020, 5, 526. doi: 10.1038/s41560-020-0634-5  doi: 10.1038/s41560-020-0634-5

    23. [23]

      Yu, Z.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X.; et al. Nat. Energy 2022, 7, 94. doi: 10.1038/s41560-021-00962-y  doi: 10.1038/s41560-021-00962-y

    24. [24]

      Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martinez, L. M.; Armand, M. Angew. Chem. Int. Ed. 2018, 57, 15002. doi: 10.1002/anie.201712702  doi: 10.1002/anie.201712702

    25. [25]

      Lee, S. H.; Hwang, J. Y.; Ming, J.; Cao, Z.; Nguyen, H. A.; Jung, H. G.; Kim, J.; Sun, Y. K. Adv. Energy Mater. 2020, 10, 2000567. doi: 10.1002/aenm.202000567  doi: 10.1002/aenm.202000567

    26. [26]

      Zhang, S.; Yang, G.; Liu, Z.; Li, X.; Wang, X.; Chen, R.; Wu, F.; Wang, Z.; Chen, L. Nano Lett. 2021, 21, 3310. doi: 10.1021/acs.nanolett.1c00848  doi: 10.1021/acs.nanolett.1c00848

    27. [27]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3, 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    28. [28]

      Pham, T. D.; Bin Faheem, A.; Chun, S. Y.; Rho, J. R.; Kwak, K.; Lee, K. K. Adv. Energy Mater. 2021, 11, 2003520. doi: 10.1002/aenm.202003520  doi: 10.1002/aenm.202003520

    29. [29]

      Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2  doi: 10.1038/s41565-018-0183-2

    30. [30]

      Cao, X.; Zou, L.; Matthews, B. E.; Zhang, L.; He, X.; Ren, X.; Engelhard, M. H.; Burton, S. D.; El-Khoury, P. Z.; Lim, H. -S.; et al. Energy Stor. Mater. 2021, 34, 76. doi: 10.1016/j.ensm.2020.08.035  doi: 10.1016/j.ensm.2020.08.035

    31. [31]

      He, M.; Hu, L.; Xue, Z.; Su, C. C.; Redfern, P.; Curtiss, L. A.; Polzin, B.; von Cresce, A.; Xu, K.; Zhang, Z. J. Electrochem. Soc. 2015, 162, A1725. doi: 10.1149/2.0231509jes  doi: 10.1149/2.0231509jes

    32. [32]

      Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2, 1337. doi: 10.1021/acsenergylett.7b00163  doi: 10.1021/acsenergylett.7b00163

    33. [33]

      Zhang, X. -Q.; Cheng, X. -B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    34. [34]

      Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806. doi: 10.1039/c3ee24414h  doi: 10.1039/c3ee24414h

    35. [35]

      von Aspern, N.; Roschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Angew. Chem. Int. Ed. 2019, 58, 15978. doi: 10.1002/anie.201901381  doi: 10.1002/anie.201901381

    36. [36]

      Cao, X.; Jia, H.; Xu, W.; Zhang, J. -G. J. Electrochem. Soc. 2021, 168, 010522. doi: 10.1149/1945-7111/abd60e  doi: 10.1149/1945-7111/abd60e

    37. [37]

      Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; et al. Nat. Energy 2021, 6, 495. doi: 10.1038/s41560-021-00792-y  doi: 10.1038/s41560-021-00792-y

    38. [38]

      Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406. doi: 10.1149/2.0041514jes  doi: 10.1149/2.0041514jes

    39. [39]

      Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2008044.  doi: 10.3866/PKU.WHXB202008044

    40. [40]

      Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z  doi: 10.1038/s41560-019-0336-z

    41. [41]

      Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362 (2015  doi: 10.1038/ncomms7362(2015

    42. [42]

      Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Proc. Natl. Acad. Sci. USA 2018, 115, 1156. doi: 10.1073/pnas.1712895115  doi: 10.1073/pnas.1712895115

    43. [43]

      Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C.; et al. ACS Energy Lett. 2019, 4, 896. doi: 10.1021/acsenergylett.9b00381  doi: 10.1021/acsenergylett.9b00381

    44. [44]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032. doi: 10.1038/ncomms12032  doi: 10.1038/ncomms12032

    45. [45]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Nat. Energy 2017, 3, 22. doi: 10.1038/s41560-017-0033-8  doi: 10.1038/s41560-017-0033-8

    46. [46]

      Wang, A. A.; Gunnarsdottir, A. B.; Fawdon, J.; Pasta, M.; Grey, C. P.; Monroe, C. W. ACS Energy Lett. 2021, 6, 3086. doi: 10.1021/acsenergylett.1c01213  doi: 10.1021/acsenergylett.1c01213

    47. [47]

      Jiang, G.; Li, F.; Wang, H.; Wu, M.; Qi, S.; Liu, X.; Yang, S.; Ma, J. Small Structures 2021, 2, 2000122. doi: 10.1002/sstr.202000122  doi: 10.1002/sstr.202000122

    48. [48]

      Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem. 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002  doi: 10.1016/j.chempr.2018.05.002

    49. [49]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, e1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    50. [50]

      Lee, Y.; Lee, T. K.; Kim, S.; Lee, J.; Ahn, Y.; Kim, K.; Ma, H.; Park, G.; Lee, S. -M.; Kwak, S. K.; et al. Nano Energy 2020, 67, 104309. doi: 10.1016/j.nanoen.2019.104309  doi: 10.1016/j.nanoen.2019.104309

    51. [51]

      Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; et al. Joule 2019, 3, 1662. doi: 10.1016/j.joule.2019.05.006  doi: 10.1016/j.joule.2019.05.006

    52. [52]

      Ren, X.; Gao, P.; Zou, L.; Jiao, S.; Cao, X.; Zhang, X.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H.; et al. Proc. Natl. Acad. Sci. USA 2020, 117, 28603. doi: 10.1073/pnas.2010852117  doi: 10.1073/pnas.2010852117

    53. [53]

      Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Angew. Chem. Int. Ed. 2020, 59, 14869. doi: 10.1002/anie.202003663  doi: 10.1002/anie.202003663

    54. [54]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    55. [55]

      Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    56. [56]

      Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C.; et al. Adv. Energy Mater. 2020, 10, 1903568. doi: 10.1002/aenm.201903568  doi: 10.1002/aenm.201903568

    57. [57]

      Cao, X.; Gao, P.; Ren, X.; Zou, L.; Engelhard, M. H.; Matthews, B. E.; Hu, J.; Niu, C.; Liu, D.; Arey, B. W.; et al. Proc. Natl. Acad. Sci. USA 2021, 118, 9. doi: 10.1073/pnas.2020357118  doi: 10.1073/pnas.2020357118

    58. [58]

      Yao, N.; Chen, X.; Shen, X.; Zhang, R.; Fu, Z. H.; Ma, X. X.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 21473. doi: 10.1002/anie.202107657  doi: 10.1002/anie.202107657

    59. [59]

      Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627  doi: 10.1002/anie.202101627

    60. [60]

      Gupta, A.; Manthiram, A. Adv. Energy Mater. 2020, 10, 2001972. doi: 10.1002/aenm.202001972  doi: 10.1002/aenm.202001972

    61. [61]

      Zhao, F. P.; Zhang, S. M.; Li, Y. G.; Sun, X. L. Small Structures 2022, 3, 2100146. doi: 10.1002/sstr.202100146  doi: 10.1002/sstr.202100146

    62. [62]

      Ren, F.; Li, Z.; Chen, J.; Huguet, P.; Peng, Z.; Deabate, S. ACS. Appl. Mater. Interfaces 2022, 14, 4211. doi: 10.1021/acsami.1c21638  doi: 10.1021/acsami.1c21638

    63. [63]

      Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2019, 9, 1902116 doi: 10.1002/aenm.201902116  doi: 10.1002/aenm.201902116

    64. [64]

      Perez Beltran, S.; Cao, X.; Zhang, J. -G.; Balbuena, P. B. Chem. Mater. 2020, 32, 5973. doi: 10.1021/acs.chemmater.0c00987  doi: 10.1021/acs.chemmater.0c00987

    65. [65]

      Perez Beltran, S.; Cao, X.; Zhang, J. -G.; El-Khoury, P. Z.; Balbuena, P. B. J. Mater. Chem. A 2021, 9, 17459. doi: 10.1039/d1ta04737j  doi: 10.1039/d1ta04737j

    66. [66]

      Dong, L.; Liu, Y.; Wen, K.; Chen, D.; Rao, D.; Liu, J.; Yuan, B.; Dong, Y.; Wu, Z.; Liang, Y. et al. Adv. Sci. 2022, 9, e2104699. doi: 10.1002/advs.202104699  doi: 10.1002/advs.202104699

    67. [67]

      Zheng, Y.; Balbuena, P. B. J. Chem. Phys. 2021, 154, 104702. doi: 10.1063/5.0042896  doi: 10.1063/5.0042896

    68. [68]

      Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Adv. Func. Mater. 2021, 31, 2005991. doi: 10.1002/adfm.202005991  doi: 10.1002/adfm.202005991

    69. [69]

      Jiang, Z. P.; Zeng, Z. Q.; Zhai, B. Y.; Li, X.; Hu, W.; Zhang, H.; Cheng, S. J.; Xie, J. J. Power Sources 2021, 506, 230086. doi: 10.1016/j.jpowsour.2021.230086  doi: 10.1016/j.jpowsour.2021.230086

    70. [70]

      Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Joule 2020, 4, 1776. doi: 10.1016/j.joule.2020.06.011  doi: 10.1016/j.joule.2020.06.011

    71. [71]

      Zhu, X.; Chang, Z.; Yang, H.; Qian, Y.; He, P.; Zhou, H. Energy Stor. Mater. 2022, 44, 360. doi: 10.1016/j.ensm.2021.09.022  doi: 10.1016/j.ensm.2021.09.022

    72. [72]

      Li, T.; Zhang, X. Q.; Yao, N.; Yao, Y. X.; Hou, L. P.; Chen, X.; Zhou, M. Y.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 22683. doi: 10.1002/anie.202107732  doi: 10.1002/anie.202107732

    73. [73]

      Holoubek, J.; Liu, H.; Wu, Z.; Yin, Y.; Xing, X.; Cai, G.; Yu, S.; Zhou, H.; Pascal, T. A.; Chen, Z.; et al. Nat. Energy 2021, 6, 303. doi: 10.1038/s41560-021-00783-z  doi: 10.1038/s41560-021-00783-z

    74. [74]

      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 4090. doi: 10.1002/anie.202011482  doi: 10.1002/anie.202011482

    75. [75]

      Wang, H.; Yu, Z.; Kong, X.; Huang, W.; Zhang, Z.; Mackanic, D. G.; Huang, X.; Qin, J.; Bao, Z.; Cui, Y. Adv. Mater. 2021, 33, e2008619. doi: 10.1002/adma.202008619  doi: 10.1002/adma.202008619

    76. [76]

      Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. J. Am. Chem. Soc. 2020, 142, 7393. doi: 10.1021/jacs.9b11056  doi: 10.1021/jacs.9b11056

    77. [77]

      Chen, Y.; Yu, Z.; Rudnicki, P.; Gong, H.; Huang, Z.; Kim, S. C.; Lai, J. C.; Kong, X.; Qin, J.; Cui, Y.; et al. J. Am. Chem. Soc. 2021, 143, 18703. doi: 10.1021/jacs.1c09006  doi: 10.1021/jacs.1c09006

    78. [78]

      Kim, S. C.; Kong, X.; Vila, R. A.; Huang, W.; Chen, Y.; Boyle, D. T.; Yu, Z.; Wang, H.; Bao, Z.; Qin, J.; et al. J. Am. Chem. Soc. 2021, 143, 10301. doi: 10.1021/jacs.1c03868  doi: 10.1021/jacs.1c03868

    79. [79]

      Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A.; et al. Science 2022, 375, 66. doi: 10.1126/science.abi8703  doi: 10.1126/science.abi8703

    80. [80]

      Ma, P.; Mirmira, P.; Amanchukwu, C. V. ACS. Cent. Sci. 2021, 7, 1232. doi: 10.1021/acscentsci.1c00503  doi: 10.1021/acscentsci.1c00503

    81. [81]

      Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; et al. J. Power Sources 2011, 196, 3623. doi: 10.1016/j.jpowsour.2010.12.040  doi: 10.1016/j.jpowsour.2010.12.040

    82. [82]

      Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. J. Power Sources 2011, 196, 9743. doi: 10.1016/j.jpowsour.2011.07.071  doi: 10.1016/j.jpowsour.2011.07.071

    83. [83]

      Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Angew. Chem. Int. Ed. 2017, 56, 6192. doi: 10.1002/anie.201701026  doi: 10.1002/anie.201701026

    84. [84]

      Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem. 2019, 5, 2630. doi: 10.1016/j.chempr.2019.07.003  doi: 10.1016/j.chempr.2019.07.003

    85. [85]

      Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; et al. Energy Environ. Sci. 2020, 13, 212. doi: 10.1039/c9ee02538c  doi: 10.1039/c9ee02538c

    86. [86]

      Xue, W.; Gao, R.; Shi, Z.; Xiao, X.; Zhang, W.; Zhang, Y.; Zhu, Y. G.; Waluyo, I.; Li, Y.; Hill, M. R.; et al. Energy Environ. Sci. 2021, 14, 6030. doi: 10.1039/d1ee01265g  doi: 10.1039/d1ee01265g

    87. [87]

      Zhang, Y.; Viswanathan, V. J. Phys. Chem. Lett. 2021, 12, 5821. doi: 10.1021/acs.jpclett.1c01522  doi: 10.1021/acs.jpclett.1c01522

    88. [88]

      Su, C. -C.; He, M.; Amine, R.; Chen, Z.; Sahore, R.; Dietz Rago, N.; Amine, K. Energy Stor. Mater. 2019, 17, 284. doi: 10.1016/j.ensm.2018.11.003  doi: 10.1016/j.ensm.2018.11.003

    89. [89]

      Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D. ACS Energy Lett. 2017, 2, 1321. doi: 10.1021/acsenergylett.7b00300  doi: 10.1021/acsenergylett.7b00300

    90. [90]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    91. [91]

      Zhang, Y. M.; Krishnamurthy, D.; Viswanathan, V. J. Electrochem. Soc. 2020, 167, 070554. doi: 10.1149/1945-7111/ab836b  doi: 10.1149/1945-7111/ab836b

    92. [92]

      Zhu, Y. Y.; Pande, V.; Li, L. S.; Wen, B. H.; Pan, M. S.; Wang, D.; Ma, Z. F.; Viswanathan, V.; Chiang, Y. M. P. Natl. Acad. Sci. USA 2020, 117, 27195. doi: 10.1073/pnas.2001923117  doi: 10.1073/pnas.2001923117

    93. [93]

      Su, C. C.; He, M. N.; Cai, M.; Shi, J. Y.; Amine, R.; Rago, N. D.; Guo, J. C.; Rojas, T.; Ngo, A. T.; Amine, K. Nano Energy 2022, 92, 106720. doi: 10.1016/j.nanoen.2021.106720  doi: 10.1016/j.nanoen.2021.106720

    94. [94]

      Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. Energy Environ. Sci. 2022. doi: 10.1039/d1ee02959b  doi: 10.1039/d1ee02959b

    95. [95]

      Yang, Y.; Yan, C.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37 (11), 2010076.  doi: 10.3866/PKU.WHXB202010076

    96. [96]

      Yu, L.; Wang, J.; Xu, Z. J. Small Structures 2020, 2, 2000043. doi: 10.1002/sstr.202000043  doi: 10.1002/sstr.202000043

    97. [97]

      Liu, H.; Li, T.; Xu, X. Q.; Shi, P.; Zhang, X. Q.; Xu, R.; Cheng, X. B.; Huang, J. Q. Chinese J. Chem. Eng. 2021, 37, 152. doi: 10.1016/j.cjche.2021.03.021  doi: 10.1016/j.cjche.2021.03.021

    98. [98]

      Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B. M. Nat. Energy 2021, 6, 951. doi: 10.1038/s41560-021-00910-w  doi: 10.1038/s41560-021-00910-w

    99. [99]

      Xu, Y.; Dong, K.; Jie, Y.; Adelhelm, P.; Chen, Y.; Xu, L.; Yu, P.; Kim, J.; Kochovski, Z.; Yu, Z.; et al. Adv. Energy Mater. 2022, 12, 2200398. doi: 10.1002/aenm.202200398  doi: 10.1002/aenm.202200398

  • 加载中
    1. [1]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    14. [14]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    15. [15]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(97)
  • Abstract views(2685)
  • HTML views(886)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return